Skip to main content

Diversity of Human CpG Islands

  • Living reference work entry
  • First Online:
Handbook of Nutrition, Diet, and Epigenetics

Abstract

CpG islands (CGIs) are the most extensively studied regulatory features in mammalian genomes. Identified first in the early 1980s using methylation-sensitive restriction enzymes, CpG islands were defined as clusters of unmethylated CpG dinucleotides. Compared to the highly methylated nature of the bulk human genome, CGIs constitute as much as 1% of the DNA of all types of tissues including embryonic, somatic, and germ lines. Earlier analyses revealed strong associations between CGIs and transcription start sites, rendering researchers to use CGIs as markers for genes. Utilizing the particular sequence-nature of CGIs, many methods to identify CGIs from genome sequences have been developed throughout the years. These methods were highly useful to guide researchers to focus on specific regions of the genome. With the recent advent of efficient experimental tools to analyze DNA methylation, CpG island research has entered a new era. Newly accumulating data on genome-wide DNA methylation allowed researchers to identify clusters of unmethylated CpGs, regardless of their sequence characteristics. Efforts on this end have produced comprehensive, experimentally verified catalogues of “epigenetic” CpG islands from the human genome. Notably, many epigenetic CpG islands that were previously not detected by sequence-based methods are now known. Epigenetically determined CpG islands reveal tremendous insights into the molecular, functional, and evolutionary diversity of these elements as well as how they affect key regulatory processes of the human genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

CAP:

CXXC affinity purification

CGI:

CpG island

CpG O/E:

Observed/expected CpG ratio

CpG:

Cytosine-phosphate-guanine

GC:

Guanine-cytosine

MeDIP-chip:

Methylated DNA immunoprecipitation chip

MeDIP-seq:

Methylated DNA immunoprecipitation sequencing

PCR:

Polymerase chain reaction

RRBS:

Reduced representation bisulfite sequencing

SMRT:

Single-molecule real-time sequencing

TSS:

Transcription start site

UCSC:

University of California, Santa Cruz

WGBS:

Whole-genome bisulfite sequencing

References

  • Antequera F (2003) Structure, function and evolution of CpG island promoters. Cell Mol Life Sci 60:1647–1658

    Article  CAS  PubMed  Google Scholar 

  • Antequera F, Bird A (1993) Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci USA 90:11995–11999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bajic VB, Tan SL, Suzuki Y, Sugano S (2004) Promoter prediction analysis on the whole human genome. Nat Biotechnol 22:1467–1473

    Article  CAS  PubMed  Google Scholar 

  • Bird AP (1986) CpG-rich islands and the function of DNA methylation. Nature 321:209–213

    Article  CAS  PubMed  Google Scholar 

  • Bird A, Taggart M, Frommer M, Miller OJ, Macleod D (1985) A fraction of the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA. Cell 40(1):91–99

    Google Scholar 

  • Blackledge NP, Long HK, Zhou JC, Kriaucionis S, Patient R, Klose RJ (2012) Bio-CAP: a versatile and highly sensitive technique to purify and characterise regions of non-methylated DNA. Nucleic Acids Res 40:e32

    Article  CAS  PubMed  Google Scholar 

  • Cohen NM, Kenigsberg E, Tanay A (2011) Primate CpG islands are maintained by heterogeneous evolutionary regimes involving minimal selection. Cell 145:773–786

    Article  CAS  PubMed  Google Scholar 

  • Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD et al (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper DN, Taggart MH, Bird AP (1983) Unmethylated domains in vertebrate DNA. Nucleic Acids Res 11:647–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coulondre C, Miller JH, Farabaugh PJ, Gilbert W (1978) Molecular basis of base substitution hotspots in Escherichia coli. Nature 274:775–780

    Article  CAS  PubMed  Google Scholar 

  • Eckhardt F, Lewin J, Cortese R, Rakyan VK, Attwood J, Burger M et al (2006) DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet 38:1378–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elango N, Yi SV (2008) DNA methylation and structural and functional bimodality of vertebrate promoters. Mol Biol Evol 25:1602–1608

    Article  CAS  PubMed  Google Scholar 

  • Feschotte C (2008) Transposable elements and the evolution of regulatory networks. Nat Rev Genet 9:397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frommer M, Mcdonald LE, Millar DS, Collis CM, Watt F, Grigg GW et al (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA 89:1827–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 196:261–282

    Article  CAS  PubMed  Google Scholar 

  • Grunau C, Clark SJ, Rosenthal A (2001) Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucleic Acids Res 29:e65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Illingworth RS, Bird AP (2009) CpG islands–‘a rough guide’. FEBS Lett 583:1713–1720

    Article  CAS  PubMed  Google Scholar 

  • Illingworth R, Kerr A, Desousa D, Jorgensen H, Ellis P, Stalker J et al (2008) A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLoS Biol 6:e22

    Article  PubMed  PubMed Central  Google Scholar 

  • Illingworth RS, Gruenewald-Schneider U, Webb S, Kerr AR, James KD, Turner DJ et al (2010) Orphan CpG islands identify numerous conserved promoters in the mammalian genome. PLoS Genet 6:e1001134

    Article  PubMed  PubMed Central  Google Scholar 

  • Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P et al (2009) The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41:178–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM et al (2002) The human genome browser at UCSC. Genome Res 12:996–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  CAS  PubMed  Google Scholar 

  • Larsen F, Gundersen G, Lopez R, Prydz H (1992) CpG islands as gene markers in the human genome. Genomics 13:1095–1107

    Article  CAS  PubMed  Google Scholar 

  • Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long HK, Sims D, Heger A, Blackledge NP, Kutter C, Wright ML et al (2013) Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates. Elife 2:e00348

    Article  PubMed  PubMed Central  Google Scholar 

  • Meissner A, Gnirke A, Bell GW, Ramsahoye B, Lander ES, Jaenisch R (2005) Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res 33:5868–5877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, Zhang X, Bernstein BE, Nusbaum C, Jaffe DB, Gnirke A, Jaenisch R, Lander ES (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454:766–70

    Google Scholar 

  • Mendizabal I, Yi SV (2016) Whole-genome bisulfite sequencing maps from multiple human tissues reveal novel CpG islands associated with tissue-specific regulation. Hum Mol Genet 25:69–82

    Article  CAS  PubMed  Google Scholar 

  • Sarda S, Zeng J, Hunt BG, Yi SV (2012) The evolution of invertebrate gene body methylation. Mol Biol Evol 29:1907–1016

    Article  CAS  PubMed  Google Scholar 

  • Saxonov S, Berg P, Brutlag DL (2006) A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci USA 103:1412–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz MD, He Y, Whitaker JW, Hariharan M, Mukamel EA, Leung D et al (2015) Human body epigenome maps reveal noncanonical DNA methylation variation. Nature 523:212–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiota K (2004) DNA methylation profiles of CpG islands for cellular differentiation and development in mammals. Cytogenet Genome Res 105:325–334

    Article  CAS  PubMed  Google Scholar 

  • Singer-Sam J, Lebon JM, Tanguay RL, Riggs AD (1990) A quantitative Hpall-PCR assay to measure methylation of DNA from a small number of cells. Nucleic Acids Res 18:687–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285

    Article  CAS  PubMed  Google Scholar 

  • Stein R, Sciaky-Gallili N, Razin A, Cedar H (1983) Pattern of methylation of two genes coding for housekeeping functions. Proc Natl Acad Sci USA 80:2422–2426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D et al (2004) A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA 101:6062–6067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takai D, Jones PA (2002) Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci USA 99:3740–3745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tykocinski ML, Max EE (1984) CG dinucleotide clusters in MHC genes and in 5′ demethylated genes. Nucleic Acids Res 12:4385–4396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varley KE, Gertz J, Bowling KM, Parker SL, Reddy TE, Pauli-Behn F et al (2013) Dynamic DNA methylation across diverse human cell lines and tissues. Genome Res 23:555–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber M, Hellmann I, Stadler MB, Ramos L, Paabo S, Rebhan M et al (2007) Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 39:457–466

    Article  CAS  PubMed  Google Scholar 

  • Yamada Y, Toyota M, Hirokawa Y, Suzuki H, Takagi A, Matsuzaki T et al (2004a) Identification of differentially methylated CpG islands in prostate cancer. Int J Cancer 112(5):840

    Article  CAS  PubMed  Google Scholar 

  • Yamada Y, Watanabe H, Miura F, Soejima H, Uchiyama M, Iwasaka T et al (2004b) A comprehensive analysis of allelic methylation status of CpG islands on human chromosome 21q. Genome Res 14:247–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng J, Nagrajan HK, Yi SV (2014) Fundamental diversity of human CpG islands at multiple biological levels. Epigenetics (9):483–91

    Google Scholar 

  • Ziller MJ, Gu H, Muller F, Donaghey J, Tsai LT, Kohlbacher O et al (2013) Charting a dynamic DNA methylation landscape of the human genome. Nature 500:477–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soojin V. Yi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Mendizabal, I., Yi, S. (2017). Diversity of Human CpG Islands. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-31143-2_67-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31143-2_67-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31143-2

  • Online ISBN: 978-3-319-31143-2

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics