Skip to main content

Carbohydrate-Responsive Histone Acetylation in Gene Body Regions

Carbohydrate-Inducible Histone Acetylation

  • Living reference work entry
  • First Online:
Handbook of Nutrition, Diet, and Epigenetics
  • 113 Accesses

Abstract

Epigenetic memory is manifested by DNA methylation and histone modification in the chromatin. In the present review, we introduce two types of epigenetic model. The first is the general model, involving a transcription initiation reaction that is regulated by transcription factors and histone acetylation in the promoter/enhancer region. The model is generally an ON-OFF mechanism via the promoter/enhancer region. The second novel model is the transcription elongation reaction, which is triggered by acetylated histone-BRD4-P-TEFb in the gene body region. This novel epigenetic model regulates the efficiency of mRNA synthesis, for example, from 100% to 160% or from 100% to 60%. Major nutrients, including carbohydrates and those that signal energy balance in the body, many of which are associated with development of metabolic diseases, regulate the novel epigenetic model. In addition, carbohydrate signals enhance histone H3K4 methylation, but not histone H3K9 methylation, in the gene bodies of carbohydrate-inducible genes. Taken together, major nutrients, including carbohydrates and those that control energy balance in the body, alter epigenetics in gene body regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Atp6v0d2:

ATPase H+ transporting V0 subunit d2

Bcmo1:

β-carotene oxygenase

BRD4:

Bromodomain containing 4

CDK:

Cyclin dependent kinase

CDX:

Caudal type homeobox

CHD:

Chromodomain-helicase-DNA-binding protein

ChREBP:

Carbohydrate-responsive element-binding protein

Clec4d:

C-type lectin domain family 4, member D

CTD:

C-terminal domain

Dak:

Dihydroxyacetone kinase 2 homolog

Fas:

Fatty acid synthase

Cyp8b1:

Cytochrome P450, family 8, subfamily B, polypeptide 1

GCN5:

General control of amino acid synthesis

Gip:

Glucose-dependent insulinotropic polypeptide

Glut5:

Glucose transporter

HAT:

Histone acetyl-transferase

HNF1:

Hepatocyte nuclear factor 1

K:

Lysine

Mgam:

Maltase-glucoamylase

Mmp12:

Matrix metallopeptidase 12

Plin5:

Perilipin 5

PolII:

RNA polymerase II

PPAR:

Peroxisome proliferator-activated receptor

P-TEFb:

Positive transcription elongation factor b

RAR:

Retinoic acid receptor

SAGA:

Spt-Ada-Gcn5 acetyltransferase

SET:

SET domain protein

Si:

Sucrose-isomaltase

Sglt1:

Sodium-glucose cotransporter

VDR:

Vitamin D receptor

TFIIH:

General transcription factor IIH

Thrsp:

Thyroid hormone responsive protein

TR:

Thyroid hormone receptor

Trem2:

Triggering receptor expressed on myeloid cells 2

References

  • Bruce Alberts AJ, Lewis J, Morgan D, Raff M, Roberts K, Walter P (2015) Molecular biology of the cell, 6th edn. Paper ed. Garland Science, New York

    Google Scholar 

  • Fujimoto S, Goda T, Mochizuki K (2011) In vivo evidence of enhanced di-methylation of histone H3 K4 on upregulated genes in adipose tissue of diabetic db/db mice. Biochem Biophys Res Commun 404(1):223–227. Epub 2010/11/30

    Article  CAS  PubMed  Google Scholar 

  • Girard J, Ferre P, Kervran A, Pegorier JP, Assan R (1977) Role of the insulin/glucagon ration in the change of hepatic metabolism during the development of the rat. In: Glucagon: its role in physiology and clinical medicine. Springer, New York, pp 563–581

    Chapter  Google Scholar 

  • Henning SJ (1978) Plasma concentrations of total and free corticosterone during development in the rat. Am J Phys 235(5):E451–E456. Epub 1978/11/01

    CAS  Google Scholar 

  • Hirose Y, Ohkuma Y (2007) Phosphorylation of the C-terminal domain of RNA polymerase II plays central roles in the integrated events of eucaryotic gene expression. J Biochem 141(5):601–608. Epub 2007/04/05

    Article  CAS  PubMed  Google Scholar 

  • Houzelstein D, Bullock SL, Lynch DE, Grigorieva EF, Wilson VA, Beddington RS (2002) Growth and early postimplantation defects in mice deficient for the bromodomain-containing protein Brd4. Mol Cell Biol 22(11):3794–3802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inamochi Y, Dey A, Nishiyama A, Kubota T, Ozato K, Goda T et al (2016) Transcription elongation factor Brd4-P-TEFb accelerates intestinal differentiation-associated SLC2A5 gene expression. Biochem Biophys Rep 7:150–156

    Google Scholar 

  • Inoue S, Mochizuki K, Goda T (2011) Jejunal induction of SI and SGLT1 genes in rats by high-starch/low-fat diet is associated with histone acetylation and binding of GCN5 on the genes. J Nutr Sci Vitaminol 57(2):162–169. Epub 2011/06/24

    Article  CAS  PubMed  Google Scholar 

  • Inoue S, Honma K, Mochizuki K, Goda T (2015) Induction of histone H3K4 methylation at the promoter, enhancer, and transcribed regions of the Si and Sglt1 genes in rat jejunum in response to a high-starch/low-fat diet. Nutrition 31(2):366–372. Epub 2015/01/17

    Article  CAS  PubMed  Google Scholar 

  • Jang MK, Mochizuki K, Zhou M, Jeong HS, Brady JN, Ozato K (2005) The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol Cell 19(4):523–534. Epub 2005/08/20

    Article  CAS  PubMed  Google Scholar 

  • Krasinski SD, Van Wering HM, Tannemaat MR, Grand RJ (2001) Differential activation of intestinal gene promoters: functional interactions between GATA-5 and HNF-1 alpha. Am J Physiol Gastrointest Liver Physiol 281(1):G69–G84. Epub 2001/06/16

    CAS  PubMed  Google Scholar 

  • Lochrin SE, Price DK, Figg WD (2014) BET bromodomain inhibitors – a novel epigenetic approach in castration-resistant prostate cancer. Cancer Biol Ther 15(12):1583–1585. Epub 2014/12/24

    Article  PubMed  PubMed Central  Google Scholar 

  • Mochizuki K, Nishiyama A, Jang MK, Dey A, Ghosh A, Tamura T et al (2008) The bromodomain protein Brd4 stimulates G1 gene transcription and promotes progression to S phase. J Biol Chem 283(14):9040–9048. Epub 2008/01/29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mochizuki H, Mochizuki K, Suruga K, Igarashi M, Takase S, Goda T (2012) Induction of the BCMO1 gene during the suckling-weaning transition in rats is associated with histone H3 K4 methylation and subsequent coactivator binding and histone H3 acetylation to the gene. J Nutr Sci Vitaminol 58(5):319–326. Epub 2013/01/19

    Article  CAS  PubMed  Google Scholar 

  • Morishita S, Mochizuki K, Goda T (2014) Bindings of ChREBP and SREBP1, and histone acetylation around the rat liver fatty acid synthase gene are associated with induction of the gene during the suckling-weaning transition. J Nutr Sci Vitaminol 60(2):94–100. Epub 2014/07/01

    Article  CAS  PubMed  Google Scholar 

  • Ortega S, Malumbres M, Barbacid M (2002) Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochim Biophys Acta 1602(1):73–87. Epub 2002/04/19

    CAS  PubMed  Google Scholar 

  • Pray-Grant MG, Daniel JA, Schieltz D, Yates JR 3rd, Grant PA (2005) Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation. Nature 433(7024):434–438. Epub 2005/01/14

    Article  CAS  PubMed  Google Scholar 

  • Sakurai N, Mochizuki K, Goda T (2009) Modifications of histone H3 at lysine 9 on the adiponectin gene in 3T3-L1 adipocytes. J Nutr Sci Vitaminol 55(2):131–138. Epub 2009/05/14

    Article  CAS  PubMed  Google Scholar 

  • Shimada M, Mochizuki K, Goda T (2009) Dietary resistant starch reduces histone acetylation on the glucose-dependent insulinotropic polypeptide gene in the jejunum. Biosci Biotechnol Biochem 73(12):2754–2757. Epub 2009/12/08

    Article  CAS  PubMed  Google Scholar 

  • Shimada M, Mochizuki K, Goda T (2011) Feeding rats dietary resistant starch reduces both the binding of ChREBP and the acetylation of histones on the Thrsp gene in the jejunum. J Agric Food Chem 59(4):1464–1469. Epub 2011/01/20

    Article  CAS  PubMed  Google Scholar 

  • Shimada M, Mochizuki K, Goda T (2013) Methylation of histone H3 at lysine 4 and expression of the maltase-glucoamylase gene are reduced by dietary resistant starch. J Nutr Biochem 24(3):606–612. Epub 2012/07/24

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Douard V, Mochizuki K, Goda T, Ferraris RP (2011) Diet-induced epigenetic regulation in vivo of the intestinal fructose transporter Glut5 during development of rat small intestine. Biochem J 435(1):43–53. Epub 2011/01/13

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Muramatsu T, Morioka K, Goda T, Mochizuki K (2015) ChREBP binding and histone modifications modulate hepatic expression of the Fasn gene in a metabolic syndrome rat model. Nutrition 31(6):877–883. Epub 2015/05/03

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Glass CK, Rosenfeld MG (1999) Coactivator and corepressor complexes in nuclear receptor function. Curr Opin Genet Dev 9(2):140–147. Epub 1999/05/14

    Article  CAS  PubMed  Google Scholar 

  • Yamada A, Honma K, Mochizuki K, Goda T (2016) BRD4 regulates fructose-inducible lipid accumulation-related genes in the mouse liver. Metabolism 65(10):1478–1488. Epub 2016/09/14

    Article  CAS  PubMed  Google Scholar 

  • Yorita S, Mochizuki K, Goda T (2009) Induction of histone acetylation on the sucrase-isomaltase gene in the postnatal rat jejunum. Biosci Biotechnol Biochem 73(4):933–935. Epub 2009/04/09

    Article  CAS  PubMed  Google Scholar 

  • Yoshinaga Y, Mochizuki K, Goda T (2012) Trimethylation of histone H3K4 is associated with the induction of fructose-inducible genes in rat jejunum. Biochem Biophys Res Commun 419(4):605–611. Epub 2012/03/01

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Our work cited in the present review was supported by Grants-in-Aid for Young Scientists (22680054), for Scientific Research (26282023) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), the Takeda Science Foundation, and the Uehara Memorial Foundation. We thank Dr. Ozato Keiko from the National Institute of Health for providing the opportunity to study BRD4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuki Mochizuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Mochizuki, K., Hariya, N., Honma, K., Goda, T. (2017). Carbohydrate-Responsive Histone Acetylation in Gene Body Regions. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-31143-2_95-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31143-2_95-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31143-2

  • Online ISBN: 978-3-319-31143-2

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics