Skip to main content

Epigenetic Effects of Nutrients Involved in Neurodevelopmental and Mental Disorders

  • Living reference work entry
  • First Online:
Handbook of Nutrition, Diet, and Epigenetics
  • 151 Accesses

Abstract

Epigenetics is a mechanism that can change gene expression, not by changing the genomic sequence but by changing epigenomic modifications such as DNA methylation and histone acetylation. Failure of epigenetic mechanisms results in various congenital neurodevelopmental disorders, suggesting that these mechanisms are essential for normal brain development. Epigenetic mechanisms are affected by various environmental factors including nutrients such as folic acid and various histone deacetylase inhibitors during early life. Since these nutrients are essential for epigenetic modifications, their insufficient intake in the early developmental period can induce epigenomic abnormalities that lead to dysregulation of gene expression in the brain, which may result in acquired neurodevelopmental and mental disorders. Therefore, on the basis of the epigenetic understanding of the effects of nutrients, early intervention with an appropriate therapy and education in nursery and preschools is important to prevent or ameliorate acquired neurodevelopmental and mental disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AHRR:

Aryl hydrocarbon receptor

ARA:

Arachidonic acid

DHA:

Docosahexaenoic acid

DNMT:

DNA methyltransferase

DOHaD:

Developmental origins of health and disease

Gr:

Glucocorticoid receptor

HDACi:

Histone deacetylase inhibitor

iPSC:

Induced pluripotent stem cell

MBD:

Methyl-CpG binding domain

MYO1G:

Myosin 1g

PPAR:

Peroxisome proliferator-activated receptor

References

  • Amir RE, Van den Veyver IB, Wan M et al (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23:185–188

    Article  CAS  PubMed  Google Scholar 

  • Anway MD, Cupp AS, Uzumcu M et al (2005) Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308:1466–1469

    Article  CAS  PubMed  Google Scholar 

  • Barkley RA (2001) The executive functions and self-regulation: an evolutionary neuropsychological perspective. Neuropsychol Rev 11:1–29

    Article  CAS  PubMed  Google Scholar 

  • Bassett SA, Barnett MP (2014) The role of dietary histone deacetylases (HDACs) inhibitors in health and disease. Forum Nutr 6:4273–4301

    Google Scholar 

  • Bi W, Sapir T, Shchelochkov OA et al (2009) Increased LIS1 expression affects human and mouse brain development. Nat Genet 41:168–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breitling LP, Yang R, Korn B et al (2011) Tobacco-smoking-related differential DNA methylation: 27K discovery and replication. Am J Hum Genet 88:450–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown TT, Jernigan TL (2012) Brain development during the preschool years. Neuropsychol Rev 22:313–333

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang L, Wang Y, Ji H et al (2014) Elevation of peripheral BDNF promoter methylation links to the risk of Alzheimer’s disease. PLoS One 9:e110773

    Article  PubMed  PubMed Central  Google Scholar 

  • Crawford MA, Broadhurst CL (2012) The role of docosahexaenoic and the marine food web as determinants of evolution and hominid brain development: the challenges for human sustainability. Nutr Health 21:17–39

    Article  PubMed  Google Scholar 

  • Devescovi R, Monasta L, Mancini A et al (2016) Early diagnosis and early start Denver Model intervention in autism spectrum disorders delivered in an Italian public health system service. Neuropsychiatr Dis Treat 12:1379–1384

    Article  PubMed  PubMed Central  Google Scholar 

  • Franklin TB, Russig H, Weiss IC et al (2010) Epigenetic transmission of the impact of early stress across generations. Biol Psychiatry 68:408–415

    Article  PubMed  Google Scholar 

  • Fuchikami M, Morinobu S, Segawa M et al (2011) DNA methylation profiles of the brain-derived neurotrophic factor (BDNF) gene as a potent diagnostic biomarker in major depression. PLoS One 6:e23881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gluckman PD, Seng CY, Fukuoka H et al (2007) Low birthweight and subsequent obesity in Japan. Lancet 369:1081–1082

    Article  PubMed  Google Scholar 

  • Guidotti A, Auta J, Davis JM et al (2014) Toward the identification of peripheral epigenetic biomarkers of schizophrenia. J Neurogenet 28:41–52

    Article  CAS  PubMed  Google Scholar 

  • Hasan A, Mitchell A, Schneider A et al (2013) Epigenetic dysregulation in schizophrenia: molecular and clinical aspects of histone deacetylase inhibitors. Eur Arch Psychiatry Clin Neurosci 263:273–284

    Article  PubMed  Google Scholar 

  • Heijmans BT, Tobi EW, Stein AD et al (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A 105:17046–17049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Höybye C, Thorén M, Böhm B (2005) Cognitive, emotional, physical and social effects of growth hormone treatment in adults with Prader-Willi syndrome. J Intellect Disabil Res 49:245–252

    Article  PubMed  Google Scholar 

  • Imura H (2013) Life course health care and preemptive approach to non-communicable diseases. Proc Jpn Acad Ser B Phys Biol Sci 89:462–473

    Article  PubMed  PubMed Central  Google Scholar 

  • Inamochi Y, Dey A, Nishiyama A et al (2016) Transcription elongation factor Brd4-P-TEFb accelerates intestinal differentiation-associated SLC2A5 gene expression. Biochem Biophys Rep 7:150–156

    Google Scholar 

  • Inoue K, Kanai M, Tanabe Y et al (2001) Prenatal interphase FISH diagnosis of PLP1 duplication associated with Pelizaeus-Merzbacher disease. Prenat Diagn 21:1133–1136

    Article  CAS  PubMed  Google Scholar 

  • Ivorra C, Fraga MF, Bayón GF, Redon J, Lurbe E et al (2015) EDNA methylation patterns in newborns exposed to tobacco in utero. J Transl Med 13:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Januar V, Ancelin ML, Ritchie K et al (2015) BDNF promoter methylation and genetic variation in late-life depression. Transl Psychiatry 5:e619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katsuki H, Okuda S (1995) Arachidonic acid as a neurotoxic and neurotrophic substance. Prog Neurobiol 46:607–636

    Article  CAS  PubMed  Google Scholar 

  • Kleefstra T, Kramer JM, Neveling K et al (2012) Disruption of an EHMT1-associated chromatin-modification module causes intellectual disability. Am J Hum Genet 91:73–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koletzko B, Carlson SE, van Goudoever JB (2015) Should infant formula provide both omega-3 DHA and omega-6 arachidonic acid? Ann Nutr Metab 66:137–138

    Article  CAS  PubMed  Google Scholar 

  • Kreppner JM, Rutter M, Beckett C et al (2007) Normality and impairment following profound early institutional deprivation: a longitudinal follow-up into early adolescence. Dev Psychol 43:931–946

    Article  PubMed  Google Scholar 

  • Kruman II, Culmsee C, Chan SL et al (2000) Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity. J Neurosci 20:6920–6926

    CAS  PubMed  Google Scholar 

  • Kubota T, Das S, Christian SL et al (1997) Methylation-specific PCR simplifies imprinting analysis. Nat Genet 16:16–17

    Article  CAS  PubMed  Google Scholar 

  • Kubota T, Wakui K, Nakamura T et al (2002) Proportion of the cells with functional X disomy is associated with the severity of mental retardation in mosaic ring X turner syndrome females. Cytogenet Genome Res 99:276–284

    Article  CAS  PubMed  Google Scholar 

  • Kundakovic M, Gudsnuk K, Herbstman JB et al (2015) DNA methylation of BDNF as a biomarker of early-life adversity. Proc Natl Acad Sci U S A 112:6807–6813

    Article  CAS  PubMed  Google Scholar 

  • Li W, Liu H, Yu M et al (2015) Folic acid alters methylation profile of JAK-STAT and long-term depression signaling pathways in Alzheimer’s disease models. Mol Neurobiol. doi:10.1007/s12035-015-9556-9

  • Lillycrop KA, Phillips ES, Jackson AA et al (2005) Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr 135:1382–1386

    CAS  PubMed  Google Scholar 

  • Lillycrop KA, Phillips ES, Torrens C et al (2008) Feeding pregnant rats a protein-restricted diet persistently alters the methylation of specific cytosines in the hepatic PPAR alpha promoter of the offspring. Br J Nutr 100:278–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lumey LH (1992) Decreased birthweights in infants after maternal in utero exposure to the Dutch famine of 1944–1945. Paediatr Perinat Epidemiol 6:240–253

    Article  CAS  PubMed  Google Scholar 

  • Magiati I, Charman T, Howlin P (2007) A two-year prospective follow-up study of community-based early intensive behavioural intervention and specialist nursery provision for children with autism spectrum disorders. J Child Psychol Psychiatry 48:803–812

    Article  PubMed  Google Scholar 

  • Manikkam M, Tracey R, Guerrero-Bosagna C et al (2013) Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. PLoS One 8:e55387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGowan PO, Sasaki A, D'Alessio AC et al (2009) Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci 12:342–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller JL, Lynn CH, Shuster J et al (2013) A reduced-energy intake, well-balanced diet improves weight control in children with Prader-Willi syndrome. J Hum Nutr Diet 26:2–9

    Article  CAS  PubMed  Google Scholar 

  • Miyake K, Hirasawa T, Soutome M et al (2011) The protocadherins, PCDHB1 and PCDH7, are regulated by MeCP2 in neuronal cells and brain tissues: implication for pathogenesis of Rett syndrome. BMC Neurosci 12:81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murgatroyd C, Patchev AV, Wu Y et al (2009) Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat Neurosci 12:1559–1566

    Article  CAS  PubMed  Google Scholar 

  • Myers SE, Whitman BY, Carrel AL et al (2007) Two years of growth hormone therapy in young children with Prader-Willi syndrome: physical and neurodevelopmental benefits. Am J Med Genet A 143A:443–448

    Article  CAS  PubMed  Google Scholar 

  • Myzak MC, Tong P, Dashwood WM et al (2007) Sulforaphane retards the growth of human PC-3 xenografts and inhibits HDAC activity in human subjects. Exp Biol Med 232:227–234

    CAS  Google Scholar 

  • Obi T, Nishioka K, Ross OA et al (2008) Clinicopathologic study of a SNCA gene duplication patient with Parkinson disease and dementia. Neurology 70:238–241

    Article  CAS  PubMed  Google Scholar 

  • Painter RC, de Rooij SR, Bossuyt PM et al (2006) Early onset of coronary artery disease after prenatal exposure to the Dutch famine. Am J Clin Nutr 84:322–327

    CAS  PubMed  Google Scholar 

  • Priyadarsini RV, Vinothini G, Murugan RS et al (2011) The flavonoid quercetin modulates the hallmark capabilities of hamster buccal pouch tumors. Nutr Cancer 63:218–226

    Article  CAS  PubMed  Google Scholar 

  • Rajendran P, Ho E, Williams DE et al (2011a) Dietary phytochemicals, HDAC inhibition, and DNA damage/repair defects in cancer cells. Clin Epigenetics 3:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajendran P, Williams DE, Ho E et al (2011b) Metabolism as a key to histone deacetylase inhibition. Crit Rev Biochem Mol Biol 46:181–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reed P, Osborne LA, Corness M (2010) Effectiveness of special nursery provision for children with autism spectrum disorders. Autism 14:67–82

    Article  PubMed  Google Scholar 

  • Richmond RC, Simpkin AJ, Woodward G et al (2015) Prenatal exposure to maternal smoking and offspring DNA methylation across the lifecourse: findings from the Avon Longitudinal Study of Parents and Children (ALSPAC). Hum Mol Genet 24:2201–2217

    Article  CAS  PubMed  Google Scholar 

  • Schlumpf M, Eiholzer U, Gygax M et al (2006) A daily comprehensive muscle training programme increases lean mass and spontaneous activity in children with Prader-Willi syndrome after 6 months. J Pediatr Endocrinol Metab 19:65–74

    Article  PubMed  Google Scholar 

  • Schmauss C (2015) An HDAC-dependent epigenetic mechanism that enhances the efficacy of the antidepressant drug fluoxetine. Sci Report 5:8171

    Article  CAS  Google Scholar 

  • Shenker NS, Polidoro S, van Veldhoven K et al (2013) Epigenome-wide association study in the European Prospective Investigation into Cancer and Nutrition (EPIC-Turin) identifies novel genetic loci associated with smoking. Hum Mol Genet 22:843–851

    Article  CAS  PubMed  Google Scholar 

  • Shirohzu H, Kubota T, Kumazawa A et al (2002) Three novel DNMT3B mutations in Japanese patients with ICF syndrome. Am J Med Genet 112:31–37

    Article  PubMed  Google Scholar 

  • Simons E, To T, Moineddin R et al (2014) Maternal second-hand smoke exposure in pregnancy is associated with childhood asthma development. J Allergy Clin Immunol Pract 2:201–207

    Article  PubMed  Google Scholar 

  • St Clair D, Xu M, Wang P et al (2005) Rates of adult schizophrenia following prenatal exposure to the Chinese famine of 1959–1961. JAMA 294:557–562

    Article  CAS  PubMed  Google Scholar 

  • Takizawa T, Nakashima K, Namihira M et al (2001) DNA methylation is a critical cell-intrinsic determinant of astrocyte differentiation in the fetal brain. Dev Cell 1:749–758

    Article  CAS  PubMed  Google Scholar 

  • Tobi EW, Lumey LH, Talens RP et al (2009) DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet 18:4046–4053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsankova NM, Berton O, Renthal W et al (2006) Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 9:519–525

    Article  CAS  PubMed  Google Scholar 

  • Tyrka AR, Wyche MC, Kelly MM et al (2009) Childhood maltreatment and adult personality disorder symptoms: influence of maltreatment type. Psychiatry Res 165:281–287

    Article  PubMed  PubMed Central  Google Scholar 

  • Venturelli S, Berger A, Bocker A et al (2013) Resveratrol as a pan-HDAC inhibitor alters the acetylation status of histone proteins in human-derived hepatoblastoma cells. PLoS One 8:e73097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang ZJ, Liang CL, Li GM et al (2006) Neuroprotective effects of arachidonic acid against oxidative stress on rat hippocampal slices. Chem Biol Interact 163:207–217

    Article  CAS  PubMed  Google Scholar 

  • Weaver IC, Cervoni N, Champagne FA et al (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7:847–854

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Yang CR, Wei YP, Zhao ZA, Hou Y, Schatten H et al (2014) Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals. Proc Natl Acad Sci U S A 111:1873–1878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams JH, Errington ML, Lynch MA et al (1989) Arachidonic acid induces a long term activity-dependent enhancement of synaptic transmission in the hippocampus. Nature 341:739–772

    Article  CAS  PubMed  Google Scholar 

  • Tomoko Andoh-Noda, Wado Akamatsu, Kunio Miyake, Takuya Matsumoto, Ryo Yamaguchi, Tsukasa Sanosaka, Yohei Okada, Tetsuro Kobayashi, Manabu Ohyama, Kinichi Nakashima, Hiroshi Kurosawa, Takeo Kubota, Hideyuki Okano, (2015) Differentiation of multipotent neural stem cells derived from Rett syndrome patients is biased toward the astrocytic lineage. Molecular Brain 8(1):31

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeo Kubota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Kubota, T., Mochizuki, K. (2017). Epigenetic Effects of Nutrients Involved in Neurodevelopmental and Mental Disorders. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-31143-2_10-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31143-2_10-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31143-2

  • Online ISBN: 978-3-319-31143-2

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics