Skip to main content

Energy Metabolism and Epigenetics

  • Living reference work entry
  • First Online:
Handbook of Nutrition, Diet, and Epigenetics
  • 225 Accesses

Abstract

The mammalian genome is packaged as chromatin, which influences all enzyme-catalyzed processes that utilize DNA as a template including transcription, DNA replication, the DNA damage response and repair, and meiotic recombination. This is why epigenetic writers, readers, and erasers are so crucial for the regulation of genome function. Epigenetic mechanisms are tightly integrated with energy metabolism. For example, methyltransferase and acetyltransferase enzymes that modify DNA and histones require intermediary energy metabolites such as S-adenosylmethionine and acetyl-CoA as essential co-factors. To extend the analogy, epigenetic writers require epigenetic ink. The underlying logic of this relationship is that nutrient availability and cellular metabolism can regulate gene expression and genome function to maintain homeostasis. This review will focus on the functional interplay between epigenetic and metabolic mechanisms and discuss why this is relevant for health and disease prevention with an emphasis on cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

CpG:

Cytosine-guanine dinucleotide with phosphodiester (p) linkage

DNMT:

DNA methyltransferase

SAM:

S-Adenosylmethionine

1C:

1 carbon

DMR:

Differentially methylated region

ChIP:

Chromatin immunoprecipitation

SNP:

Single-nucleotide polymorphism

IGF:

Insulin-like growth factor

ROS:

Reactive oxygen species

TET:

Ten-eleven translocation

α-KG:

α Ketoglutarate

TCA:

Tricarboxylic acid

JMJD:

Jumonji C domain

FAD:

Flavin adenine dinucleotide

NAD+ :

Nicotinamide adenine dinucleotide

ATP:

Adenosine triphosphate

PTM:

Posttranslational modification

HAT:

Histone acetyltransferase

HDAC:

Histone deacetylase

SIRT:

Sirtuin

AMPK:

5′ adenosine monophosphate (AMP)-activated protein kinase

PARP:

Poly-ADP-ribose polymerase

mTOR:

Mechanistic target of rapamycin

References

  • Amarasekera M, Martino D, Ashley S, Harb H, Kesper D, Strickland D, Saffery R, Prescott SL (2014) Genome-wide DNA methylation profiling identifies a folate-sensitive region of differential methylation upstream of ZFP57-imprinting regulator in humans. FASEB J 28:4068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer DE, Hatzivassiliou G, Zhao F, Andreadis C, Thompson CB (2005) ATP citrate lyase is an important component of cell growth and transformation. Oncogene 24:6314–6322

    Article  CAS  PubMed  Google Scholar 

  • Bhutani N, Burns DM, Blau HM (2011) DNA demethylation dynamics. Cell 146:866–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binder AM, Michels KB (2013) The causal effect of red blood cell folate on genome-wide methylation in cord blood: a Mendelian randomization approach. BMC Bioinf 14:353

    Article  Google Scholar 

  • Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    Article  CAS  PubMed  Google Scholar 

  • Bollati V, Baccarelli A, Hou L, Bonzini M, Fustinoni S, Cavallo D, Byun HM, Jiang J, Marinelli B, Pesatori AC et al (2007) Changes in DNA methylation patterns in subjects exposed to low-dose benzene. Cancer Res 67:876–880

    Article  CAS  PubMed  Google Scholar 

  • Bultman SJ (2015) Metabolic inputs into epigenetics. In: Chadwick BP (ed) Epigenetics: current research and emerging trends. Caister Academic Press, Norfolk, pp 307–326

    Chapter  Google Scholar 

  • Bungard D, Fuerth BJ, Zeng PY, Faubert B, Maas NL, Viollet B, Carling D, Thompson CB, Jones RG, Berger SL (2010) Signaling kinase AMPK activates stress-promoted transcription via histone H2B phosphorylation. Science 329:1201–1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burnett C, Valentini S, Cabreiro F, Goss M, Somogyvari M, Piper MD, Hoddinott M, Sutphin GL, Leko V, McElwee JJ et al (2011) Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 477:482–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai L, Sutter BM, Li B, Tu BP (2011) Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol Cell 42:426–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458:1056–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canto C, Houtkooper RH, Pirinen E, Youn DY, Oosterveer MH, Cen Y, Fernandez-Marcos PJ, Yamamoto H, Andreux PA, Cettour-Rose P et al (2012) The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab 15:838–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao G, Li HB, Yin Z, Flavell RA (2016) Recent advances in dynamic m6A RNA modification. Open Biol 6:160003

    Article  PubMed  PubMed Central  Google Scholar 

  • Carone BR, Fauquier L, Habib N, Shea JM, Hart CE, Li R, Bock C, Li C, Gu H, Zamore PD et al (2010) Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143:1084–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chin RM, Fu X, Pai MY, Vergnes L, Hwang H, Deng G, Diep S, Lomenick B, Meli VS, Monsalve GC et al (2014) The metabolite alpha-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature 509:397–401

    Google Scholar 

  • Chowdhury R, Yeoh KK, Tian YM, Hillringhaus L, Bagg EA, Rose NR, Leung IK, Li XS, Woon EC, Yang M et al (2011) The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep 12:463–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comerford SA, Huang Z, Du X, Wang Y, Cai L, Witkiewicz AK, Walters H, Tantawy MN, Fu A, Manning HC et al (2014) Acetate dependence of tumors. Cell 159:1591–1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooney CA, Dave AA, Wolff GL (2002) Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr 132:2393S–2400S

    CAS  PubMed  Google Scholar 

  • Crider KS, Yang TP, Berry RJ, Bailey LB (2012) Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate’s role. Adv Nutr 3:21–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cropley JE, Suter CM, Beckman KB, Martin DI (2006) Germ-line epigenetic modification of the murine A vy allele by nutritional supplementation. Proc Natl Acad Sci U S A 103:17308–17312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czeizel AE, Dudas I (1992) Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N Engl J Med 327:1832–1835

    Article  CAS  PubMed  Google Scholar 

  • Dobosy JR, Fu VX, Desotelle JA, Srinivasan R, Kenowski ML, Almassi N, Weindruch R, Svaren J, Jarrard DF (2008) A methyl-deficient diet modifies histone methylation and alters Igf2 and H19 repression in the prostate. Prostate 68:1187–1195

    Article  CAS  PubMed  Google Scholar 

  • Dolinoy DC, Huang D, Jirtle RL (2007) Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci U S A 104:13056–13061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S, Peer E, Kol N, Ben-Haim MS, Dai Q, Di Segni A, Salmon-Divon M, Clark WC et al (2016) The dynamic N(1)-methyladenosine methylome in eukaryotic messenger RNA. Nature 530:441–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donohoe DR, Garge N, Zhang X, Sun W, O’Connell TM, Bunger MK, Bultman SJ (2011) The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab 13:517–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donohoe DR, Collins LB, Wali A, Bigler R, Sun W, Bultman SJ (2012) The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol Cell 48:612–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunstan JA, West C, McCarthy S, Metcalfe J, Meldrum S, Oddy WH, Tulic MK, D’Vaz N, Prescott SL (2012) The relationship between maternal folate status in pregnancy, cord blood folate levels, and allergic outcomes in early childhood. Allergy 67:50–57

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg T, Schroeder S, Andryushkova A, Pendl T, Kuttner V, Bhukel A, Marino G, Pietrocola F, Harger A, Zimmermann A et al (2014) Nucleocytosolic depletion of the energy metabolite acetyl-coenzyme a stimulates autophagy and prolongs lifespan. Cell Metab 19:431–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, Li Y, Bhagwat N, Vasanthakumar A, Fernandez HF et al (2010) Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18:553–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friso S, Choi SW (2005) Gene-nutrient interactions in one-carbon metabolism. Curr Drug Metab 6:37–46

    Article  CAS  PubMed  Google Scholar 

  • Friso S, Lamon-Fava S, Jang H, Schaefer EJ, Corrocher R, Choi SW (2007) Oestrogen replacement therapy reduces total plasma homocysteine and enhances genomic DNA methylation in postmenopausal women. Br J Nutr 97:617–621

    Article  CAS  PubMed  Google Scholar 

  • Fryer AA, Emes RD, Ismail KM, Haworth KE, Mein C, Carroll WD, Farrell WE (2011) Quantitative, high-resolution epigenetic profiling of CpG loci identifies associations with cord blood plasma homocysteine and birth weight in humans. Epigenetics 6:86–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujiki R, Hashiba W, Sekine H, Yokoyama A, Chikanishi T, Ito S, Imai Y, Kim J, He HH, Igarashi K et al (2011) GlcNAcylation of histone H2B facilitates its monoubiquitination. Nature 480:557–560

    CAS  PubMed  Google Scholar 

  • Goren A, Tabib A, Hecht M, Cedar H (2008) DNA replication timing of the human beta-globin domain is controlled by histone modification at the origin. Genes Dev 22:1319–1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greer EL, Shi Y (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13:343–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guarente L (2011) The logic linking protein acetylation and metabolism. Cell Metab 14:151–153

    Article  CAS  PubMed  Google Scholar 

  • Haberg SE, London SJ, Stigum H, Nafstad P, Nystad W (2009) Folic acid supplements in pregnancy and early childhood respiratory health. Arch Dis Child 94:180–184

    Article  CAS  PubMed  Google Scholar 

  • Hariharan N, Maejima Y, Nakae J, Paik J, Depinho RA, Sadoshima J (2010) Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circ Res 107:1470–1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatzivassiliou G, Zhao F, Bauer DE, Andreadis C, Shaw AN, Dhanak D, Hingorani SR, Tuveson DA, Thompson CB (2005) ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8:311–321

    Article  CAS  PubMed  Google Scholar 

  • Haycock PC (2009) Fetal alcohol spectrum disorders: the epigenetic perspective. Biol Reprod 81:607–617

    Article  CAS  PubMed  Google Scholar 

  • Herranz D, Serrano M (2010) SIRT1: recent lessons from mouse models. Nat Rev Cancer 10:819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hino S, Sakamoto A, Nagaoka K, Anan K, Wang Y, Mimasu S, Umehara T, Yokoyama S, Kosai K, Nakao M (2012) FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure. Nat Commun 3:758

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Holland ML, Lowe R, Caton PW, Gemma C, Carbajosa G, Danson AF, Carpenter AA, Loche E, Ozanne SE, Rakyan VK (2016) Early-life nutrition modulates the epigenetic state of specific rDNA genetic variants in mice. Science 353:495–498

    Article  CAS  PubMed  Google Scholar 

  • Houtkooper RH, Pirinen E, Auwerx J (2012) Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 13:225–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Plass C, Gerhauser C (2011) Cancer chemoprevention by targeting the epigenome. Curr Drug Targets 12:1925–1956

    Article  CAS  PubMed  Google Scholar 

  • Huletsky A, Niedergang C, Frechette A, Aubin R, Gaudreau A, Poirier GG (1985) Sequential ADP-ribosylation pattern of nucleosomal histones. ADP-ribosylation of nucleosomal histones. Eur J Biochem 146:277–285

    Article  CAS  PubMed  Google Scholar 

  • Jeong SM, Xiao C, Finley LW, Lahusen T, Souza AL, Pierce K, Li YH, Wang X, Laurent G, German NJ et al (2013) SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism. Cancer Cell 23:450–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaelin WG Jr, McKnight SL (2013) Influence of metabolism on epigenetics and disease. Cell 153:56–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh Y, Ikura T, Hoshikawa Y, Tashiro S, Ito T, Ohta M, Kera Y, Noda T, Igarashi K (2011) Methionine adenosyltransferase II serves as a transcriptional corepressor of Maf oncoprotein. Mol Cell 41:554–566

    Article  CAS  PubMed  Google Scholar 

  • Kiefte-de Jong JC, Timmermans S, Jaddoe VW, Hofman A, Tiemeier H, Steegers EA, de Jongste JC, Moll HA (2012) High circulating folate and vitamin B-12 concentrations in women during pregnancy are associated with increased prevalence of atopic dermatitis in their offspring. J Nutr 142:731–738

    Article  CAS  PubMed  Google Scholar 

  • Killian JK, Kim SY, Miettinen M, Smith C, Merino M, Tsokos M, Quezado M, Smith WI Jr, Jahromi MS, Xekouki P et al (2013) Succinate dehydrogenase mutation underlies global epigenomic divergence in gastrointestinal stromal tumor. Cancer Discov 3:648–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YI (2007a) Folate and colorectal cancer: an evidence-based critical review. Mol Nutr Food Res 51:267–292

    Article  CAS  PubMed  Google Scholar 

  • Kim YI (2007b) Folic acid fortification and supplementation – good for some but not so good for others. Nutr Rev 65:504–511

    Article  PubMed  Google Scholar 

  • Kirchner H, Osler ME, Krook A, Zierath JR (2013) Epigenetic flexibility in metabolic regulation: disease cause and prevention? Trends Cell Biol 23:203–209

    Article  CAS  PubMed  Google Scholar 

  • Kottakis F, Nicolay BN, Roumane A, Karnik R, Gu H, Nagle JM, Boukhali M, Hayward MC, Li YY, Chen T et al (2016) LKB1 loss links serine metabolism to DNA methylation and tumorigenesis. Nature 539:390–395

    Article  CAS  PubMed  Google Scholar 

  • Kraus D, Yang Q, Kong D, Banks AS, Zhang L, Rodgers JT, Pirinen E, Pulinilkunnil TC, Gong F, Wang YC et al (2014) Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity. Nature 508:258–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kryukov GV, Wilson FH, Ruth JR, Paulk J, Tsherniak A, Marlow SE, Vazquez F, Weir BA, Fitzgerald ME, Tanaka M et al (2016) MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells. Science 351:1214–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE, Tsokos M, Alt FW, Finkel T (2008) A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci U S A 105:3374–3379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JV, Carrer A, Shah S, Snyder NW, Wei S, Venneti S, Worth AJ, Yuan ZF, Lim HW, Liu S et al (2014a) Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation. Cell Metab 20:306–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y, Dominy JE, Choi YJ, Jurczak M, Tolliday N, Camporez JP, Chim H, Lim JH, Ruan HB, Yang X et al (2014b) Cyclin D1-Cdk4 controls glucose metabolism independently of cell cycle progression. Nature 510:547–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lertratanangkoon K, Wu CJ, Savaraj N, Thomas ML (1997) Alterations of DNA methylation by glutathione depletion. Cancer Lett 120:149–156

    Article  CAS  PubMed  Google Scholar 

  • Letouze E, Martinelli C, Loriot C, Burnichon N, Abermil N, Ottolenghi C, Janin M, Menara M, Nguyen AT, Benit P et al (2013) SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell 23:739–752

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Daniel M, Tollefsbol TO (2011) Epigenetic regulation of caloric restriction in aging. BMC Med 9:98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Grimm SA, Chrysovergis K, Kosak J, Wang X, Du Y, Burkholder A, Janardhan K, Mav D, Shah R et al (2014) Obesity, rather than diet, drives epigenomic alterations in colonic epithelium resembling cancer progression. Cell Metab 19:702–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin R, Tao R, Gao X, Li T, Zhou X, Guan KL, Xiong Y, Lei QY (2013) Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth. Mol Cell 51:506–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Balaraman Y, Wang G, Nephew KP, Zhou FC (2009) Alcohol exposure alters DNA methylation profiles in mouse embryos at early neurulation. Epigenetics 4:500–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Losman JA, Looper RE, Koivunen P, Lee S, Schneider RK, McMahon C, Cowley GS, Root DE, Ebert BL, Kaelin WG Jr (2013) (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science 339:1621–1625

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O, Edwards CR, Khanin R, Figueroa ME, Melnick A et al (2012) IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483:474–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lumey LH, Stein AD, Susser E (2011) Prenatal famine and adult health. Annu Rev Public Health 32:237–262

    Article  CAS  PubMed  Google Scholar 

  • Madrigano J, Baccarelli A, Mittleman MA, Wright RO, Sparrow D, Vokonas PS, Tarantini L, Schwartz J (2011) Prolonged exposure to particulate pollution, genes associated with glutathione pathways, and DNA methylation in a cohort of older men. Environ Health Perspect 119:977–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez D, Pentinat T, Ribo S, Daviaud C, Bloks VW, Cebria J, Villalmanzo N, Kalko SG, Ramon-Krauel M, Diaz R et al (2014) In utero undernutrition in male mice programs liver lipid metabolism in the second-generation offspring involving altered lxra DNA methylation. Cell Metab 19:941–951

    Article  CAS  PubMed  Google Scholar 

  • Mavrakis KJ, McDonald ER 3rd, Schlabach MR, Billy E, Hoffman GR, deWeck A, Ruddy DA, Venkatesan K, Yu J, McAllister G et al (2016) Disordered methionine metabolism in MTAP/CDKN2A-deleted cancers leads to dependence on PRMT5. Science 351:1208–1213

    Article  CAS  PubMed  Google Scholar 

  • Mehedint MG, Niculescu MD, Craciunescu CN, Zeisel SH (2010) Choline deficiency alters global histone methylation and epigenetic marking at the Re1 site of the calbindin 1 gene. FASEB J 24:184–195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Messerschmidt DM, Knowles BB, Solter D (2014) DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev 28:812–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Messner S, Hottiger MO (2011) Histone ADP-ribosylation in DNA repair, replication and transcription. Trends Cell Biol 21:534–542

    Article  CAS  PubMed  Google Scholar 

  • Morgan HD, Sutherland HG, Martin DI, Whitelaw E (1999) Epigenetic inheritance at the agouti locus in the mouse. Nat Genet 23:314–318

    Article  CAS  PubMed  Google Scholar 

  • Nabel CS, Kohli RM (2011) Molecular biology. Demystifying DNA demethylation. Science 333:1229–1230

    Article  CAS  PubMed  Google Scholar 

  • Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P (2009) Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324:654–657

    Article  CAS  PubMed  Google Scholar 

  • Ng F, Tang BL (2013) Sirtuins’ modulation of autophagy. J Cell Physiol 228:2262–2270

    Article  CAS  PubMed  Google Scholar 

  • Ng SF, Lin RC, Laybutt DR, Barres R, Owens JA, Morris MJ (2010) Chronic high-fat diet in fathers programs beta-cell dysfunction in female rat offspring. Nature 467:963–966

    Article  CAS  PubMed  Google Scholar 

  • Ong TP, Moreno FS, Ross SA (2011) Targeting the epigenome with bioactive food components for cancer prevention. J Nutrigenet Nutrigenomics 4:275–292

    Article  CAS  PubMed  Google Scholar 

  • Padmanabhan N, Jia D, Geary-Joo C, Wu X, Ferguson-Smith AC, Fung E, Bieda MC, Snyder FF, Gravel RA, Cross JC et al (2013) Mutation in folate metabolism causes epigenetic instability and transgenerational effects on development. Cell 155:81–93

    Article  CAS  PubMed  Google Scholar 

  • Painter RC, Roseboom TJ, Bleker OP (2005) Prenatal exposure to the Dutch famine and disease in later life: an overview. Reprod Toxicol 20:345–352

    Article  CAS  PubMed  Google Scholar 

  • Pascual M, Do Couto BR, Alfonso-Loeches S, Aguilar MA, Rodriguez-Arias M, Guerri C (2012) Changes in histone acetylation in the prefrontal cortex of ethanol-exposed adolescent rats are associated with ethanol-induced place conditioning. Neuropharmacology 62:2309–2319

    Article  CAS  PubMed  Google Scholar 

  • Peng M, Yin N, Chhangawala S, Xu K, Leslie CS, Li MO (2016) Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism. Science 354:481–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinn BJ, Kitagawa H, Memmott RM, Gills JJ, Dennis PA (2013) Repositioning metformin for cancer prevention and treatment. Trends Endocrinol Metab 24:469–480

    Article  CAS  PubMed  Google Scholar 

  • Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y, Marcheva B, Hong HK, Chong JL, Buhr ED, Lee C et al (2009) Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324:651–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sassone-Corsi P (2012) Minireview: NAD+, a circadian metabolite with an epigenetic twist. Endocrinology 153:1–5

    Article  CAS  PubMed  Google Scholar 

  • Schaible TD, Harris RA, Dowd SE, Smith CW, Kellermayer R (2011) Maternal methyl-donor supplementation induces prolonged murine offspring colitis susceptibility in association with mucosal epigenetic and microbiomic changes. Hum Mol Genet 20:1687–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sebastian C, Zwaans BM, Silberman DM, Gymrek M, Goren A, Zhong L, Ram O, Truelove J, Guimaraes AR, Toiber D et al (2012) The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell 151:1185–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shepard BD, Tuma PL (2009) Alcohol-induced protein hyperacetylation: mechanisms and consequences. World J Gastroenterol 15:1219–1230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimazu T, Hirschey MD, Hua L, Dittenhafer-Reed KE, Schwer B, Lombard DB, Li Y, Bunkenborg J, Alt FW, Denu JM et al (2010) SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab 12:654–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimazu T, Hirschey MD, Newman J, He W, Shirakawa K, Le Moan N, Grueter CA, Lim H, Saunders LR, Stevens RD et al (2013) Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339:211–214

    Article  CAS  PubMed  Google Scholar 

  • Shyh-Chang N, Locasale JW, Lyssiotis CA, Zheng Y, Teo RY, Ratanasirintrawoot S, Zhang J, Onder T, Unternaehrer JJ, Zhu H et al (2013) Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 339:222–226

    Article  PubMed  CAS  Google Scholar 

  • Sinclair KD, Allegrucci C, Singh R, Gardner DS, Sebastian S, Bispham J, Thurston A, Huntley JF, Rees WD, Maloney CA et al (2007) DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc Natl Acad Sci U S A 104:19351–19356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith AD, Kim YI, Refsum H (2008) Is folic acid good for everyone? Am J Clin Nutr 87:517–533

    CAS  PubMed  Google Scholar 

  • Soga T (2013) Cancer metabolism: key players in metabolic reprogramming. Cancer Sci 104:275–281

    Article  CAS  PubMed  Google Scholar 

  • Spencer MD, Hamp TJ, Reid RW, Fischer LM, Zeisel SH, Fodor AA (2011) Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency. Gastroenterology 140:976–986

    Article  CAS  PubMed  Google Scholar 

  • Steegers-Theunissen RP, Obermann-Borst SA, Kremer D, Lindemans J, Siebel C, Steegers EA, Slagboom PE, Heijmans BT (2009) Periconceptional maternal folic acid use of 400 microg per day is related to increased methylation of the IGF2 gene in the very young child. PLoS One 4:e7845

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Supic G, Jagodic M, Magic Z (2013) Epigenetics: a new link between nutrition and cancer. Nutr Cancer 65:781–792

    Article  CAS  PubMed  Google Scholar 

  • Sutendra G, Kinnaird A, Dromparis P, Paulin R, Stenson TH, Haromy A, Hashimoto K, Zhang N, Flaim E, Michelakis ED (2014) A nuclear pyruvate dehydrogenase complex is important for the generation of acetyl-CoA and histone acetylation. Cell 158:84–97

    Article  CAS  PubMed  Google Scholar 

  • Takamura Y, Nomura G (1988) Changes in the intracellular concentration of acetyl-CoA and malonyl-CoA in relation to the carbon and energy metabolism of Escherichia coli K12. J Gen Microbiol 134:2249–2253

    CAS  PubMed  Google Scholar 

  • Tan L, Shi YG (2012) Tet family proteins and 5-hydroxymethylcytosine in development and disease. Development 139:1895–1902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thienpont B, Steinbacher J, Zhao H, D’Anna F, Kuchnio A, Ploumakis A, Ghesquiere B, Van Dyck L, Boeckx B, Schoonjans L et al (2016) Tumour hypoxia causes DNA hypermethylation by reducing TET activity. Nature 537:63–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thirstrup K, Christensen S, Moller HA, Ritzen A, Bergstrom AL, Sager TN, Jensen HS (2011) Endogenous 2-oxoglutarate levels impact potencies of competitive HIF prolyl hydroxylase inhibitors. Pharmacol Res 64:268–273

    Article  CAS  PubMed  Google Scholar 

  • Tobi EW, Lumey LH, Talens RP, Kremer D, Putter H, Stein AD, Slagboom PE, Heijmans BT (2009) DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet 18:4046–4053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turcan S, Rohle D, Goenka A, Walsh LA, Fang F, Yilmaz E, Campos C, Fabius AW, Lu C, Ward PS et al (2012) IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483:479–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulrich CM, Potter JD (2007) Folate and cancer – timing is everything. JAMA 297:2408–2409

    Article  CAS  PubMed  Google Scholar 

  • Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waterland RA, Jirtle RL (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23:5293–5300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waterland RA, Dolinoy DC, Lin JR, Smith CA, Shi X, Tahiliani KG (2006) Maternal methyl supplements increase offspring DNA methylation at Axin Fused. Genesis 44:401–406

    Article  CAS  PubMed  Google Scholar 

  • Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB (2009) ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324:1076–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitrow MJ, Moore VM, Rumbold AR, Davies MJ (2009) Effect of supplemental folic acid in pregnancy on childhood asthma: a prospective birth cohort study. Am J Epidemiol 170:1486–1493

    Article  PubMed  Google Scholar 

  • Willett W (2008) Nutrition and cancer: the search continues. Nutr Cancer 60:557–559

    Article  PubMed  Google Scholar 

  • Wright RH, Lioutas A, Le Dily F, Soronellas D, Pohl A, Bonet J, Nacht AS, Samino S, Font-Mateu J, Vicent GP et al (2016) ADP-ribose-derived nuclear ATP synthesis by NUDIX5 is required for chromatin remodeling. Science 352:1221–1225

    Article  CAS  PubMed  Google Scholar 

  • Wu K, Platz EA, Willett WC, Fuchs CS, Selhub J, Rosner BA, Hunter DJ, Giovannucci E (2009) A randomized trial on folic acid supplementation and risk of recurrent colorectal adenoma. Am J Clin Nutr 90:1623–1631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao M, Yang H, Xu W, Ma S, Lin H, Zhu H, Liu L, Liu Y, Yang C, Xu Y et al (2012) Inhibition of alpha-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev 26:1326–1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu MQ, Sun WS, Liu BX, Feng GY, Yu L, Yang L, He G, Sham P, Susser E, St Clair D et al (2009) Prenatal malnutrition and adult schizophrenia: further evidence from the 1959–1961 Chinese famine. Schizophr Bull 35:568–576

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, Ito S, Yang C, Wang P, Xiao MT et al (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 19:17–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang M, Soga T, Pollard PJ (2013) Oncometabolites: linking altered metabolism with cancer. J Clin Invest 123:3652–3658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeisel SH (2009) Epigenetic mechanisms for nutrition determinants of later health outcomes. Am J Clin Nutr 89:1488S–1493S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Ryu D, Wu Y, Gariani K, Wang X, Luan P, D’Amico D, Ropelle ER, Lutolf MP, Aebersold R et al (2016) NAD(+) repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 352:1436–1443

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T, Yao J, Zhou L, Zeng Y, Li H et al (2010) Regulation of cellular metabolism by protein lysine acetylation. Science 327:1000–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong L, D’Urso A, Toiber D, Sebastian C, Henry RE, Vadysirisack DD, Guimaraes A, Marinelli B, Wikstrom JD, Nir T et al (2010) The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell 140:280–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott J. Bultman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Bultman, S.J. (2017). Energy Metabolism and Epigenetics. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-31143-2_87-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31143-2_87-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31143-2

  • Online ISBN: 978-3-319-31143-2

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics