Skip to main content

Butyrate, a Short-Chain Fatty Acid and Histone Deacetylases Inhibitor: Nutritional, Physiological, and Pharmacological Aspects in Diabetes

  • Living reference work entry
  • First Online:
Handbook of Nutrition, Diet, and Epigenetics

Abstract

Diabetes is a complex metabolic disease and its incidences are growing at an alarming rate globally. Recent evidences suggest that there is a link between diabetes and histone deacetylases (HDACs), because HDAC inhibitors promote beta cell proliferation and function as well as reduce insulin-resistance and gluconeogenesis. Gut microbes play an important role in pathogenesis of various diseases including diabetes and can modulate the host epigenome. Notably, butyrate level and butyrate-producing microbes are decreased in diabetic animal as well as patients. Butyrate is a short-chain fatty acid naturally produced in large intestine (colon) from the fermentation of dietary fibers by microbes and is also found in butter and cheese. Butyrate has been established as a HDAC inhibitor in several in vitro and in vivo experiments and affects the expression of various genes, which are directly and indirectly involved in glucose metabolism and pathogenesis of diabetes. This chapter discusses the contribution of HDACs and their inhibition by butyrate in possible pharmacotherapy of diabetes. The present chapter also highlights molecular mechanisms of butyrate for treatment of type 1 and type 2 diabetes as well as the challenges and strategies for its therapeutic implication as a promising antidiabetic molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AMPK:

AMP-activated protein kinase

eNOS:

Endothelial nitric oxide synthase

ERK:

Extracellular signal-regulated kinase

FFAR:

Free fatty acid receptor

Foxp3:

Forkhead box P3

GLP-1:

Glucagon-like peptide-1

GLUT:

Glucose transporter

GPCR:

G-protein-coupled receptor

HATs:

Histone acetyltransferases

HDACs:

Histone deacetylases

HFD:

High-fat diet

iNOS:

Inducible nitric oxide synthase

IRS:

Insulin receptor substrate

MAPK:

Mitogen-activated protein kinase

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

Pdx1:

Pancreatic duodenal homeobox 1

PI3K:

Phosphatidylinositide 3-kinase

PPARγ:

Peroxisome proliferator-activated receptor-γ

SCFA:

Short-chain fatty acid

T1D/T2D:

Type 1 and type 2 diabetes mellitus

TGF-β1:

Transforming growth factor beta1

References

  • Alberti KG, Zimmet PZ (1998) Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 15:539–553

    Article  CAS  PubMed  Google Scholar 

  • Anderson JW, Zeigler JA, Deakins DA et al (1991) Metabolic effects of high-carbohydrate, high-fiber diets for insulin-dependent diabetic individuals. Am J Clin Nutr 54:936–943

    CAS  PubMed  Google Scholar 

  • Anderson JW, Baird P, Davis RH Jr et al (2009) Health benefits of dietary fiber. Nutr Rev 67:188–205

    Article  PubMed  Google Scholar 

  • Aramata S, Han SI, Yasuda K, Kataoka K (2005) Synergistic activation of the insulin gene promoter by the beta-cell enriched transcription factors MafA, Beta2, and Pdx1. Biochim Biophys Acta 1730:41–46

    Article  CAS  PubMed  Google Scholar 

  • Berni Canani R, Di Costanzo M, Leone L (2012) The epigenetic effects of butyrate: potential therapeutic implications for clinical practice. Clin Epigenetics 4:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Cabrera O, Berman DM, Kenyon NS et al (2006) The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc Natl Acad Sci U S A 103:2334–2339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canani RB, Costanzo MD, Leone L et al (2011) Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J Gastroenterol 17:1519–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen DP, Dahllof M, Lundh M et al (2011) Histone deacetylase (HDAC) inhibition as a novel treatment for diabetes mellitus. Mol Med 17:378–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniel P, Brazier M, Cerutti I et al (1989) Pharmacokinetic study of butyric acid administered in vivo as sodium and arginine butyrate salts. Clin Chim Acta 181:255–263

    Article  CAS  PubMed  Google Scholar 

  • De Goffau MC, Luopajarvi K, Knip M et al (2013) Fecal microbiota composition differs between children with beta-cell autoimmunity and those without. Diabetes 62:1238–1244

    Article  PubMed  PubMed Central  Google Scholar 

  • De Goffau MC, Fuentes S, Van Den Bogert B et al (2014) Aberrant gut microbiota composition at the onset of type 1 diabetes in young children. Diabetologia 57:1569–1577

    Article  PubMed  Google Scholar 

  • Donohoe DR, Garge N, Zhang X et al (2011) The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab 13:517–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egger G, Liang G, Aparicio A, Jones PA (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457–463

    Article  CAS  PubMed  Google Scholar 

  • Endo H, Niioka M, Kobayashi N, Tanaka M, Watanabe T (2013) Butyrate-producing probiotics reduce nonalcoholic fatty liver disease progression in rats: new insight into the probiotics for the gut-liver axis. PLoS One 8:e63388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrari A, Fiorino E, Giudici M et al (2012) Linking epigenetics to lipid metabolism: focus on histone deacetylases. Mol Membr Biol 29:257–266

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Yin J, Zhang J et al (2009) Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58:1509–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray SG, De Meyts P (2005) Role of histone and transcription factor acetylation in diabetes pathogenesis. Diabetes Metab Res Rev 21:416–433

    Article  CAS  PubMed  Google Scholar 

  • Group T D P (2006) Incidence and trends of childhood Type 1 diabetes worldwide 1990–1999. Diabet Med 23:857–866

    Article  Google Scholar 

  • Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10:32–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hara N, Alkanani AK, Ir D et al (2013) The role of the intestinal microbiota in type 1 diabetes. Clin Immunol 146:112–119

    Article  CAS  PubMed  Google Scholar 

  • Haumaitre C, Lenoir O, Scharfmann R (2008) Histone deacetylase inhibitors modify pancreatic cell fate determination and amplify endocrine progenitors. Mol Cell Biol 28:6373–6383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henagan TM, Stefanska B, Fang Z et al (2015) Sodium butyrate epigenetically modulates high-fat diet-induced skeletal muscle mitochondrial adaptation, obesity and insulin resistance through nucleosome positioning. Br J Pharmacol 172:2782–2798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Idf (2015) IDF diabetes atlas update poster, 7th edn. International Diabetes Federation, Brussels

    Google Scholar 

  • Iyer A, Fairlie DP, Brown L (2012) Lysine acetylation in obesity, diabetes and metabolic disease. Immunol Cell Biol 90:39–46

    Article  CAS  PubMed  Google Scholar 

  • Jakobsdottir G, Xu J, Molin G, Ahrne S, Nyman M (2013) High-fat diet reduces the formation of butyrate, but increases succinate, inflammation, liver fat and cholesterol in rats, while dietary fibre counteracts these effects. PLoS One 8:e80476

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaji I, Karaki S, Kuwahara A (2014) Short-chain fatty acid receptor and its contribution to glucagon-like peptide-1 release. Digestion 89:31–36

    Article  CAS  PubMed  Google Scholar 

  • Kanika G, Khan S, Jena G (2015) Sodium butyrate ameliorates L-arginine-induced pancreatitis and associated fibrosis in Wistar rat: role of inflammation and nitrosative stress. J Biochem Mol Toxicol 29:349–359

    Article  CAS  PubMed  Google Scholar 

  • Kasubuchi M, Hasegawa S, Hiramatsu T, Ichimura A, Kimura I (2015) Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients 7:2839–2849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keating ST, El-Osta A (2013) Epigenetic changes in diabetes. Clin Genet 84:1–10

    Article  CAS  PubMed  Google Scholar 

  • Khan S, Jena G (2014a) Sodium butyrate, a HDAC inhibitor ameliorates eNOS, iNOS and TGF-beta1-induced fibrogenesis, apoptosis and DNA damage in the kidney of juvenile diabetic rats. Food Chem Toxicol 73c:127–139

    Article  Google Scholar 

  • Khan S, Jena G (2014b) Sodium valproate, a histone deacetylase inhibitor ameliorates cyclophosphamide-induced genotoxicity and cytotoxicity in the colon of mice. J Basic Clin Physiol Pharmacol:1–11

    Google Scholar 

  • Khan S, Jena GB (2014c) Protective role of sodium butyrate, a HDAC inhibitor on beta-cell proliferation, function and glucose homeostasis through modulation of p38/ERK MAPK and apoptotic pathways: study in juvenile diabetic rat. Chem Biol Interact 213C:1–12

    Article  Google Scholar 

  • Khan S, Jena G (2015) The role of butyrate, a histone deacetylase inhibitor in diabetes mellitus: experimental evidence for therapeutic intervention. Epigenomics 7:669–680

    Article  CAS  PubMed  Google Scholar 

  • Khan S, Jena G (2016) Sodium butyrate reduces insulin-resistance, fat accumulation and dyslipidemia in type-2 diabetic rat: a comparative study with metformin. Chem Biol Interact 254:124–134

    Article  CAS  PubMed  Google Scholar 

  • Khan S, Kumar S, Jena G (2016) Valproic acid reduces insulin-resistance, fat deposition and FOXO1-mediated gluconeogenesis in type-2 diabetic rat. Biochimie 125:42–52

    Article  CAS  PubMed  Google Scholar 

  • Kim SW, Hooker JM, Otto N et al (2013) Whole-body pharmacokinetics of HDAC inhibitor drugs, butyric acid, valproic acid and 4-phenylbutyric acid measured with carbon-11 labeled analogs by PET. Nucl Med Biol 40:912–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawless MW, Norris S, O'byrne KJ, Gray SG (2009) Targeting histone deacetylases for the treatment of disease. J Cell Mol Med 13:826–852

    Article  CAS  PubMed  Google Scholar 

  • Lenoir O, Flosseau K, Ma FX et al (2011) Specific control of pancreatic endocrine beta- and delta-cell mass by class IIa histone deacetylases HDAC4, HDAC5, and HDAC9. Diabetes 60:2861–2871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis EC, Blaabjerg L, Storling J et al (2011) The oral histone deacetylase inhibitor ITF2357 reduces cytokines and protects islet beta cells in vivo and in vitro. Mol Med 17:369–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Hatch M, Wasserfall CH et al (2010) Butyrate and type 1 diabetes mellitus: can we fix the intestinal leak? J Pediatr Gastroenterol Nutr 51:414–417

    Article  CAS  PubMed  Google Scholar 

  • Li HP, Chen X, Li MQ (2013) Butyrate alleviates metabolic impairments and protects pancreatic beta cell function in pregnant mice with obesity. Int J Clin Exp Pathol 6:1574–1584

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin H V, Frassetto A, Kowalik EJ Jr et al (2012) Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One 7:e35240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lundh M, Christensen DP, Rasmussen DN et al (2010) Lysine deacetylases are produced in pancreatic beta cells and are differentially regulated by proinflammatory cytokines. Diabetologia 53:2569–2578

    Article  CAS  PubMed  Google Scholar 

  • Lundh M, Christensen DP, Damgaard Nielsen M et al (2012) Histone deacetylases 1 and 3 but not 2 mediate cytokine-induced beta cell apoptosis in INS-1 cells and dispersed primary islets from rats and are differentially regulated in the islets of type 1 diabetic children. Diabetologia 55:2421–2431

    Article  CAS  PubMed  Google Scholar 

  • Machado RA, Constantino Lde S, Tomasi CD et al (2012) Sodium butyrate decreases the activation of NF-kappaB reducing inflammation and oxidative damage in the kidney of rats subjected to contrast-induced nephropathy. Nephrol Dial Transplant 27:3136–3140

    Article  CAS  PubMed  Google Scholar 

  • Magnusson I, Rothman DL, Katz LD, Shulman RG, Shulman GI (1992) Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study. J Clin Invest 90:1323–1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattace Raso G, Simeoli R, Russo R et al (2013) Effects of sodium butyrate and its synthetic amide derivative on liver inflammation and glucose tolerance in an animal model of steatosis induced by high fat diet. PLoS One 8:e68626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mihaylova MM, Shaw RJ (2013) Metabolic reprogramming by class I and II histone deacetylases. Trends Endocrinol Metab 24:48–57

    Article  CAS  PubMed  Google Scholar 

  • Mihaylova MM, Vasquez DS, Ravnskjaer K et al (2011) Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell 145:607–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller AA, Kurschel E, Osieka R, Schmidt CG (1987) Clinical pharmacology of sodium butyrate in patients with acute leukemia. Eur J Cancer Clin Oncol 23:1283–1287

    Article  CAS  PubMed  Google Scholar 

  • Odegaard JI, Chawla A (2012) Connecting type 1 and type 2 diabetes through innate immunity. Cold Spring Harb Perspect Med 2:a007724

    Article  PubMed  PubMed Central  Google Scholar 

  • Oetjen E, Blume R, Cierny I et al (2007) Inhibition of MafA transcriptional activity and human insulin gene transcription by interleukin-1beta and mitogen-activated protein kinase kinase kinase in pancreatic islet beta cells. Diabetologia 50:1678–1687

    Article  CAS  PubMed  Google Scholar 

  • Ohira H, Fujioka Y, Katagiri C et al (2013) Butyrate attenuates inflammation and lipolysis generated by the interaction of adipocytes and macrophages. J Atheroscler Thromb 20:425–442

    Article  CAS  PubMed  Google Scholar 

  • Oiso H, Furukawa N, Suefuji M et al (2011) The role of class I histone deacetylase (HDAC) on gluconeogenesis in liver. Biochem Biophys Res Commun 404:166–172

    Article  CAS  PubMed  Google Scholar 

  • Pham TX, Lee J (2012) Dietary regulation of histone acetylases and deacetylases for the prevention of metabolic diseases. Nutrients 4:1868–1886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phlips JC, Radermecker RP (2012) Type 1 diabetes: from genetic predisposition to hypothetical environmental triggers. Rev Med Liege 67:319–325

    PubMed  Google Scholar 

  • Prentki M, Nolan CJ (2006) Islet beta cell failure in type 2 diabetes. J Clin Invest 116:1802–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pryde SE, Duncan SH, Hold GL, Stewart CS, Flint HJ (2002) The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett 217:133–139

    Article  CAS  PubMed  Google Scholar 

  • Roda A, Simoni P, Magliulo M et al (2007) A new oral formulation for the release of sodium butyrate in the ileo-cecal region and colon. World J Gastroenterol 13:1079–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rumberger JM, Arch JR, Green A (2014) Butyrate and other short-chain fatty acids increase the rate of lipolysis in 3T3-L1 adipocytes. PeerJ 2:e611

    Article  PubMed  PubMed Central  Google Scholar 

  • Sekhavat A, Sun JM, Davie JR (2007) Competitive inhibition of histone deacetylase activity by trichostatin A and butyrate. Biochem Cell Biol 85:751–758

    Article  CAS  PubMed  Google Scholar 

  • Sharabi K, Tavares CD, Rines AK, Puigserver P (2015) Molecular pathophysiology of hepatic glucose production. Mol Asp Med 46:21–33

    Article  CAS  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Zhou J (2008) Trichostatin A improves insulin stimulated glucose utilization and insulin signaling transduction through the repression of HDAC2. Biochem Pharmacol 76:120–127

    Article  CAS  PubMed  Google Scholar 

  • Thiagalingam S, Cheng KH, Lee HJ et al (2003) Histone deacetylases: unique players in shaping the epigenetic histone code. Ann N Y Acad Sci 983:84–100

    Article  CAS  PubMed  Google Scholar 

  • Trasler JM (2009) Epigenetics in spermatogenesis. Mol Cell Endocrinol 306:33–36

    Article  CAS  PubMed  Google Scholar 

  • Vaarala O (2013) Human intestinal microbiota and type 1 diabetes. Curr Diab Rep 13:601–607

    Article  CAS  PubMed  Google Scholar 

  • Villeneuve LM, Reddy MA, Natarajan R (2011) Epigenetics: deciphering its role in diabetes and its chronic complications. Clin Exp Pharmacol Physiol 38:451–459

    Article  PubMed  Google Scholar 

  • Vinolo MA, Rodrigues HG, Festuccia WT et al (2012) Tributyrin attenuates obesity-associated inflammation and insulin resistance in high-fat-fed mice. Am J Physiol Endocrinol Metab 303:E272–E282

    Article  CAS  PubMed  Google Scholar 

  • Weems JC, Griesel BA, Olson AL (2012) Class II histone deacetylases downregulate GLUT4 transcription in response to increased cAMP signaling in cultured adipocytes and fasting mice. Diabetes 61:1404–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav H, Lee JH, Lloyd J, Walter P, Rane SG (2013) Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion. J Biol Chem 288:25088–25097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye J (2013) Improving insulin sensitivity with HDAC inhibitor. Diabetes 62:685–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Zeng XY, Wang H et al (2014) Hepatic FoxO1 acetylation is involved in oleanolic acid-induced memory of glycemic control: novel findings from Study 2. PLoS One 9:e107231

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopabandhu Jena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Khan, S., Maremanda, K.P., Jena, G. (2017). Butyrate, a Short-Chain Fatty Acid and Histone Deacetylases Inhibitor: Nutritional, Physiological, and Pharmacological Aspects in Diabetes. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-31143-2_70-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31143-2_70-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31143-2

  • Online ISBN: 978-3-319-31143-2

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics