Skip to main content

Mechanisms of Tumor Angiogenesis

  • Living reference work entry
  • First Online:
Tumor Angiogenesis

Abstract

Tumor angiogenesis, the process by which blood vessels penetrate and grow in the tumor microenvironment, is essential for oxygen and nutrient supply and hence constitutes a key player for the survival of solid neoplasms. Different mechanisms of angiogenesis are developed during tumor progression such as vasculogenesis, sprouting angiogenesis, intussusception, and vasculogenic mimicry. The transition from a quiescent vasculature to an actively growing one follows a series of synchronic events and is finely tuned by a wide array of molecules and positive and negative regulators of angiogenesis. Beginning with blood vessel sprouting and endothelial cell proliferation, followed by vessel navigation, remodeling, stabilization, and maturation, and finishing with blood vessel regression, the main molecular factors involved in the progression of each step are profoundly detailed. When the balance between positive and negative regulators of angiogenesis is shifted toward proangiogenic molecules, the quiescent vasculature becomes activated and initiates the angiogenic state of tumor development. The role of intratumoral hypoxia as a potent activator of the angiogenic switch, its regulation and a detailed description of normal and aberrant tumor vessels are also provided. The understanding of the foundations of these mechanisms is crucial for an effective therapeutic targeting of the angiogenic process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adams RH, Eichmann A (2010) Axon guidance molecules in vascular patterning. Cold Spring Harb Perspect Biol 2(5):a001875. doi:10.1101/cshperspect.a001875. [pii] cshperspect.a001875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Akhurst RJ (2006) A sweet link between TGFbeta and vascular disease? Nat Genet 38(4):400–401. doi:10.1038/ng0406-400. [pii] ng0406-400

    Article  CAS  PubMed  Google Scholar 

  • Andrae J, Gallini R, Betsholtz C (2008) Role of platelet-derived growth factors in physiology and medicine. Genes Dev 22(10):1276–1312. doi:10.1101/gad.1653708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arany Z, Foo SY, Ma Y, Ruas JL, Bommi-Reddy A, Girnun G, Cooper M, Laznik D, Chinsomboon J, Rangwala SM, Baek KH, Rosenzweig A, Spiegelman BM (2008) HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature 451(7181):1008–1012. doi:10.1038/nature06613. [pii] nature06613

    Article  CAS  PubMed  Google Scholar 

  • Armstrong LC, Bornstein P (2003) Thrombospondins 1 and 2 function as inhibitors of angiogenesis. Matrix Biol 22(1):63–71. [pii] S0945053X03000052

    Article  CAS  PubMed  Google Scholar 

  • Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302):964–967

    Article  CAS  PubMed  Google Scholar 

  • Augustin HG, Koh GY, Thurston G, Alitalo K (2009) Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol 10(3):165–177. doi:10.1038/nrm2639. [pii] nrm2639

    Article  CAS  PubMed  Google Scholar 

  • Autiero M, Waltenberger J, Communi D, Kranz A, Moons L, Lambrechts D, Kroll J, Plaisance S, De Mol M, Bono F, Kliche S, Fellbrich G, Ballmer-Hofer K, Maglione D, Mayr-Beyrle U, Dewerchin M, Dombrowski S, Stanimirovic D, Van Hummelen P, Dehio C, Hicklin DJ, Persico G, Herbert JM, Shibuya M, Collen D, Conway EM, Carmeliet P (2003) Role of PlGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1. Nat Med 9(7):936–943. doi:10.1038/nm884. [pii] nm884

    Article  CAS  PubMed  Google Scholar 

  • Baluk P, Hashizume H, McDonald DM (2005) Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev 15(1):102–111. doi:10.1016/j.gde.2004.12.005. [pii] S0959-437X(04)00191-1

    Article  CAS  PubMed  Google Scholar 

  • Barallobre MJ, Pascual M, Del Rio JA, Soriano E (2005) The Netrin family of guidance factors: emphasis on Netrin-1 signalling. Brain Res Brain Res Rev 49(1):22–47. doi:10.1016/j.brainresrev.2004.11.003. [pii] S0165-0173(04)00176-6

    Article  CAS  PubMed  Google Scholar 

  • Basile JR, Barac A, Zhu T, Guan KL, Gutkind JS (2004) Class IV semaphorins promote angiogenesis by stimulating Rho-initiated pathways through plexin-B. Cancer Res 64(15):5212–5224. doi:10.1158/0008–5472.CAN-04-0126. [pii] 64/15/5212

    Article  CAS  PubMed  Google Scholar 

  • Bautch VL (2009) Endothelial cells form a phalanx to block tumor metastasis. Cell 136(5):810–812. doi:10.1016/j.cell.2009.02.021. [pii] S0092–8674(09)00197–4

    Article  CAS  PubMed  Google Scholar 

  • Beenken A, Mohammadi M (2009) The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 8(3):235–253. doi:10.1038/nrd2792. [pii] nrd2792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benedito R, Roca C, Sorensen I, Adams S, Gossler A, Fruttiger M, Adams RH (2009) The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137(6):1124–1135. doi:10.1016/j.cell.2009.03.025. [pii] S0092–8674(09)00324–9

    Article  CAS  PubMed  Google Scholar 

  • Benezra R, Rafii S, Lyden D (2001) The id proteins and angiogenesis. Oncogene 20(58):8334–8341. doi:10.1038/sj.onc.1205160

    Article  CAS  PubMed  Google Scholar 

  • Bentley K, Mariggi G, Gerhardt H, Bates PA (2009) Tipping the balance: robustness of tip cell selection, migration and fusion in angiogenesis. PLoS Comput Biol 5(10):e1000549. doi:10.1371/journal.pcbi.1000549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bertolini F, Paul S, Mancuso P, Monestiroli S, Gobbi A, Shaked Y, Kerbel RS (2003) Maximum tolerable dose and low-dose metronomic chemotherapy have opposite effects on the mobilization and viability of circulating endothelial progenitor cells. Cancer Res 63(15):4342–4346. doi:10.1002/bies.1069

    CAS  PubMed  Google Scholar 

  • Bielenberg DR, Pettaway CA, Takashima S, Klagsbrun M (2006) Neuropilins in neoplasms: expression, regulation, and function. Exp Cell Res 312(5):584–593. doi:10.1016/j.yexcr.2005.11.024. [pii] S0014-4827(05)00555-0

    Article  CAS  PubMed  Google Scholar 

  • Bloch W, Huggel K, Sasaki T, Grose R, Bugnon P, Addicks K, Timpl R, Werner S (2000) The angiogenesis inhibitor endostatin impairs blood vessel maturation during wound healing. FASEB J 14(15):2373–2376. doi:10.1096/fj.00-0490fje. [pii] 00-0490fje

    CAS  PubMed  Google Scholar 

  • Blouw B, Song H, Tihan T, Bosze J, Ferrara N, Gerber HP, Johnson RS, Bergers G (2003) The hypoxic response of tumors is dependent on their microenvironment. Cancer Cell 4(2):133–146. [pii] S1535610803001946

    Article  CAS  PubMed  Google Scholar 

  • Bristow RG, Hill RP (2008) Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat Rev Cancer 8(3):180–192. doi:10.1038/nrc2344. [pii] nrc2344

    Article  CAS  PubMed  Google Scholar 

  • Burri PH, Hlushchuk R, Djonov V (2004) Intussusceptive angiogenesis: its emergence, its characteristics, and its significance. Dev Dyn 231(3):474–488. doi:10.1002/dvdy.20184

    Article  PubMed  Google Scholar 

  • Caduff JH, Fischer LC, Burri PH (1986) Scanning electron microscope study of the developing microvasculature in the postnatal rat lung. Anat Rec 216(2):154–164. doi:10.1002/ar.1092160207

    Article  CAS  PubMed  Google Scholar 

  • Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11(2):85–95. doi:10.1038/nrc2981. [pii] nrc2981

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307. doi:10.1038/nature10144. [pii] nature10144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavallaro U, Liebner S, Dejana E (2006) Endothelial cadherins and tumor angiogenesis. Exp Cell Res 312(5):659–667. doi:10.1016/j.yexcr.2005.09.019. [pii] S0014-4827(05)00455-6

    Article  CAS  PubMed  Google Scholar 

  • Clark ER, Clark EL (1939) Microscopic observation on the growth of blood capillaries in the living mammal. Am J Anat 64:251–299

    Article  Google Scholar 

  • Corada M, Nyqvist D, Orsenigo F, Caprini A, Giampietro C, Taketo MM, Iruela-Arispe ML, Adams RH, Dejana E (2010) The Wnt/beta-catenin pathway modulates vascular remodeling and specification by upregulating Dll4/notch signaling. Dev Cell 18(6):938–949. doi:10.1016/j.devcel.2010.05.006. [pii] S1534-5807(10)00214-5

    Article  CAS  PubMed  Google Scholar 

  • De Palma M, Venneri MA, Galli R, Sergi Sergi L, Politi LS, Sampaolesi M, Naldini L (2005) Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8(3):211–226. doi:10.1016/j.ccr.2005.08.002. [pii] S1535-6108(05)00260-6

    Article  PubMed  CAS  Google Scholar 

  • Deb A, Skelding KA, Wang S, Reeder M, Simper D, Caplice NM (2004) Integrin profile and in vivo homing of human smooth muscle progenitor cells. Circulation 110(17):2673–2677. doi:10.1161/01.CIR.0000139842.15651.B2. [pii] 01.CIR.0000139842.15651.B2

    Article  CAS  PubMed  Google Scholar 

  • Dejana E, Orsenigo F, Molendini C, Baluk P, McDonald DM (2009) Organization and signaling of endothelial cell-to-cell junctions in various regions of the blood and lymphatic vascular trees. Cell Tissue Res 335(1):17–25. doi:10.1007/s00441-008-0694-5

    Article  PubMed  Google Scholar 

  • Desgrosellier JS, Cheresh DA (2009) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10(1):9–22. doi:10.1038/nrc2748. [pii] nrc2748

    Article  CAS  Google Scholar 

  • Dinney CP, Bielenberg DR, Perrotte P, Reich R, Eve BY, Bucana CD, Fidler IJ (1998) Inhibition of basic fibroblast growth factor expression, angiogenesis, and growth of human bladder carcinoma in mice by systemic interferon-alpha administration. Cancer Res 58(4):808–814

    CAS  PubMed  Google Scholar 

  • DiSalvo J, Bayne ML, Conn G, Kwok PW, Trivedi PG, Soderman DD, Palisi TM, Sullivan KA, Thomas KA (1995) Purification and characterization of a naturally occurring vascular endothelial growth factor. Placenta growth factor heterodimer. J Biol Chem 270(13):7717–7723

    Article  CAS  PubMed  Google Scholar 

  • Djonov V, Makanya AN (2005) New insights into intussusceptive angiogenesis. EXS 94:17–33

    Google Scholar 

  • Dome F, Taziaux P, Boniver J, Fridman V, Delbecque K (2007) Ileum intussusception in an adult: a case report. Rev Med Liege 62(7–8):498–500

    CAS  PubMed  Google Scholar 

  • Du R, Lu KV, Petritsch C, Liu P, Ganss R, Passegue E, Song H, Vandenberg S, Johnson RS, Werb Z, Bergers G (2008) HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13(3):206–220. doi:10.1016/j.ccr.2008.01.034. [pii] S1535-6108(08)00041-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duda DG, Kozin SV, Kirkpatrick ND, Xu L, Fukumura D, Jain RK (2011) CXCL12 (SDF1alpha)-CXCR4/CXCR7 pathway inhibition: an emerging sensitizer for anticancer therapies? Clin Cancer Res 17(8):2074–2080. doi:10.1158/1078–0432.CCR-10-2636. [pii] 1078–0432.CCR-10-2636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eilken HM, Adams RH (2010) Dynamics of endothelial cell behavior in sprouting angiogenesis. Curr Opin Cell Biol 22(5):617–625

    Google Scholar 

  • Fernando NT, Koch M, Rothrock C, Gollogly LK, D’Amore PA, Ryeom S, Yoon SS (2008) Tumor escape from endogenous, extracellular matrix-associated angiogenesis inhibitors by up-regulation of multiple proangiogenic factors. Clin Cancer Res 14(5):1529–1539. doi:10.1158/1078–0432.CCR-07-4126. [pii] 14/5/1529

    Article  CAS  PubMed  Google Scholar 

  • Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9(6):669–676. doi:10.1038/nm0603-669. [pii] nm0603-669

    Article  CAS  PubMed  Google Scholar 

  • Folkman J (1990) What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82(1):4–6

    Article  CAS  PubMed  Google Scholar 

  • Folkman J (2004) Endogenous angiogenesis inhibitors. APMIS 112(7–8):496–507. doi:10.1111/j.1600-0463.2004.apm11207-0809.x. [pii] APMapm11207-0809

    Article  CAS  PubMed  Google Scholar 

  • Folkman J, Merler E, Abernathy C, Williams G (1971) Isolation of a tumor factor responsible for angiogenesis. J Exp Med 133(2):275–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraisl P, Mazzone M, Schmidt T, Carmeliet P (2009) Regulation of angiogenesis by oxygen and metabolism. Dev Cell 16(2):167–179. doi:10.1016/j.devcel.2009.01.003. [pii] S1534-5807(09)00031-8

    Article  CAS  PubMed  Google Scholar 

  • Frenkel S, Barzel I, Levy J, Lin AY, Bartsch DU, Majumdar D, Folberg R, Pe’er J (2008) Demonstrating circulation in vasculogenic mimicry patterns of uveal melanoma by confocal indocyanine green angiography. Eye (Lond) 22(7):948–952. doi:10.1038/sj.eye.6702783. [pii] 6702783

    Article  CAS  Google Scholar 

  • Gaengel K, Genove G, Armulik A, Betsholtz C (2009) Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol 29(5):630–638. doi:10.1161/ATVBAHA.107.161521. [pii] ATVBAHA.107.161521

    Article  CAS  PubMed  Google Scholar 

  • Gale NW, Dominguez MG, Noguera I, Pan L, Hughes V, Valenzuela DM, Murphy AJ, Adams NC, Lin HC, Holash J, Thurston G, Yancopoulos GD (2004) Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc Natl Acad Sci USA 101(45):15949–15954. doi:10.1073/pnas.0407290101. [pii] 0407290101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerhardt H, Semb H (2008) Pericytes: gatekeepers in tumour cell metastasis? J Mol Med (Berl) 86(2):135–144. doi:10.1007/s00109-007-0258-2

    Article  Google Scholar 

  • Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161(6):1163–1177. doi:10.1083/jcb.200302047. [pii] jcb.200302047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geudens I, Gerhardt H (2011) Coordinating cell behaviour during blood vessel formation. Development 138(21):4569–4583. doi:10.1242/dev.062323. [pii] dev.062323

    Article  CAS  PubMed  Google Scholar 

  • Gluzman-Poltorak Z, Cohen T, Herzog Y, Neufeld G (2000) Neuropilin-2 is a receptor for the vascular endothelial growth factor (VEGF) forms VEGF-145 and VEGF-165 [corrected]. J Biol Chem 275(24):18040–18045. doi:10.1074/jbc.M909259199. [pii] M909259199

    Article  CAS  PubMed  Google Scholar 

  • Goede V, Schmidt T, Kimmina S, Kozian D, Augustin HG (1998) Analysis of blood vessel maturation processes during cyclic ovarian angiogenesis. Lab Investig 78(11):1385–1394

    CAS  PubMed  Google Scholar 

  • Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D, Jain RK (2011) Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 91(3):1071–1121. doi:10.1152/physrev.00038.2010. [pii] 91/3/1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gridley T (2010) Notch signaling in the vasculature. Curr Top Dev Biol 92:277–309. doi:10.1016/S0070-2153(10)92009-7. [pii] S0070-2153(10)92009-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta MK, Qin RY (2003) Mechanism and its regulation of tumor-induced angiogenesis. World J Gastroenterol 9(6):1144–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guttmann-Raviv N, Kessler O, Shraga-Heled N, Lange T, Herzog Y, Neufeld G (2006) The neuropilins and their role in tumorigenesis and tumor progression. Cancer Lett 231(1):1–11. doi:10.1016/j.canlet.2004.12.047. [pii] S0304-3835(05)00005-4

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86(3):353–364. [pii] S0092-8674(00)80108-7

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi:10.1016/j.cell.2011.02.013. [pii] S0092-8674(11)00127-9

    Article  CAS  PubMed  Google Scholar 

  • Hattori K, Dias S, Heissig B, Hackett NR, Lyden D, Tateno M, Hicklin DJ, Zhu Z, Witte L, Crystal RG, Moore MA, Rafii S (2001) Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J Exp Med 193(9):1005–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, Crystal RG, Besmer P, Lyden D, Moore MA, Werb Z, Rafii S (2002) Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109(5):625–637. [pii] S0092867402007547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendrix MJ, Seftor EA, Hess AR, Seftor RE (2003) Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat Rev Cancer 3(6):411–421. doi:10.1038/nrc1092. [pii] nrc1092

    Article  CAS  PubMed  Google Scholar 

  • Holmgren L, O’Reilly MS, Folkman J (1995) Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1(2):149–153

    Article  CAS  PubMed  Google Scholar 

  • Iruela-Arispe ML, Davis GE (2009) Cellular and molecular mechanisms of vascular lumen formation. Dev Cell 16(2):222–231. doi:10.1016/j.devcel.2009.01.013. [pii] S1534-5807(09)00041-0

    Article  CAS  PubMed  Google Scholar 

  • Iruela-Arispe ML, Dvorak HF (1997) Angiogenesis: a dynamic balance of stimulators and inhibitors. Thromb Haemost 78(1):672–677

    CAS  PubMed  Google Scholar 

  • Jaffe RB (2000) Importance of angiogenesis in reproductive physiology. Semin Perinatol 24(1):79–81

    Article  CAS  PubMed  Google Scholar 

  • Jain RK (2003) Molecular regulation of vessel maturation. Nat Med 9(6):685–693. doi:10.1038/nm0603-685. [pii] nm0603-685

    Article  CAS  PubMed  Google Scholar 

  • Jakobsson L, Franco CA, Bentley K, Collins RT, Ponsioen B, Aspalter IM, Rosewell I, Busse M, Thurston G, Medvinsky A, Schulte-Merker S, Gerhardt H (2010) Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol 12(10):943–953. doi:10.1038/ncb2103. [pii] ncb2103

    Article  CAS  PubMed  Google Scholar 

  • Jin F, Brockmeier U, Otterbach F, Metzen E (2012) New insight into the SDF-1/CXCR4 axis in a breast carcinoma model: hypoxia-induced endothelial SDF-1 and tumor cell CXCR4 are required for tumor cell intravasation. Mol Cancer Res 10(8):1021–1031. doi:10.1158/1541–7786.MCR-11-0498. [pii] 1541–7786.MCR-11-0498

    Article  CAS  PubMed  Google Scholar 

  • Jinnin M, Medici D, Park L, Limaye N, Liu Y, Boscolo E, Bischoff J, Vikkula M, Boye E, Olsen BR (2008) Suppressed NFAT-dependent VEGFR1 expression and constitutive VEGFR2 signaling in infantile hemangioma. Nat Med 14(11):1236–1246. doi:10.1038/nm.1877. [pii] nm.1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, Zhu Z, Hicklin D, Wu Y, Port JL, Altorki N, Port ER, Ruggero D, Shmelkov SV, Jensen KK, Rafii S, Lyden D (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438(7069):820–827. doi:10.1038/nature04186. [pii] nature04186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Oh WJ, Gaiano N, Yoshida Y, Gu C (2011) Semaphorin 3E-Plexin-D1 signaling regulates VEGF function in developmental angiogenesis via a feedback mechanism. Genes Dev 25(13):1399–1411. doi:10.1101/gad.2042011. [pii] 25/13/1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopp HG, Avecilla ST, Hooper AT, Rafii S (2005) The bone marrow vascular niche: home of HSC differentiation and mobilization. Physiology (Bethesda) 20:349–356. doi:10.1152/physiol.00025.2005. [pii] 20/5/349

    Article  CAS  Google Scholar 

  • Kopp HG, Hooper AT, Broekman MJ, Avecilla ST, Petit I, Luo M, Milde T, Ramos CA, Zhang F, Kopp T, Bornstein P, Jin DK, Marcus AJ, Rafii S (2006) Thrombospondins deployed by thrombopoietic cells determine angiogenic switch and extent of revascularization. J Clin Invest 116(12):3277–3291. doi:10.1172/JCI29314, 10.1158/0008-5472.CAN-07-2706

    Google Scholar 

  • Lamouille S, Mallet C, Feige JJ, Bailly S (2002) Activin receptor-like kinase 1 is implicated in the maturation phase of angiogenesis. Blood 100(13):4495–4501. doi:10.1182/blood.V100.13.4495. [pii] 100/13/4495

    Article  CAS  PubMed  Google Scholar 

  • LaRochelle WJ, May-Siroff M, Robbins KC, Aaronson SA (1991) A novel mechanism regulating growth factor association with the cell surface: identification of a PDGF retention domain. Genes Dev 5(7):1191–1199

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Chen TT, Barber CL, Jordan MC, Murdock J, Desai S, Ferrara N, Nagy A, Roos KP, Iruela-Arispe ML (2007) Autocrine VEGF signaling is required for vascular homeostasis. Cell 130(4):691–703. doi:10.1016/j.cell.2007.06.054. [pii] S0092-8674(07)00905-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leslie JD, Ariza-McNaughton L, Bermange AL, McAdow R, Johnson SL, Lewis J (2007) Endothelial signalling by the notch ligand Delta-like 4 restricts angiogenesis. Development 134(5):839–844. doi:10.1242/dev.003244. [pii] dev.003244

    Article  CAS  PubMed  Google Scholar 

  • Li H, Fredriksson L, Li X, Eriksson U (2003) PDGF-D is a potent transforming and angiogenic growth factor. Oncogene 22(10):1501–1510. doi:10.1038/sj.onc.1206223. [pii] 1206223

    Article  CAS  PubMed  Google Scholar 

  • London NR, Smith MC, Li DY (2009) Emerging mechanisms of vascular stabilization. J Thromb Haemost 7(Suppl 1):57–60. doi:10.1111/j.1538-7836.2009.03421.x. [pii] JTH3421

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Le Noble F, Yuan L, Jiang Q, De Lafarge B, Sugiyama D, Breant C, Claes F, De Smet F, Thomas JL, Autiero M, Carmeliet P, Tessier-Lavigne M, Eichmann A (2004) The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular system. Nature 432(7014):179–186. doi:10.1038/nature03080. [pii] nature03080

    Article  CAS  PubMed  Google Scholar 

  • Luttun A, Tjwa M, Moons L, Wu Y, Angelillo-Scherrer A, Liao F, Nagy JA, Hooper A, Priller J, De Klerck B, Compernolle V, Daci E, Bohlen P, Dewerchin M, Herbert JM, Fava R, Matthys P, Carmeliet G, Collen D, Dvorak HF, Hicklin DJ, Carmeliet P (2002) Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat Med 8(8):831–840. doi:10.1038/nm731. [pii] nm731

    CAS  PubMed  Google Scholar 

  • Ma Z, Qin H, Benveniste EN (2001) Transcriptional suppression of matrix metalloproteinase-9 gene expression by IFN-gamma and IFN-beta: critical role of STAT-1alpha. J Immunol 167(9):5150–5159

    Article  CAS  PubMed  Google Scholar 

  • Maeshima Y, Sudhakar A, Lively JC, Ueki K, Kharbanda S, Kahn CR, Sonenberg N, Hynes RO, Kalluri R (2002) Tumstatin, an endothelial cell-specific inhibitor of protein synthesis. Science 295(5552):140–143. doi:10.1126/science.1065298. [pii] 295/5552/140

    Article  CAS  PubMed  Google Scholar 

  • Majmundar AJ, Wong WJ, Simon MC (2010) Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell 40(2):294–309. doi:10.1016/j.molcel.2010.09.022. [pii] S1097-2765(10)00750-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LM, Pe'er J, Trent JM, Meltzer PS, Hendrix MJ (1999) Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 155(3):739–752. doi:10.1016/S0002–9440(10)65173-5. [pii] S0002–9440(10)65173–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazzone M, Dettori D, Leite de Oliveira R, Loges S, Schmidt T, Jonckx B, Tian YM, Lanahan AA, Pollard P, Ruiz de Almodovar C, De Smet F, Vinckier S, Aragones J, Debackere K, Luttun A, Wyns S, Jordan B, Pisacane A, Gallez B, Lampugnani MG, Dejana E, Simons M, Ratcliffe P, Maxwell P, Carmeliet P (2009) Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 136(5):839–851. doi:10.1016/j.cell.2009.01.020. [pii] S0092–8674(09)00068–3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mezquita P, Parghi SS, Brandvold KA, Ruddell A (2005) Myc regulates VEGF production in B cells by stimulating initiation of VEGF mRNA translation. Oncogene 24(5):889–901. doi:10.1038/sj.onc.1208251. [pii] 1208251

    Article  CAS  PubMed  Google Scholar 

  • Mosch B, Reissenweber B, Neuber C, Pietzsch J (2010) Eph receptors and ephrin ligands: important players in angiogenesis and tumor angiogenesis. J Oncol 2010:135285. doi:10.1155/2010/135285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murakami M, Nguyen LT, Zhuang ZW, Moodie KL, Carmeliet P, Stan RV, Simons M (2008) The FGF system has a key role in regulating vascular integrity. J Clin Invest 118(10):3355–3366. doi:10.1172/JCI35298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noh YH, Matsuda K, Hong YK, Kunstfeld R, Riccardi L, Koch M, Oura H, Dadras SS, Streit M, Detmar M (2003) An N-terminal 80 kDa recombinant fragment of human thrombospondin-2 inhibits vascular endothelial growth factor induced endothelial cell migration in vitro and tumor growth and angiogenesis in vivo. J Invest Dermatol 121(6):1536–1543. doi:10.1046/j.1523-1747.2003.12643.x. [pii] S0022-202X(15)30563-7

    Article  CAS  PubMed  Google Scholar 

  • Page EL, Chan DA, Giaccia AJ, Levine M, Richard DE (2008) Hypoxia-inducible factor-1alpha stabilization in nonhypoxic conditions: role of oxidation and intracellular ascorbate depletion. Mol Biol Cell 19(1):86–94. doi:10.1091/mbc.E07-06-0612. [pii] E07-06-0612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paku S, Paweletz N (1991) First steps of tumor-related angiogenesis. Lab Investig 65(3):334–346

    CAS  PubMed  Google Scholar 

  • Pardali E, Goumans MJ, ten Dijke P (2010) Signaling by members of the TGF-beta family in vascular morphogenesis and disease. Trends Cell Biol 20(9):556–567. doi:10.1016/j.tcb.2010.06.006. [pii] S0962-8924(10)00121-2

    Article  CAS  PubMed  Google Scholar 

  • Park KW, Morrison CM, Sorensen LK, Jones CA, Rao Y, Chien CB, Wu JY, Urness LD, Li DY (2003) Robo4 is a vascular-specific receptor that inhibits endothelial migration. Dev Biol 261(1):251–267. [pii] S0012160603002586

    Article  CAS  PubMed  Google Scholar 

  • Presta M, Dell'Era P, Mitola S, Moroni E, Ronca R, Rusnati M (2005) Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 16(2):159–178. doi:10.1016/j.cytogfr.2005.01.004. [pii] S1359-6101(05)00005-5

    Article  CAS  PubMed  Google Scholar 

  • Quaegebeur A, Segura I, Carmeliet P (2010) Pericytes: blood-brain barrier safeguards against neurodegeneration? Neuron 68(3):321–323. doi:10.1016/j.neuron.2010.10.024. [pii] S0896–6273(10)00874–3

    Article  CAS  PubMed  Google Scholar 

  • Reynolds LP, Grazul-Bilska AT, Redmer DA (2000) Angiogenesis in the corpus luteum. Endocrine 12(1):1–9. doi:10.1385/ENDO:12:1:1. [pii] ENDO:12:1:1

    Article  CAS  PubMed  Google Scholar 

  • Ribatti D (2009) Endogenous inhibitors of angiogenesis: a historical review. Leuk Res 33(5):638–644. doi:10.1016/j.leukres.2008.11.019. [pii] S0145-2126(08)00507-9

    Article  CAS  PubMed  Google Scholar 

  • Ribatti D, Nico B, Floris C, Mangieri D, Piras F, Ennas MG, Vacca A, Sirigu P (2005) Microvascular density, vascular endothelial growth factor immunoreactivity in tumor cells, vessel diameter and intussusceptive microvascular growth in primary melanoma. Oncol Rep 14(1):81–84

    PubMed  Google Scholar 

  • Roca C, Adams RH (2007) Regulation of vascular morphogenesis by notch signaling. Genes Dev 21(20):2511–2524. doi:10.1101/gad.1589207. [pii] 21/20/2511

    Article  CAS  PubMed  Google Scholar 

  • Roskoski R Jr (2008) VEGF receptor protein-tyrosine kinases: structure and regulation. Biochem Biophys Res Commun 375(3):287–291. doi:10.1016/j.bbrc.2008.07.121. [pii] S0006-291X(08)01350-8

    Article  CAS  PubMed  Google Scholar 

  • Roukens MG, Alloul-Ramdhani M, Baan B, Kobayashi K, Peterson-Maduro J, van Dam H, Schulte-Merker S, Baker DA (2010) Control of endothelial sprouting by a Tel-CtBP complex. Nat Cell Biol 12(10):933–942. doi:10.1038/ncb2096. [pii] ncb2096

    Article  CAS  PubMed  Google Scholar 

  • Saharinen P, Eklund L, Miettinen J, Wirkkala R, Anisimov A, Winderlich M, Nottebaum A, Vestweber D, Deutsch U, Koh GY, Olsen BR, Alitalo K (2008) Angiopoietins assemble distinct Tie2 signalling complexes in endothelial cell-cell and cell-matrix contacts. Nat Cell Biol 10(5):527–537. doi:10.1038/ncb1715. [pii] ncb1715

    Article  CAS  PubMed  Google Scholar 

  • Sawamiphak S, Seidel S, Essmann CL, Wilkinson GA, Pitulescu ME, Acker T, Acker-Palmer A (2010) Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature 465(7297):487–491. doi:10.1038/nature08995. [pii] nature08995

    Article  CAS  PubMed  Google Scholar 

  • Schwartz JD, Rowinsky EK, Youssoufian H, Pytowski B, Wu Y (2010) Vascular endothelial growth factor receptor-1 in human cancer: concise review and rationale for development of IMC-18F1 (human antibody targeting vascular endothelial growth factor receptor-1). Cancer 116(4 Suppl):1027–1032. doi:10.1002/cncr.24789

    Article  CAS  PubMed  Google Scholar 

  • Seftor EA, Brown KM, Chin L, Kirschmann DA, Wheaton WW, Protopopov A, Feng B, Balagurunathan Y, Trent JM, Nickoloff BJ, Seftor RE, Hendrix MJ (2005) Epigenetic transdifferentiation of normal melanocytes by a metastatic melanoma microenvironment. Cancer Res 65(22):10164–10169. doi:10.1158/0008–5472.CAN-05-2497. [pii] 65/22/10164

    Article  CAS  PubMed  Google Scholar 

  • Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3(10):721–732. doi:10.1038/nrc1187. [pii] nrc1187

    Article  CAS  PubMed  Google Scholar 

  • Serini G, Valdembri D, Zanivan S, Morterra G, Burkhardt C, Caccavari F, Zammataro L, Primo L, Tamagnone L, Logan M, Tessier-Lavigne M, Taniguchi M, Puschel AW, Bussolino F (2003) Class 3 semaphorins control vascular morphogenesis by inhibiting integrin function. Nature 424(6947):391–397. doi:10.1038/nature01784. [pii] nature01784

    Article  CAS  PubMed  Google Scholar 

  • St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, Lal A, Riggins GJ, Lengauer C, Vogelstein B, Kinzler KW (2000) Genes expressed in human tumor endothelium. Science 289(5482):1197–1202. [pii] 8729

    Article  CAS  PubMed  Google Scholar 

  • Stockmann C, Doedens A, Weidemann A, Zhang N, Takeda N, Greenberg JI, Cheresh DA, Johnson RS (2008) Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature 456(7223):814–818. doi:10.1038/nature07445. [pii] nature07445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stratman AN, Davis GE (2011) Endothelial cell-pericyte interactions stimulate basement membrane matrix assembly: influence on vascular tube remodeling, maturation, and stabilization. Microsc Microanal 18(1):68–80. doi:10.1017/S1431927611012402. [pii] S1431927611012402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suchting S, Bicknell R, Eichmann A (2006) Neuronal clues to vascular guidance. Exp Cell Res 312(5):668–675. doi:10.1016/j.yexcr.2005.11.009. [pii] S0014-4827(05)00531-8

    Article  CAS  PubMed  Google Scholar 

  • Sudhakar A, Nyberg P, Keshamouni VG, Mannam AP, Li J, Sugimoto H, Cosgrove D, Kalluri R (2005) Human alpha1 type IV collagen NC1 domain exhibits distinct antiangiogenic activity mediated by alpha1beta1 integrin. J Clin Invest 115(10):2801–2810. doi:10.1172/JCI24813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun B, Zhang S, Zhao X, Zhang W, Hao X (2004) Vasculogenic mimicry is associated with poor survival in patients with mesothelial sarcomas and alveolar rhabdomyosarcomas. Int J Oncol 25(6):1609–1614

    PubMed  Google Scholar 

  • Taylor LM, Khachigian LM (2000) Induction of platelet-derived growth factor B-chain expression by transforming growth factor-beta involves transactivation by Smads. J Biol Chem 275(22):16709–16716. [pii] 275/22/16709

    Article  CAS  PubMed  Google Scholar 

  • Thurston G, Noguera-Troise I, Yancopoulos GD (2007) The Delta paradox: DLL4 blockade leads to more tumour vessels but less tumour growth. Nat Rev Cancer 7(5):327–331. doi:10.1038/nrc2130. [pii] nrc2130

    Article  CAS  PubMed  Google Scholar 

  • Urbich C, Dimmeler S (2004) Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 95(4):343–353. doi:10.1161/01.RES.0000137877.89448.78. [pii] 95/4/343

    Article  CAS  PubMed  Google Scholar 

  • Vaupel P (2004) The role of hypoxia-induced factors in tumor progression. Oncologist 9(Suppl 5):10–17. doi:10.1634/theoncologist.9-90005-10. [pii] 9/suppl_ 5/10

    Article  CAS  PubMed  Google Scholar 

  • Vinals F, Pouyssegur J (2001) Transforming growth factor beta1 (TGF-beta1) promotes endothelial cell survival during in vitro angiogenesis via an autocrine mechanism implicating TGF-alpha signaling. Mol Cell Biol 21(21):7218–7230. doi:10.1128/MCB.21.21.7218-7230.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volpert OV, Alani RM (2003) Wiring the angiogenic switch: Ras, Myc, and Thrombospondin-1. Cancer Cell 3(3):199–200. [pii] S1535610803000564

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Xiao Y, Ding BB, Zhang N, Yuan X, Gui L, Qian KX, Duan S, Chen Z, Rao Y, Geng JG (2003) Induction of tumor angiogenesis by Slit-Robo signaling and inhibition of cancer growth by blocking Robo activity. Cancer Cell 4(1):19–29. [pii] S1535610803001648

    Article  PubMed  Google Scholar 

  • Warren CM, Iruela-Arispe ML (2010) Signaling circuitry in vascular morphogenesis. Curr Opin Hematol 17(3):213–218. doi:10.1097/MOH.0b013e32833865d1

    PubMed  PubMed Central  Google Scholar 

  • Wilson BD, Ii M, Park KW, Suli A, Sorensen LK, Larrieu-Lahargue F, Urness LD, Suh W, Asai J, Kock GA, Thorne T, Silver M, Thomas KR, Chien CB, Losordo DW, Li DY (2006) Netrins promote developmental and therapeutic angiogenesis. Science 313(5787):640–644. doi:10.1126/science.1124704. [pii] 1124704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan M, Callahan CA, Beyer JC, Allamneni KP, Zhang G, Ridgway JB, Niessen K, Plowman GD (2010) Chronic DLL4 blockade induces vascular neoplasms. Nature 463(7282):E6–E7. doi:10.1038/nature08751. [pii] nature08751

    Article  CAS  PubMed  Google Scholar 

  • Yang SL, Liu LP, Jiang JX, Xiong ZF, He QJ, Wu C (2014) The correlation of expression levels of HIF-1alpha and HIF-2alpha in hepatocellular carcinoma with capsular invasion, portal vein tumor thrombi and patients’ clinical outcome. Jpn J Clin Oncol 44(2):159–167. doi:10.1093/jjco/hyt194. [pii] hyt194

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oriol Casanovas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Zuazo-Gaztelu, I., Casanovas, O. (2016). Mechanisms of Tumor Angiogenesis. In: Marmé, D. (eds) Tumor Angiogenesis. Springer, Cham. https://doi.org/10.1007/978-3-319-31215-6_1-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31215-6_1-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31215-6

  • Online ISBN: 978-3-319-31215-6

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics