Skip to main content

Nutritional Programming and Effect of Ancestor Diet in Birds

  • Living reference work entry
  • First Online:

Abstract

Phenotype variability depends on genetics and environmental factors. Improving farm animal performances relies on genetic variability, but the possible improvement of selection schemes taking into account nongenetic transgenerational inheritance has become a topic of choice. Indeed, the parental diet may influence the adult phenotype of the offspring, and more and more studies suggest that information acquired from environmental exposures may be transmitted across generations. In this review, we focus on nongenetic inheritance of diet effects in birds, either as parental effect, that is, “nutritional programming,” or through the transmission of information across several generations, via “transgenerational epigenetic inheritance.” Compared to mammal models with regard to their closer proximity with humans, bird models have the added benefit to minimize maternal confounding effects by a direct manipulation of the egg content.

This is a preview of subscription content, log in via an institution.

Abbreviations

ABCA1:

ATP Binding Cassette Subfamily A Member 1

ACC-alpha:

Acetyl-CoA Carboxylase Alpha

BDNF:

brain-derivated neurotrophic factor

CPT-I:

Carnitine Palmitoyltransferase 1A

CYP7A1:

Cytochrome P450 Family 7 Subfamily A Member 1

DHA:

docosahexaenoic acid

DOHaD:

Developmental Origins of Health and Disease

EPA:

eicosapentaenoic acid

IGF-I:

Insulin Like Growth Factor 1

IGF-IR:

Insulin Like Growth Factor 1 Receptor

NAFLD:

Non-alcoholic fatty liver disease

PGC:

primordial germ cells

TAG:

triacylglyceride

References

  • Aigueperse N, Calandreau L, Bertin A (2013) Maternal diet influences offspring feeding behavior and fearfulness in the precocial chicken. PLoS One 8:e77583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aiken CE, Tarry-Adkins JL, Ozanne SE (2016) Transgenerational effects of maternal diet on metabolic and reproductive ageing. Mamm Genome 27:430–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braunschweig M, Jagannathan V, Gutzwiller A et al (2012) Investigations on transgenerational epigenetic response down the male line in F2 pigs. PLoS One 7:e30583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bressenot A, Pooya S, Bossenmeyer-Pourie C et al (2013) Methyl donor deficiency affects small-intestinal differentiation and barrier function in rats. Br J Nutr 109:667–677

    Article  CAS  PubMed  Google Scholar 

  • Brun J-M, Bernadet M-D, Cornuez A et al (2015) Influence of grand-mother diet on offspring performances through the male line in Muscovy duck. BMC Genet 16:145

    Article  PubMed  PubMed Central  Google Scholar 

  • Calini F, Sirri F (2007) Breeder nutrition and offspring performance. Braz J Poult Sci 9:77–83

    Google Scholar 

  • Canani RB, Costanzo MD, Leone L et al (2011) Epigenetic mechanisms elicited by nutrition in early life. Nutr Res Rev 24:198–205

    Article  CAS  PubMed  Google Scholar 

  • de Castro Barbosa T, Ingerslev LR, Alm PS et al (2016) High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring. Mol Metab 5:184–197

    Article  PubMed  Google Scholar 

  • Chavatte-Palmer P, Tarrade A, Rousseau-Ralliard D (2016) Diet before and during pregnancy and offspring health: the importance of animal models and what can be learned from them. Int J Environ Res Public Health 13(6)

    Google Scholar 

  • Chen Q, Yan W, Duan E (2016) Epigenetic inheritance of acquired traits through sperm RNAs and sperm RNA modifications. Nat Rev Genet 17:733–743

    Article  CAS  PubMed  Google Scholar 

  • Cherian G (2015) Nutrition and metabolism in poultry: role of lipids in early diet. J Anim Sci Biotechnol 6:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Dixon LM, Sparks NH, Rutherford KM (2016) Early experiences matter: a review of the effects of prenatal environment on offspring characteristics in poultry. Poult Sci 95:489–499

    Article  CAS  PubMed  Google Scholar 

  • Duan X, Li F, Mou S et al (2015) Effects of dietary l-arginine on laying performance and antioxidant capacity of broiler breeder hens, eggs, and offspring during the late laying period. Poult Sci 94:2938–2943

    Article  PubMed  Google Scholar 

  • Ellegren H, Hultin-Rosenberg L, Brunstrom B et al (2007) Faced with inequality: chicken do not have a general dosage compensation of sex-linked genes. BMC Biol 5:40

    Article  PubMed  PubMed Central  Google Scholar 

  • van Emous RA, Kwakkel RP, van Krimpen MM et al (2015) Effects of growth patterns and dietary protein levels during rearing of broiler breeders on fertility, hatchability, embryonic mortality, and offspring performance. Poult Sci 94:681–691

    Article  PubMed  Google Scholar 

  • Ericsson M, Henriksen R, Belteky J et al (2016) Long-term and transgenerational effects of stress experienced during different life phases in chickens (Gallus gallus). PLoS One 11:e0153879

    Article  PubMed  PubMed Central  Google Scholar 

  • Everaert N, Metayer-Coustard S, Willemsen H et al (2013) The effect of albumen removal before incubation (embryonic protein under-nutrition) on the post-hatch performance, regulators of protein translation activation and proteolysis in neonatal broilers. Br J Nutr 110:265–274

    Article  CAS  PubMed  Google Scholar 

  • Feeney A, Nilsson E, Skinner MK (2014) Epigenetics and transgenerational inheritance in domesticated farm animals. J Anim Sci Biotechnol 5:48

    Article  PubMed  PubMed Central  Google Scholar 

  • Fleming TP, Velazquez MA, Eckert JJ (2015) Embryos, DOHaD and David Barker. J Dev Orig Health Dis 6:377–383

    Article  CAS  PubMed  Google Scholar 

  • Fresard L, Morisson M, Brun J-M et al (2013) Epigenetics and phenotypic variability: some interesting insights from birds. Genet Sel Evol 45:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Fresard L, Leroux S, Servin B et al (2014) Transcriptome-wide investigation of genomic imprinting in chicken. Nucleic Acids Res 42:3768–3782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabory A, Attig L, Junien C (2011) Epigenetic mechanisms involved in developmental nutritional programming. World J Diabetes 2:164–175

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia MM, Gueant-Rodriguez RM, Pooya S et al (2011) Methyl donor deficiency induces cardiomyopathy through altered methylation/acetylation of PGC-1alpha by PRMT1 and SIRT1. J Pathol 225:324–335

    Article  CAS  PubMed  Google Scholar 

  • Goddard ME, Whitelaw E (2014) The use of epigenetic phenomena for the improvement of sheep and cattle. Front Genet 5:247

    Article  PubMed  PubMed Central  Google Scholar 

  • Goerlich VC, Natt D, Elfwing M et al (2012) Transgenerational effects of early experience on behavioral, hormonal and gene expression responses to acute stress in the precocial chicken. Horm Behav 61:711–718

    Article  CAS  PubMed  Google Scholar 

  • Havenstein GB, Ferket PR, Qureshi MA (2003) Carcass composition and yield of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poult Sci 82:1509–1518

    Article  CAS  PubMed  Google Scholar 

  • Ho DH, Burggren WW (2010) Epigenetics and transgenerational transfer: a physiological perspective. J Exp Biol 213:3–16

    Article  CAS  PubMed  Google Scholar 

  • Ho DH, Reed WL, Burggren WW (2011) Egg yolk environment differentially influences physiological and morphological development of broiler and layer chicken embryos. J Exp Biol 214:619–628

    Article  PubMed  Google Scholar 

  • Hu Y, Sun Q, Li X et al (2015) In ovo injection of betaine affects hepatic cholesterol metabolism through epigenetic gene regulation in newly hatched chicks. PLoS One 10:e0122643

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Sun Q, Liu J et al (2017) In ovo injection of betaine alleviates corticosterone-induced fatty liver in chickens through epigenetic modifications. Sci Rep 7:40251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibeagha-Awemu EM, Zhao X (2015) Epigenetic marks: regulators of livestock phenotypes and conceivable sources of missing variation in livestock improvement programs. Front Genet 6:302

    Article  PubMed  PubMed Central  Google Scholar 

  • Itoh Y, Melamed E, Yang X et al (2007) Dosage compensation is less effective in birds than in mammals. J Biol 6:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Jablonka E, Raz G (2009) Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Q Rev Biol 84:131–176

    Article  PubMed  Google Scholar 

  • Jang H, Serra C (2014) Nutrition, epigenetics, and diseases. Clin Nutr Res 3:1–8

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Denbow C, Meiri N et al (2016) Epigenetic-imprinting changes caused by neonatal fasting stress protect from future fasting stress. J Neuroendocrinol 28(1)

    Google Scholar 

  • Kaati G, Bygren LO, Pembrey M et al (2007) Transgenerational response to nutrition, early life circumstances and longevity. Eur J Hum Genet 15:784–790

    Article  CAS  PubMed  Google Scholar 

  • Kadam MM, Barekatain MR, Bhanja SK et al (2013) Prospects of in ovo feeding and nutrient supplementation for poultry: the science and commercial applications – a review. J Sci Food Agric 93:3654–3661

    Article  CAS  PubMed  Google Scholar 

  • Khan N, Peters RA, Richardson E et al (2016) Maternal corticosterone exposure has transgenerational effects on grand-offspring. Biol Lett 12(11)

    Google Scholar 

  • Koppenol A, Buyse J, Everaert N et al (2015a) Transition of maternal dietary n-3 fatty acids from the yolk to the liver of broiler breeder progeny via the residual yolk sac. Poult Sci 94:43–52

    Article  CAS  PubMed  Google Scholar 

  • Koppenol A, Delezie E, Wang Y et al (2015b) Effects of maternal dietary EPA and DHA supplementation and breeder age on embryonic and post-hatch performance of broiler offspring: age and n-3 pufa affect embryonic and post-hatch performance. J Anim Physiol Anim Nutr (Berl) 99(Suppl S1):36–47

    Article  CAS  Google Scholar 

  • Lamot DM, van de Linde IB, Molenaar R et al (2014) Effects of moment of hatch and feed access on chicken development. Poult Sci 93:2604–2614

    Article  CAS  PubMed  Google Scholar 

  • Langley-Evans SC (2015) Nutrition in early life and the programming of adult disease: a review. J Hum Nutr Diet 28(Suppl 1):1–14

    Article  PubMed  Google Scholar 

  • Leroux S, Gourichon D, Leterrier C et al (2017) Embryonic environment and transgenerational effects in quail. Genet Sel Evol 49:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Yuan L, Yang X et al (2007) Effect of early feed restriction on myofibre types and expression of growth-related genes in the gastrocnemius muscle of crossbred broiler chickens. Br J Nutr 98:310–319

    Article  CAS  PubMed  Google Scholar 

  • Lillycrop KA, Burdge GC (2011) Epigenetic changes in early life and future risk of obesity. Int J Obes 35:72–83

    Article  CAS  Google Scholar 

  • Miska EA, Ferguson-Smith AC (2016) Transgenerational inheritance: models and mechanisms of non-DNA sequence- based inheritance. Science 354:59–63

    Article  CAS  PubMed  Google Scholar 

  • Moran ET Jr (2007) Nutrition of the developing embryo and hatchling. Poult Sci 86:1043–1049

    Article  PubMed  Google Scholar 

  • Mukherjee K, Twyman RM, Vilcinskas A (2015) Insects as models to study the epigenetic basis of disease. Prog Biophys Mol Biol 118:69–78

    Article  CAS  PubMed  Google Scholar 

  • Murdoch BM, Murdoch GK, Greenwood S et al (2016) Nutritional influence on epigenetic marks and effect on livestock production. Front Genet 7:182

    Article  PubMed  PubMed Central  Google Scholar 

  • Ni YD, Hong WJ, Ren LZ et al (2007) Effect of dietary daidzein on egg quality and meat quality of the offspring of broiler breed hens during the late period of laying cycle. Acta Vet Zootech Sin 38:1188–1194

    Google Scholar 

  • Ni YD, Wei XJ, Zhang CX et al (2012) The effect of equol injection in ovo on lipid metabolism and hepatic lipogenic gene expression in broilers. Animal 6:1444–1450

    Article  CAS  PubMed  Google Scholar 

  • Noble RC (1986) Lipid metabolism in chick embryo. P Nutr Soc 45:17–25

    Google Scholar 

  • Pembrey ME (2010) Male-line transgenerational responses in humans. Hum Fertil (Camb) 13:268–271

    Article  Google Scholar 

  • Pooya S, Blaise S, Moreno Garcia M et al (2012) Methyl donor deficiency impairs fatty acid oxidation through PGC-1alpha hypomethylation and decreased ER-alpha, ERR-alpha, and HNF-4alpha in the rat liver. J Hepatol 57:344–351

    Article  CAS  PubMed  Google Scholar 

  • Rao K, Xie J, Yang X et al (2009) Maternal low-protein diet programmes offspring growth in association with alterations in yolk leptin deposition and gene expression in yolk-sac membrane, hypothalamus and muscle of developing Langshan chicken embryos. Br J Nutr 102:848–857

    Article  CAS  PubMed  Google Scholar 

  • Reed WL, Clark ME (2011) Beyond maternal effects in birds: responses of the embryo to the environment. Integr Comp Biol 51:73–80

    Article  PubMed  Google Scholar 

  • Reynolds CM, Gray C, Li M et al (2015) Early life nutrition and energy balance disorders in offspring in later life. Forum Nutr 7:8090–8111

    CAS  Google Scholar 

  • Richards MP, Proszkowiec-Weglarz M, Rosebrough RW et al (2010) Effects of early neonatal development and delayed feeding immediately post-hatch on the hepatic lipogenic program in broiler chicks. Comp Biochem Physiol B Biochem Mol Biol 157:374–388

    Article  PubMed  Google Scholar 

  • Rosa AP, Bonilla CE, Londero A et al (2016) Effect of broiler breeders fed with corn or sorghum and canthaxanthin on lipid peroxidation, fatty acid profile of hatching eggs, and offspring performance. Poult Sci 96(3):647–658

    Google Scholar 

  • Roto SM, Kwon YM, Ricke SC (2016) Applications of in ovo technique for the optimal development of the gastrointestinal tract and the potential influence on the establishment of its microbiome in poultry. Front Vet Sci 3:63

    Article  PubMed  PubMed Central  Google Scholar 

  • Schroeder J, Nakagawa S, Rees M et al (2015) Reduced fitness in progeny from old parents in a natural population. Proc Natl Acad Sci U S A 112:4021–4025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinclair KD, Rutherford KM, Wallace JM et al (2016) Epigenetics and developmental programming of welfare and production traits in farm animals. Reprod Fertil Dev

    Google Scholar 

  • Skinner MK (2011) Environmental epigenetic transgenerational inheritance and somatic epigenetic mitotic stability. Epigenetics 6:838–842

    Article  CAS  PubMed  Google Scholar 

  • Soubry A (2015) Epigenetic inheritance and evolution: a paternal perspective on dietary influences. Prog Biophys Mol Biol 118:79–85

    Article  CAS  PubMed  Google Scholar 

  • Stein AD, Lumey LH (2000) The relationship between maternal and offspring birth weights after maternal prenatal famine exposure: the Dutch Famine Birth Cohort Study. Hum Biol 72:641–654

    CAS  PubMed  Google Scholar 

  • Tsunekawa N, Naito M, Sakai Y et al (2000) Isolation of chicken vasa homolog gene and tracing the origin of primordial germ cells. Development 127:2741–2750

    CAS  PubMed  Google Scholar 

  • Uni Z, Ferket RP (2004) Methods for early nutrition and their potential. Worlds Poult Sci J 60:101–111

    Article  Google Scholar 

  • Vaiserman A (2014) Developmental epigenetic programming of caste-specific differences in social insects: an impact on longevity. Curr Aging Sci 7:176–186

    Article  PubMed  Google Scholar 

  • Veenendaal MV, Painter RC, de Rooij SR et al (2013) Transgenerational effects of prenatal exposure to the 1944–45 Dutch famine. BJOG 120:548–553

    Article  CAS  PubMed  Google Scholar 

  • Vickers MH (2014) Early life nutrition, epigenetics and programming of later life disease. Forum Nutr 6:2165–2178

    CAS  Google Scholar 

  • van der Waaij EH, van den Brand H, van Arendonk JA et al (2011) Effect of match or mismatch of maternal-offspring nutritional environment on the development of offspring in broiler chickens. Animal 5:741–748

    Article  PubMed  Google Scholar 

  • Wang Q, Li K, Zhang D et al (2015) Next-generation sequencing techniques reveal that genomic imprinting is absent in day-old Gallus gallus domesticus brains. PLoS One 10:e0132345

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei XJ, Ni YD, Lu LZ et al (2011) The effect of equol injection in ovo on posthatch growth, meat quality and antioxidation in broilers. Animal 5:320–327

    Article  CAS  PubMed  Google Scholar 

  • Willems E, Wang Y, Willemsen H et al (2013) Partial albumen removal early during embryonic development of layer-type chickens has negative consequences on laying performance in adult life. Poult Sci 92:1905–1915

    Article  CAS  PubMed  Google Scholar 

  • Willems E, Hu TT, Soler Vasco L et al (2014) Embryonic protein undernutrition by albumen removal programs the hepatic amino acid and glucose metabolism during the perinatal period in an avian model. PLoS One 9:e94902

    Article  PubMed  PubMed Central  Google Scholar 

  • Willems E, Koppenol A, De Ketelaere B et al (2015) Effects of nutritional programing on growth and metabolism caused by albumen removal in an avian model. J Endocrinol 225:89–100

    Article  CAS  PubMed  Google Scholar 

  • Willems E, Guerrero-Bosagna C, Decuypere E et al (2016) Differential expression of genes and DNA methylation associated with prenatal protein undernutrition by albumen removal in an avian model. Sci Rep 6:20837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu P, Denbow CJ, Meiri N et al (2012) Fasting of 3-day-old chicks leads to changes in histone H3 methylation status. Physiol Behav 105:276–282

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Zhuang J, Rao K et al (2010) Effect of early feed restriction on hepatic lipid metabolism and expression of lipogenic genes in broiler chickens. Res Vet Sci 89:438–444

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédérique Pitel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Morisson, M. et al. (2017). Nutritional Programming and Effect of Ancestor Diet in Birds. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-31143-2_40-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31143-2_40-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31143-2

  • Online ISBN: 978-3-319-31143-2

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics