Skip to main content

Arsenic and microRNA Expression

  • Living reference work entry
  • First Online:
Handbook of Nutrition, Diet, and Epigenetics

Abstract

Arsenic is a naturally occurring metalloid that poses a major threat to worldwide human health. The most toxic form of arsenic is inorganic arsenic, which has been classified by the International Agency for Research on Cancer as a group 1 carcinogenic to humans. This classification is based on the increased incidence of primary skin cancer, as well as lung and urinary bladder cancer after exposure to arsenic. Exposure to arsenic typically occurs by oral consumption of contaminated drinking water, soil, and food or by inhalation in an industrial work setting. The main exposure route to inorganic arsenic remains dietary, particularly in infants. This review describes our current understanding of the molecular mechanisms through which arsenic causes harm, although the toxic effects associated with inorganic arsenic exposure are not well understood. Arsenic toxicokinetics varies depending on its form and on several factors such as life-stage, gender, nutritional status, and genetic polymorphisms. MicroRNAs play a key role in many physiological and pathological cellular processes, and they are powerful regulators of gene expression under inorganic arsenic exposure. Several in vitro and in vivo studies on the effect of inorganic arsenic exposure on the microRNA expression profile showed that microRNAs misregulation is involved in a variety of human tumors and in angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

As:

As

AS3MT:

Human As methyltransferase

AsIII:

Arsenite

AsT cell:

As transformed cell

AsV:

Arsenate

CCA:

Chromated copper arsenate

DMAA:

Dimethylarsinic acid

DNMT:

DNA methyltransferase

EMT:

Epithelial–mesenchymal transition

GSH:

Glutathione

HBEC:

Human bronchial epithelial cell

HELF:

Human embryo lung fibroblast cell

iAs:

Inorganic arsenic

MCL:

Maximum contaminant level

mESCs:

Mouse embryonic stem cells

miRNA:

microRNA

MMAA:

Monomethylarsonic acid

PHLPP:

PH domain leucine-rich repeat protein phosphatase

ROS:

Reactive oxygen species

RT-qPCR:

Quantitative reverse transcription PCR

SAM:

S-adenosyl-methionine

SUMO:

Small ubiquitin-like modifier

VEGF:

Vascular endothelial growth factor protein

References

  • Argos M (2015) Arsenic exposure and epigenetic alterations: recent findings based on the illumina 450K DNA methylation array. Curr Environ Health Rep 2(2):137–144. doi:10.1007/s40572-015-0052-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233. doi:10.1016/j.cell.2009.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beezhold K, Liu J, Kan H, Meighan T, Castranova V, Shi X, Chen F (2011) miR-190-mediated downregulation of PHLPP contributes to arsenic-induced Akt activation and carcinogenesis. Toxicol Sci 123(2):411–420. doi:10.1093/toxsci/kfr188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bielenberg DR, Klagsbrun M (2007) Targeting endothelial and tumor cells with semaphorins. Cancer Metastasis Rev 26:421–431. doi:10.1007/s10555-007-9097-4

    Article  CAS  PubMed  Google Scholar 

  • Bodwell JE (2006) Arsenic disruption of steroid receptor gene activation: complex dose-response effects are shared by several steroid receptors. Chem Res Toxicol 19:1619–1629. doi:10.1021/tx060122q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF, Goodall GJ (2008) A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res 68:7846–7854. doi:10.1158/0008-5472.CAN-08-1942

    Article  CAS  PubMed  Google Scholar 

  • Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, Brabletz T (2008) A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 9:582–589. doi:10.1038/embor.2008.74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpenter RL, Jiang Y, Jing Y, He J, Rojanasakul Y, Liu LZ, Jiang BH (2011) Arsenite induces cell transformation by reactive oxygen species, AKT, ERK1/2, and p70S6K1. Biochem Biophys Res Commun 414:533–538. doi:10.1016/j.bbrc.2011.09.102

    Article  CAS  PubMed  Google Scholar 

  • Chun-Zhi Z, Lei H, An-Ling Z, Yan-Chao F, Xiao Y, Guang-Xiu W, Zhi-Fan J, Pei-Yu P, Qing-Yu Z, Chun-Sheng K (2010) MicroRNA-221 and microRNA-222 regulate gastric carcinoma cell proliferation and radioresistance by targeting PTEN. BMC Cancer 10:367. doi:10.1186/1471-2407-10-367

    Article  PubMed  PubMed Central  Google Scholar 

  • Cui Y, Han Z, Hu Y, Song G, Hao C, Xia H, Ma X (2012) MicroRNA-181b and microRNA-9 mediate arsenic-induced angiogenesis via NRP1. J Cell Physiol 227(2):772–783. doi:10.1002/jcp.22789

    Article  CAS  PubMed  Google Scholar 

  • De Chaudhuri S (2008) Genetic variants associated with arsenic susceptibility: study of purine nucleoside phosphorylase, arsenic (+3) methyltransferase, and glutathione s-transferase omega genes. Environ Health Perspect 116:501–505. doi:10.1289/ehp.10581

    PubMed  PubMed Central  Google Scholar 

  • European Food Safety Authority (EFSA) (2009) Scientific opinion on arsenic in food; EFSA panel on contaminants in the food chain (CONTAM). EFSA J 7(10):1351

    Article  Google Scholar 

  • European Food Safety Authority (EFSA) (2014) Dietary exposure to inorganic arsenic in the European population. EFSA J 12(3):3597. 68 pp

    Google Scholar 

  • Feinberg AP, Tycko B (2004) The history of cancer epigenetics. Nat Rev Cancer 4(2):143–153. doi:10.1038/nrc1279

    Article  CAS  PubMed  Google Scholar 

  • Flanagan SV, Johnston RB, Zheng Y (2012) Arsenic in tube well water in Bangladesh: health and economic impacts and implications for arsenic mitigation. B World Health Organ 90:839–846. doi:10.2471/BLT.11.101253

  • Hayakawa T (2005) A new metabolic pathway of arsenite: arsenic-glutathione complexes are substrates for human arsenic methyltransferase Cyt19. Arch Toxicol 79:183–191. doi:10.1007/s00204-004-0620-x

    Article  CAS  PubMed  Google Scholar 

  • He J, Xu Q, Jing Y, Agani F, Qian X, Carpenter R et al (2012) Reactive oxygen species regulate ERBB2 and ERBB3 expression via miR-199a/125b and DNA methylation. EMBO Rep 13:1116–1122. doi:10.1038/embor.2012.162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He J, Wang M, Jiang Y, Chen Q, Xu S, Xu Q, Jiang BH, Liu LZ (2014) Chronic arsenic exposure and angiogenesis in human bronchial epithelial cells via the ROS/miR-199a-5p/HIF-1α/COX-2 pathway. Environ Health Perspect 122(3):255–261. doi:10.1289/ehp.1307545

    PubMed  PubMed Central  Google Scholar 

  • Hu XV, Rodrigues TM, Tao H, Baker RK, Miraglia L, Orth AP, Lyons GE, Schultz PG, Wu X (2010) Identification of RING finger protein 4 (RNF4) as a modulator of DNA demethylation through a functional genomics screen. Proc Natl Acad Sci U S A 107(34):15087–15092. doi:10.1073/pnas.1009025107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes MF (2006) Biomarkers of exposure: a case study with inorganic arsenic. Environ Health Perspect 114(11):1790–1796

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inman GJ, Allday MJ (2000) Apoptosis induced by TGF-b1 in Burkitt’s lymphoma cells is caspase 8 dependent but is death receptor independent. J Immunol 165:2500–2510

    Article  CAS  PubMed  Google Scholar 

  • International Agency for Research on Cancer (IARC) (2012) Arsenic, metals, fibres and dusts. IARC monographs on the evaluation of carcinogenic risk to humans, vol. 100 C:11–465. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans

    Google Scholar 

  • Jin Y, Li Y, Pan L (2014) The target therapy of ovarian clear cell carcinoma. Oncol Targets Ther 7:1647–1652. doi:10.2147/OTT.S49993

    Article  CAS  Google Scholar 

  • Lavorato-Rocha AM, Anjos LG, Cunha IW, Vassallo J, Soares FA, Rocha RM (2015) Immunohistochemical assessment of PTEN in vulvar cancer: best practices for tissue staining, evaluation, and clinical association. Methods 77–78:20–24. doi:10.1016/j.ymeth.2014

    Article  PubMed  Google Scholar 

  • Ling M, Li Y, Xu Y, Pang Y, Shen L, Jiang R, Zhao Y, Yang X, Zhang J, Zhou J, Wang X, Liu Q (2012) Regulation of miRNA-21 by reactive oxygen species-activated ERK/NF-κB in arsenite-induced cell transformation. Free Radic Biol Med 52(9):1508–1518. doi:10.1016/j.freeradbiomed.2012.02.020

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Roy S, Nuovo G, Ramaswamy B, Miller T, Shapiro C, Jacob ST, Majumder S (2011) Anti-microRNA-222 (anti-miR-222) and −181B suppress growth of tamoxifen-resistant xenografts in mouse by targeting TIMP3 protein and modulating mitogenic signal. J Biol Chem 286:42292–42302. doi:10.1074/jbc.M111.270926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo F, Ji J, Liu Y, Xu Y, Zheng G, Jing J, Wang B, Xu W, Shi L, Lu X, Liu Q (2014) MicroRNA-21, up-regulated by arsenite, directs the epithelial-mesenchymal transition and enhances the invasive potential of transformed human bronchial epithelial cells by targeting PDCD4. Toxicol Lett 232:301–309. doi:10.1016/j.toxlet.2014.11.001

    Article  PubMed  Google Scholar 

  • Marsit CJ (2015) Influence of environmental exposure on human epigenetic regulation. J Exp Biol 218:71–79. doi:10.1242/jeb.106971

    Article  PubMed  PubMed Central  Google Scholar 

  • Marsit CJ, Eddy K, Kelsey KT (2006) MicroRNA responses to cellular stress. Cancer Res 66(22):10843–10848. doi:10.1158/0008-5472.CAN-06-1894

    Article  CAS  PubMed  Google Scholar 

  • Meharg AA, Sun G, Williams PN, Adamako E, Deacon C, Zhu YG, Feldmann J, Raab A (2008) Inorganic arsenic levels in baby rice are of concern. Environ Pollut 152:746–749. doi:10.1016/j.envpol.2008.01.043

    Article  CAS  PubMed  Google Scholar 

  • Michailidi C, Hayashi M, Datta S, Sen T, Zenner K, Oladeru O, Brait M, Izumchenko E, Baras A, VandenBussche C, Argos M, Bivalacqua TJ, Ahsan H, Hahn NM, Netto GJ, Sidransky D, Hoque MO (2015) Involvement of epigenetics and EMT-related miRNA in arsenic-induced neoplastic transformation and their potential clinical use. Cancer Prev Res 8(3):208–221

    Google Scholar 

  • Nagymanyoki Z, Mutter GL, Hornick JL, Cibas ES (2015) ARID1A is a useful marker of malignancy in peritoneal washings for endometrial carcinoma. Cancer Cytopathol 123:253–257. doi:10.1002/cncy.21514

    Article  CAS  PubMed  Google Scholar 

  • Naujokas MF, Anderson B, Ahsan H, Aposhian HV, Graziano JH, Thompson C, Suk WA (2013) The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ Health Perspect 121(3):295–302. doi:10.1289/ehp.1205875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navas-Acien A, Sharrett AR, Silbergeld EK, Schwartz BS, Nachman KE, Burke TA, Guallar E (2005) Arsenic exposure and cardiovascular disease: a systematic review of the epidemiologic evidence. Am J Epidemiol 162:1037–1049. doi:10.1093/aje/kwi330

    Article  PubMed  Google Scholar 

  • NRC National Research Council (1999) Arsenic in drinking water. The National Academies Press, Washington, DC

    Google Scholar 

  • O’Day PA (2006) Chemistry and mineralogy of arsenic. Elements 2:77–83. doi:10.2113/gselements.2.2.77.

    Article  Google Scholar 

  • Patella F, Rainaldi G (2012) MicroRNAs mediate metabolic stresses and angiogenesis. Cell Mol Life Sci 69:1049–1065. doi:10.1007/s00018-011-0775-6

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Andreotta MD, Brusseau ML, Artiola JF, Maier RM (2013) A greenhouse and field-based study to determine the accumulation of arsenic in common homegrown vegetables grown in mining-affected soils. Sci Total Environ 443:299–306. doi:10.1016/j.scitotenv.2012.10.095

    Article  CAS  PubMed  Google Scholar 

  • Rane S, He M, Sayed D, Vashistha H, Malhotra A, Sadoshima J, Vatner DE, Vatner SF, Abdellatif M (2009) Downregulation of MiR-199a derepresses hypoxia-inducible factor-1α and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ Res 104(7):879–886. doi:10.1161/CIRCRESAHA.108.193102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rebuzzini P, Cebral E, Fassina L, Redi CA, Zuccotti M, Garagna S (2015) Arsenic trioxide alters the differentiation of mouse embryonic stem cell into cardiomyocytes. Sci Rep 5:14993. doi:10.1038/srep14993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reichard JF, Puga A (2010) Effects of arsenic exposure on DNA methylation and epigenetic gene regulation. Epigenomics 2(1):87–104. doi:10.2217/epi.09.45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren X, McHale CM, Skibola CF, Smith AH, Smith MT, Zhang L (2011) An emerging role for epigenetic dysregulation in arsenic toxicity and carcinogenesis. Environ Health Perspect 119(1):11–19

    Article  CAS  PubMed  Google Scholar 

  • Ren X, Gailec DP, Gonga Z, Qiud W, Gea Y, Zhangd C, Huangd C, Yand H, Olsona JR, Kavanaghe TJ, Wud H (2015) Arsenic responsive microRNAs in vivo and their potential involvement in arsenic-induced oxidative stress. Toxicol Appl Pharmacol 283(3):198–209. doi:10.1289/ehp.1002114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schläwicke Engström K, Nermell B, Concha G, Strömberg U, Vahter M, Broberg K (2008) Arsenic metabolism is influenced by polymorphisms in genes involved in one-carbon metabolism and reduction reactions. Mutat Res 667:4–14. doi:10.1016/j.mrfmmm.2008.07.003. Epub 2008 Jul 17

    Article  PubMed  Google Scholar 

  • Semenza GL (2000) HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 88:1474–1480

    CAS  PubMed  Google Scholar 

  • Simone NL, Soule BP, Ly D, Saleh AD, Savage JE, Degraff W, Cook J, Harris CC, Gius D, Mitchell JB (2009) Ionizing radiation-induced oxidative stress alters miRNA expression. PLoS One 4(7):e6377. doi:10.1371/journal.pone.0006377

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith AH, Goycolea M, Haque R, Biggs ML (1998) Marked increase in bladder and lung cancer mortality in a region of northern Chile due to arsenic in drinking water. Am J Epidemiol 147:660–669

    Article  CAS  PubMed  Google Scholar 

  • Smith AH, Lingas EO, Rahman M (2000) Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bull World Health Organ 78(9):1093–1103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sonkoly E, Pivarcsi A (2009) Advances in microRNAs: implications for immunity and inflammatory diseases. J Cell Mol Med 13(1):24–38. doi:10.1111/j.1582-4934.2008.00534.x

    Article  CAS  PubMed  Google Scholar 

  • Staton CA, Kumar I, Reed MWR, Brown NJ (2007) Neuropilins in physiological and pathological angiogenesis. J Pathol 212(3):237–248

    Google Scholar 

  • Straub AC, Klei LR, Stolz DB, Barchowsky A (2009) Arsenic requires sphingosine-1-phosphate type 1 receptors to induce angiogenic genes and endothelial cell remodeling. Am J Pathol 174:1949–1958. doi:10.2353/ajpath.2009.081016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sturchio E, Colombo T, Boccia P, Carucci N, Meconi C, Minoia C, Macino G (2014) Arsenic exposure triggers a shift in microRNA expression. Sci Total Environ 472:672–680. doi:10.1016/j.scitotenv.2013.11.092. Epub 2013 Dec 7

    Article  CAS  PubMed  Google Scholar 

  • Tantry BA, Shrivastava D, Taher I, Tantry MN (2015) Arsenic exposure: mechanisms of action and related health effects. J Environ Anal Toxicol 5:327

    Article  Google Scholar 

  • Tili E, Michaille JJ, Alder H, Volinia S, Delmas D, Latruffe N, Croce CM (2010) Resveratrol modulates the levels of microRNAs targeting genes encoding tumor-suppressors and effectors of TGFβ signaling pathway in SW480 cells. Biochem Pharmacol 80(12):2057–2065. doi:10.1016/j.bcp.2010.07.003. Epub 2010 Jul 15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urbich C, Kuehbacher A, Dimmeler S (2008) Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc Res 79:581–588. doi:10.1093/cvr/cvn156. Epub 2008 Jun 11

    Article  CAS  PubMed  Google Scholar 

  • U.S. EPA (2001) National primary drinking water regulations: arsenic and clarifications to compliance and new source contaminants monitoring. Final rule. 6976–7066

    Google Scholar 

  • U.S. EPA (2002) Arsenic treatment technologies for soil, waste and water, EPA-542-R-02-004

    Google Scholar 

  • Vahter M (2009) Effects of arsenic on maternal and fetal health. Annu Rev Nutr 29:381–399. doi:10.1146/annurev-nutr-080508-141102

    Article  CAS  PubMed  Google Scholar 

  • Vrba L, Jensen TJ, Garbe JC, Heimark RL, Cress AE, Dickinson S, Stampfer MR, Futscher BW (2010) Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells. PLoS One 5:e8697. doi:10.1371/journal.pone.0008697. Published online 2010 Jan 13

    Article  PubMed  PubMed Central  Google Scholar 

  • Wakao N, Koyatsu H, Komai Y, Shimokawara H, Sakurai Y, Shiota H (1988) Microbial oxidation of arsenite and occurrence of arsenite-oxidizing bacteria in acid-mine water from a sulfur-pyrite mine. Geomicrobiol J 6:11–24. doi:10.1080/01490458809377818

    Article  CAS  Google Scholar 

  • Wang Z, Zhao Y, Smith E, Goodall GJ, Drew PA, Brabletz T, Yang C (2011) Reversal and prevention of arsenic-induced human bronchial epithelial cell malignant transformation by microRNA-200b. Toxicol Sci 121(1):110–122. doi:10.1093/toxsci/kfr029. Epub 2011 Feb 2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Mandal AK, Saito H, Pulliam JF, Lee EY, Ke ZJ, Lu J, Ding S, Li L, Shelton BJ, Tucker T, Evers BM, Zhang Z, Shi X (2012) Arsenic and chromium in drinking water promote tumorigenesis in a mouse colitis-associated colorectal cancer model and the potential mechanism is ROS-mediated Wnt/β-catenin signaling pathway. Toxicol Appl Pharmacol 262:11–21. doi:10.1016/j.taap.2012.04.014. Epub 2012 Apr 19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Ge X, Zheng J, Li D, Liu X, Wang L, Jiang C, Shi Z, Qin L, Liu J, Yang H, Liu LZ, He J, Zhen L, Jiang BH (2016) Role and mechanism of miR-222 in arsenic-transformed cells for inducing tumor growth. Oncotarget 7(14):17805–17814. doi:10.18632/oncotarget.7525. Published online 2016 Feb 20

    Article  PubMed  PubMed Central  Google Scholar 

  • WHO World Health Organization (2001) Arsenic and arsenic compounds. Environmental Health Criteria 224. World Health Organization, Geneva

    Google Scholar 

  • Xu Y, Li Y, Li H, Pang H, Zhao Y, Jiang R, Shen L, Zhou J, Wang X, Liu Q (2013) The accumulations of HIF-1α and HIF-2α by JNK and ERK are involved in biphasic effects induced by different levels of arsenite in human bronchial epithelial cells. Toxicol Appl Pharmacol 266(2):187–197. doi:10.1016/j.taap.2012.11.014. Epub 2012 Nov 27

    Article  CAS  PubMed  Google Scholar 

  • Xue X, Shah YM (2013) Hypoxia-inducible factor-2α is essential in activating the COX2/mPGES-1/PGE2 signaling axis in colon cancer. Carcinogenesis 34(1):163–169. doi:10.1093/carcin/bgs313. Epub 2012 Oct 5

    Article  CAS  PubMed  Google Scholar 

  • Yang YF, Wang F, Xiao JJ, Song Y, Zhao YY, Cao Y, Bei YH, Yang CQ (2014) MiR-222 overexpression promotes proliferation of human hepatocellular carcinoma HepG2 cells by downregulating p27. Int J Clin Exp Med 7:893–902. PMC4057838

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yin Y, Li J, Chen S, Zhou T, Si J (2012) MicroRNAs as diagnostic biomarkers in gastric cancer. Int J Mol Sci 13(10):12544–12555. doi:10.3390/ijms131012544. Published online 2012 Oct 1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoder JA, Walsh CP, Bestor TH (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13(8):335–340

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Yao J, Huan L, Lian J, Bao C, Li Y, Ge C, Li J, Yao M, Liang L, He X (2015) GNAI3 inhibits tumor cell migration and invasion and is post-transcriptionally regulated by miR-222 in hepatocellular carcinoma. Cancer Lett 356(2 Pt B):978–984. doi:10.1016/j.canlet.2014.11.013. Epub 2014 Nov 13

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559. doi:10.1146/annurev-arplant-042809-112152

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Sturchio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Sturchio, E., Zanellato, M., Boccia, P., Meconi, C., Gioiosa, S. (2017). Arsenic and microRNA Expression. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-31143-2_73-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31143-2_73-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31143-2

  • Online ISBN: 978-3-319-31143-2

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics