Monogenic and Polygenic Contributions to Hypertension

  • Julie R. Ingelfinger
Reference work entry


This chapter provides an overview of the genetics of hypertension, reviewing what is known about rare mendelian forms of hypertension, which can be explained by mutations in single genes, as well as the genetics of primary hypertension. Different approaches that allow discovery of new aspects of the genetics of primary hypertension such as candidate gene approaches, linkage studies, and genome-wide association studies are discussed. It is hoped that this chapter will provide a concise primer for reading the literature in the area of genetics and hypertension. The chapter also provides guidance on patient evaluation and approach.


Monogenic Polygenic Familial hypertension Mendelian Low-renin hypertension 


  1. Ackrell BA (2000) Progress in understanding structure–function relationships in respiratory chain complex II. FEBS Lett 466:1–5PubMedGoogle Scholar
  2. Adeyemo A, Gerry N, Chen G, Herbert A, Doumatey A, Huang H (2009) A genome-wide association study of hypertension and blood pressure in African Americans. PLoS Genet 5:e1000564PubMedPubMedCentralGoogle Scholar
  3. Agarwal AK, Garg A (2002) A novel heterozygous mutation in peroxisome proliferator-activated receptor-gamma gene in a patient with familial partial lipodystrophy. J Clin Endocrinol Metab 87:408–411PubMedGoogle Scholar
  4. Aguiar RC, Cox G, Pomeroy SL, Dahia PL (2001) Analysis of the SDHD gene, the susceptibility gene for familial paraganglioma syndrome (PGL1), in pheochromocytomas. J Clin Endocrinol Metab 86:2890–2894PubMedGoogle Scholar
  5. Bähring S, Schuster H, Wienker TF, Haller H, Toka H, Toka O et al. (1996) Construction of a physical map and additional phenotyping in autosomal-dominant hypertension and brachydactyly, which maps to chromosome 12. (abstract). Am J Hum Genet 59(Suppl):A55 onlyGoogle Scholar
  6. Bähring S, Kann M, Neuenfeld Y, Gong M, Chitayat D, Toka HR et al (2008) Inversion region for hypertension and brachydactyly on chromosome 12p features multiple splicing and noncoding RNA. Hypertension 51:426–431PubMedGoogle Scholar
  7. Barroso I, Gurnell M, Crowley VE et al (1999) Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 402:880–883PubMedGoogle Scholar
  8. Baysal BE, Ferrell RE, Willett-Brozick JE et al (2000) Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287:848–851PubMedGoogle Scholar
  9. Biebink GS, Gotlin RW, Biglieri EG, Katz FH (1973) A kindred with familial glucocorticoid-suppressible aldosteronism. J Clin Endocrinol Metab 36:715Google Scholar
  10. Biglieri EG, Herron MA, Brust N (1966) 17-Hydroxylation deficiency. J Clin Invest 45:1946PubMedPubMedCentralGoogle Scholar
  11. Bilginturan N, Zileli S, Karacadag S, Pirnar T (1973) Hereditary brachydactyly associated with hypertension. J Med Genet 10:253–259PubMedPubMedCentralGoogle Scholar
  12. Binder A (2007) A review of the genetics of essential hypertension. Curr Opin Cardiol 22:176–184PubMedGoogle Scholar
  13. Boda H, Uchida H, Takaiso N, Ouchi Y, Fujita N, Kuno A, Hata T, Nagatani A, FunamotoY MM, Yoshikawa T, Kurahashi H, Inagaki H (2016) A PDE3A mutation in familial hypertension and brachydactyly syndrome. J Hum Genet 61(8):701–703PubMedGoogle Scholar
  14. Bogardus C, Baier L, Permana P, Prochazka M, Wolford J, Hanson R (2002) Identification of susceptibility genes for complex metabolic diseases. Ann N Y Acad Sci 967:1–6PubMedGoogle Scholar
  15. Botero-Velez M, Curtis JJ, Warnock DG (1994) Brief report: Liddle’s syndrome revisited – a disorder of sodium reabsorption in the distal tubule. N Engl J Med 330:178–181PubMedGoogle Scholar
  16. Boyden LM, Choi M, Choate KA, Nelson-Williams CJ, Farhi A, Toka HR, Tikhonova IR, Bjornson R, Mane SM, Colussi G, Lebel M, Gordon RD, Semmekrot BA, Poujol A, Valimaki MJ, De Ferrari ME, Sanjad SA, Gutkin M, Karet FE, Tucci JR, Stockigt JR, Keppler-Noreuil KM, Porter CC, Anand SK, Whiteford ML, Davis ID, Dewar SB, Bettinelli A, Fadrowski JJ, Belsha CW, Hunley TE, Nelson RD, Trachtman H, Cole TR, Pinsk M, Bockenhauer D, Shenoy M, Vaidyanathan P, Foreman JW, Rasoulpour M, Thameem F, Al-Shahrouri HZ, Radhakrishnan J, Gharavi AG, Goilav B, Lifton RP (2012) Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. Nature 482:98–102PubMedPubMedCentralGoogle Scholar
  17. Braun MC, Doris PA (2012) Mendelian and trans-generational inheritance in hypertensive renal disease. Ann Med 44(Suppl 1):S65–S73PubMedPubMedCentralGoogle Scholar
  18. Cabrera CP, Ng FL, Warren HR, Barnes MR, Munroe PB, Caulfield MJ (2015) Exploring hypertension genome-wide association studies findings and impact on pathophysiology, pathways and pharmacogenetics. Wiley Interdiscip Rev Syst Biol Med 7(2):73–90PubMedGoogle Scholar
  19. Capecchi MR (1989) Altering the genome by homologous recombination. Science 244:1288–1292PubMedGoogle Scholar
  20. Caulfield M, Munroe P, Pembroke J, Samani N, Dominiczak A, Brown M et al (2003) Genome-wide mapping of human loci for essential hypertension. Lancet 361:2118–2123PubMedGoogle Scholar
  21. Cerame BI, New MI (2000) Hormonal hypertension in children: 11β-hydroxylase deficiency and apparent mineralocorticoid excess. J Pediatr Endocrinol 13:1537–1547Google Scholar
  22. Cho YS, Go MJ, Kim YJ, Heo JY, Oh JH, Ban HJ et al (2009) A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet 41:527–534PubMedGoogle Scholar
  23. Choi M, Scholl UI, Bjorklund P et al (2011) K1 channel mutations in adrenal aldosterone producing adenomas and hereditary hypertension. Science 331:768–772PubMedPubMedCentralGoogle Scholar
  24. Coeli FB, Ferraz LF, Lemos-Marini SH, Rigatto SZ, Belangero VM, de Mello MP (2008) Apparent mineralocorticoid excess syndrome in a Brazilian boy caused by the homozygous missense mutation p.R186C in the HSD11B2 gene. Arq Bras Endocrinol Metabol 52:1277–1281PubMedGoogle Scholar
  25. Cooper-DeHoff RM, Johnson JA (2016) Hypertension pharmacogenomics: in search of personalized treatment approaches. Nat Rev Nephrol 12(2):110–122PubMedGoogle Scholar
  26. Cowley AW, Nadeau JH, Baccarelli A, Berecek K, Fornage M, Gibbons GH et al (2012) Report of the NHLBI working group on epigenetics and hypertension. Hypertension 59:899–905PubMedGoogle Scholar
  27. Curnow KM, Slutker L, Vitek J et al (1993) Mutations in the CYP11B1 gene causing congenital adrenal hyperplasia and hypertension cluster in exons 6, 7 and 8. Proc Natl Acad Sci U S A 90:4552–4556PubMedPubMedCentralGoogle Scholar
  28. Cvetkovic B, Sigmund CD (2000) Understanding hypertension through genetic manipulation in mice. Kidney Int 57:863–874PubMedGoogle Scholar
  29. Delles C, Padmanabhan S (2012) Genetics and hypertension: is it time to change my practice. Can J Cardiol 28:296–304PubMedGoogle Scholar
  30. Delles C, McBride MW, Graham D, Padmanabhan S, Dominiczak AF (2010) Genetics of hypertension: from experimental animals to humans. Biochim Biophys Acta 1802(12):1299–1308PubMedPubMedCentralGoogle Scholar
  31. Dluhy RG (2002a) Screening for genetic causes of hypertension. Curr Hypertens Rep 4:439–444PubMedGoogle Scholar
  32. Dluhy RG (2002b) Pheochromocytoma: the death of an axiom. N Engl J Med 346:1486–1488PubMedGoogle Scholar
  33. Dluhy RG, Anderson B, Harlin B, Ingelfinger J, Lifton R (2001) Glucocorticoid-remediable aldosteronism is associated with severe hypertension in early childhood. J Pediatr 138:715–720PubMedGoogle Scholar
  34. Doris PA (2002) Hypertension genetics, SNPs, and the common disease: common variant hypothesis. Hypertension 39(Part 2):323–331PubMedGoogle Scholar
  35. Ehret GB, Morrison AC, O’Connor AA, Grove ML, Baird L, Schwander K et al (2008) Replication of the Wellcome Trust genome-wide association study of essential hypertension: the Family Blood Pressure Program. Eur J Hum Genet 16:1507–1511PubMedPubMedCentralGoogle Scholar
  36. El Shamieh S, Visvikis-Siest S (2012) Genetic biomarkers of hypertension and future challenges integrating epigenomics. Clin Chim Acta 414:259–265PubMedGoogle Scholar
  37. Eng C, Crossey PA, Milligan LM et al (1995) Mutations in the RET proto-oncogene and the von Hippel–Lindau disease tumour suppressor gene in sporadic and syndromic phaeochromocytomas. J Med Genet 32:934–937PubMedPubMedCentralGoogle Scholar
  38. Erickson D, Kudva YC, Ebersold MJ et al (2001) Benign paragangliomas: clinical presentation and treatment outcomes in 236 patients. J Clin Endocrinol Metab 86:5210–5216PubMedGoogle Scholar
  39. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156PubMedGoogle Scholar
  40. Fallo F, Pilon C, Williams TA, Sonino N, Morra Di Cella S, Veglio F (2004) Coexistence of different phenotypes in a family with glucocorticoid-remediable aldosteronism. J Hum Hypertens 18:47–51PubMedGoogle Scholar
  41. Geller DS, Farhi A, Pinkerton N, Fradley M, Moritz M, Spitzer A, Meinke G, Tsai FT, Sigler PB, Lifton RP (2000) Activating mineralocorticoid receptor mutation in hypertension exacerbated by pregnancy. Science 289:119–123PubMedGoogle Scholar
  42. Geller DS, Zhang J, Wisgerhof MV et al (2008) A novel form of human mendelian hypertension featuring nonglucocorticoid-remediable aldosteronism. J Clin Endocrinol Metab 93:3117–3123PubMedPubMedCentralGoogle Scholar
  43. Genovese G, Friedman DJ, Ross MD, Lecordier L, Uzureau P, Freedman BI et al (2010) Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329:841–845PubMedPubMedCentralGoogle Scholar
  44. Gimm O, Armanios M, Dziema H, Neumann HPH, Eng C (2000) Somatic and occult germ-line mutations in SDHD, a mitochondrial complex II gene, in nonfamilial pheochromocytoma. Cancer Res 60:6822–6825PubMedGoogle Scholar
  45. Glover M, Ware JS, Henry A, Wolley M, Walsh R, Wain LV, Xu S, Van’t Hoff WG, Tobin MD, Hall IP, Cook S, Gordon RD, Stowasser M, O’Shaughnessy KM (2014) Detection of mutations in KLHL3 and CUL3 in families with FHHt (familial hyperkalaemic hypertension or Gordon’s syndrome). Clin Sci 126:721–726PubMedPubMedCentralGoogle Scholar
  46. Gomez-Sanchez CE, Montgomery M, Ganguly A, Holland OB, Gomez-Sanchez EP, Grim CE et al (1984) Elevated urinary excretion of 18-oxocortisol in glucocorticoid-suppressible aldosteronism. J Clin Endocrinol Metab 59:1022–1024PubMedGoogle Scholar
  47. Gong M, Zhang H, Schulz H, Lee A-A, Sun K, Bahring S et al (2003) Genome-wide linkage reveals a locus for human essential (primary) hypertension on chromosome 12p. Hum Mol Genet 12:1273–1277PubMedGoogle Scholar
  48. Gordon JW, Ruddle FH (1983) Gene transfers into mouse embryos: production of transgenic mice by pronuclear integration. Methods Enzymol 101:411–433PubMedGoogle Scholar
  49. Grim CE, Weinberger MH (1980) Familial dexamethasone-suppressible hyperaldosteronism. Pediatrics 65:597PubMedGoogle Scholar
  50. Hamet P, Seda O (2007) The current status of genome-wide scanning for hypertension. Curr Opin Cardiol 22:292–297PubMedGoogle Scholar
  51. Hansson JH, Nelson-Williams C, Suzuki H, Schild L, Shimkets R, Lu Y et al (1995) Hypertension caused by a truncated epithelial sodium channel gamma subunit: genetic heterogeneity of Liddle syndrome. Nat Genet 11:76–82PubMedGoogle Scholar
  52. Harrap SB (1986) Genetic analysis of blood pressure and sodium balance in the spontaneously hypertensive rat. Hypertension 8:572–582PubMedGoogle Scholar
  53. Harrap SB (2003) Where are all the blood pressure genes? Lancet 361:2149–2151PubMedGoogle Scholar
  54. Hegele RA, Cao H, Frankowski C, Mathews ST, Leff T (2002) PPARG F388L, a transactivation-deficient mutant, in familial partial lipodystrophy. Diabetes 51:3586–3590PubMedGoogle Scholar
  55. Helmberg A, Ausserer B, Kofler R (1992) Frameshift by insertion of 2 base pairs in codon 394 of CYP11B1 causes congenital adrenal hyperplasia due to steroid 11beta-hydroxylase deficiency. J Clin Endocrinol Metab 75:1278–1281PubMedGoogle Scholar
  56. Hilbert P, Lindpaintner K, Beckmann JS, Serikawa T, Soubrier F, Dubay C, Cartwright P, De Gouyon B, Julier C, Takahasi S et al (1991) Chromosomal mapping of two genetic loci associated with blood-pressure regulation in hereditary hypertensive rats. Nature 353:521–529PubMedGoogle Scholar
  57. Hiltunen TP, Kontula K (2012) Clinical and molecular approaches to individualize antihypertensive drug therapy. Ann Med 44(Suppl 1):S23–S29PubMedGoogle Scholar
  58. Hong KW, Jin HS, Cho YS, Lee JY, Lee JE, Cho NH et al (2009) Replication of the Wellcome Trust genome-wide association study on essential hypertension in a Korean population. Hypertens Res 32:570–574PubMedGoogle Scholar
  59. International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921Google Scholar
  60. International SNP Map Working Group (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409:928–933Google Scholar
  61. Izawa H, Yamada Y, Okada T, Tanaka M, Hirayama H, Yokota M (2003) Prediction of genetic risk for hypertension. Hypertension 41:1035–1040PubMedGoogle Scholar
  62. Jacob HJ, Lindpaintner K, Lincoln SE, Kusumi K, Bunker RK, Mao YP, Ganten D, Dzau VJ, Lander ES (1991) Genetic mapping of a gene causing hypertension in the stroke-prone spontaneously hypertensive rat. Cell 67:213–224PubMedGoogle Scholar
  63. Jeske YW, So A, Kelemen L, Sukor N, Willys C, Bulmer B et al (2008) Examination of chromosome 7p22 candidate genes RBaK, PMS2 and GNA12 in familial hyperaldosteronism type II. Clin Exp Pharmacol Physiol 35:380–385PubMedGoogle Scholar
  64. Kamide K, Yang J, Kokubo Y, Takiuchi S, Miwa Y, Horio T, Tanaka C, Banno M, Nagura J, Okayama A, Tomoike H, Kawano Y, Miyata T (2005) A novel missense mutation, F826Y, in the mineralocorticoid receptor gene in Japanese hypertensives: its implications for clinical phenotypes. Hypertens Res 28:703–709PubMedGoogle Scholar
  65. Kamrath C, Maser-Gluth C, Haag C, Schulze E (2011) Diagnosis of glucocorticoid-remediable aldosteronism in hypertensive children. Horm Res Paediatr 76(2):93–98PubMedGoogle Scholar
  66. Kopp JB, Smith MW, Nelson GW, Johnson RC, Freedman BI, Bowden DW et al (2008) MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis. Nat Genet 40:1175–1184PubMedPubMedCentralGoogle Scholar
  67. Krone N, Arlt W (2009) Genetics of congenital adrenal hyperplasia. Best Pract Res Clin Endocrinol Metab 23:181–192PubMedGoogle Scholar
  68. Krushkal J, Ferrell R, Mockrin SC, Turner ST, Sing CF, Boerwinkle E (1999) Genome-wide linkage analyses of systolic blood pressure using highly discordant siblings. Circulation 99:1407–1410PubMedGoogle Scholar
  69. Lafferty AR, Torpy DJ, Stowasser M, Taymans SE, Lin JP, Huggard P et al (2000) A novel genetic locus for low renin hypertension: familial hyperaldosteronism type II maps to chromosome 7 (7p22). Med Genet 37:831–835Google Scholar
  70. Lalouel J-M, Rohrwasser A, Terreros D, Morgan T, Ward K (2001) Angiotensinogen in essential hypertension: from genetics to nephrology. J Am Soc Nephrol 12:606–615PubMedGoogle Scholar
  71. Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11:241–247PubMedGoogle Scholar
  72. Levy D, DeStefano AL, Larson MG, O’Donnell CJ, Lifton RP, Gavras H et al (2000) Evidence for a gene influencing blood pressure on chromosome 17: genome scan linkage results for longitudinal blood pressure phenotypes in subjects from the Framingham Heart Study. Hypertension 36:477–483PubMedGoogle Scholar
  73. Levy D, Larson MG, Benjamin EJ, Newton-Cheh C, Wang TJ, Hwang SJ et al (2007) Framingham Heart Study 100 k project: genome-wide associations for blood pressure and arterial stiffness. BMC Med Genet 8(Suppl 1):S3PubMedPubMedCentralGoogle Scholar
  74. Levy D, Ehret GB, Rice K, Verwoert GC, Launer LJ, Dehghan A (2009) Genome-wide association of blood pressure and hypertension. Nat Genet 41:677–687PubMedPubMedCentralGoogle Scholar
  75. Li A, Li KXZ, Marui S, Krozowski ZS, Batista MC, Whorwood C, Arnhold IJP, Shackleton CHL, Mendonca BB, Stewart PM (1997) Apparent mineralocorticoid excess in a Brazilian kindred: hypertension in the heterozygote state. J Hypertens 15:1397–1402PubMedGoogle Scholar
  76. Liddle GW, Bledsoe T, Coppage WS (1963) A familial renal disorder simulating primary aldosteronism with negligible aldosterone secretion. Trans Assoc Am Phys 76:199–213Google Scholar
  77. Lifton RP, Dluhy RG, Powers M, Rich GM, Cook S, Ulick S et al (1992a) Chimeric 11β-hydroxylase/aldosterone synthase gene causes GRA and human hypertension. Nature 355:262–265PubMedGoogle Scholar
  78. Lifton RP, Dluhy RG, Powers M, Rich GM, Gutkin M, Fallo F et al (1992b) Hereditary hypertension caused by chimeric gene duplications and ectopic expression of aldosterone synthetase. Nat Genet 2:66–74PubMedGoogle Scholar
  79. Lifton RP, Gharavi AG, Geller DS (2001) Molecular mechanisms of human hypertension. Cell 104:545–556PubMedGoogle Scholar
  80. Luft FC (2017) What have we learned from the genetics of hypertension? Med Clin N Am 101(1):195–206PubMedGoogle Scholar
  81. Maass PG, Aydin A, Luft C, Schächterle C, Weise A, Stricker S, Lindschau C, Vaegler M, Qadri F, Toka HR, Schulz H, Krawitz PM, Parkhomchuk D, Hecht J, Hollfinger I, Wefeld-Neuenfeld Y, Bartels-Klein E, Mühl A, Kann M, Schuster H, Chitayat D, Bialer MG, Wienker TF, Ott J, Rittscher K, Liehr T, Jordan J, Plessis G, Tank J, Mai K, Naraghi R, Hodge R, Hopp M, Hattenbach LO, Busjahn A, Rauch A, Vandeput F, Gong M, Rüschendorf F, Hübner N, Haller H, Mundlos S, Bilginturan N, Movsesian MA, Klussmann E, Toka O, Bähring S (2015) PDE3A mutations cause autosomal dominant hypertension with brachydactyly. Nat Genet 47(6):647–653PubMedGoogle Scholar
  82. Mansfield TA, Simon DB, Farfel Z, Bia M, Tucci JR, Lebel M, Gutkin M, Vialettes B, Christofilis MA, Kauppinen-Makelin R, Mayan H, Risch N, Lifton RP (1997) Multilocus linkage of familial hyperkalaemia and hypertension, pseudohypoaldosteronism type II, to chromosomes 1q31–42 and 17p11–q21. Nat Genet 16:202–205PubMedGoogle Scholar
  83. Mantero F, Scaroni C (1984) Enzymatic defects of steroidogenesis: 17-alpha-hydroxylase deficiency. Pediatr Adol Endocrinol 13:83–94Google Scholar
  84. Martinez-Aguayo A, Fardella C (2009) Genetics of hypertensive syndrome. Horm Res 71:253–259PubMedGoogle Scholar
  85. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME et al (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399:271–275PubMedGoogle Scholar
  86. Meirhaeghe A, Amouyel P (2004) Impact of genetic variation of PPARgamma in humans. Mol Genet Metab 83:93–102PubMedGoogle Scholar
  87. Melcescu E, Phillips J, Moll G, Subauste JS, Koch CA (2012) Syndromes of mineralocorticoid excess. Horm Metab Res 44:867–878PubMedGoogle Scholar
  88. Mercado AB, Wilson RC, Chung KC, Wei J-Q, New MI (1995) Prenatal treatment and diagnosis of congenital adrenal hyperplasia owing to steroid 21-hydroxylase deficiency. J Clin Endocrinol Metab 80:2014–2020PubMedGoogle Scholar
  89. Mimouni M, Kaufman H, Roitman A, Morag C, Sadan N (1985) Hypertension in a neonate with 11 beta-hydroxylase deficiency. Eur J Pediatr 143:231–233PubMedGoogle Scholar
  90. Miura K, Yoshinaga K, Goto K et al (1968) A case of glucocorticoid-responsive hyperaldosteronism. J Clin Endocrinol Metab 28:1807PubMedGoogle Scholar
  91. Monticone S, Hattangady NG, Nishimoto K, Mantero F, Rubin B, Cicala MV et al (2012) Effect of KCNJ5 mutations on gene expression in aldosterone-producing adenomas and adrenocortical cells. J Clin Endocrinol Metab 97:E1567–E1572PubMedPubMedCentralGoogle Scholar
  92. Morris DJ, Latif SA, Brem AS (2014) An alternative explanation of hypertension associated with 17-a hydroxylase deficiency syndrome. Steroids 70:44–48Google Scholar
  93. Moudgil A, Rodich G, Jordan SC, Kamil ES (2000) Nephrocalcinosis and renal cysts associated with apparent mineralocorticoid excess syndrome. Pediatr Nephrol 15(1–2):60–62PubMedGoogle Scholar
  94. Nagai T, Nishimura G, Kato R, Hasegawa T, Ohashi H, Fukushima Y (1995) Del(12)(p11.21p12.2) associated with an asphyxiating thoracic dystrophy or chondroectodermal dysplasia-like syndrome. Am J Med Genet 55:16–18PubMedGoogle Scholar
  95. Neumann HPH, Berger DP, Sigmund G, Blum U, Schmidt D, Parmer RJ et al (1993) Pheochromocytomas, multiple endocrine neoplasia type 2, and von Hippel–Lindau disease. N Engl J Med 329:1531–1538PubMedGoogle Scholar
  96. Neumann HPH, Bausch B, McWhinney SR, Bender BU, Gimm O, Franke G et al (2002) Germ-line mutations in nonsyndromic pheochromocytoma. N Engl J Med 346:1459–1466PubMedGoogle Scholar
  97. New MI (1970) Male pseudohermaphroditism due to 17-alpha-hydroxylase deficiency. J Clin Invest 49:1930PubMedPubMedCentralGoogle Scholar
  98. New MI (2003) Inborn errors of adrenal steroidogenesis. Mol Cell Endocrinol 211(1–2):75–83PubMedGoogle Scholar
  99. New MI, Levine LS (1980) Hypertension of childhood with suppressed renin. Endocr Rev 1:421–430PubMedGoogle Scholar
  100. New MI, Peterson RE (1967) A new form of congenital adrenal hyperplasia. J Clin Endocrinol Metab 27:300PubMedGoogle Scholar
  101. New MI, Seaman MP (1970) Secretion rates of cortisol and aldosterone precursors in various forms of congenital adrenal hyperplasia. J Clin Endocrinol Metab 30:361PubMedGoogle Scholar
  102. New MI, Wilson RC (1999) Steroid disorders in children: congenital adrenal hyperplasia and apparent mineralocorticoid excess. Proc Natl Acad Sci U S A 96:12790–12797PubMedPubMedCentralGoogle Scholar
  103. New MI, Siegal EJ, Peterson RE (1973) Dexamethasone-suppressible hyperaldosteronism. J Clin Endocrinol Metab 37:93PubMedGoogle Scholar
  104. New MI, Levine LS, Biglieri EG, Pareira J, Ulick S (1977) Evidence for an unidentified ACTH-induced steroid hormone causing hypertension. J Clin Endocrinol Metab 44:924–933PubMedGoogle Scholar
  105. New MI, Oberfield SE, Carey RM, Greig F, Ulick S, Levine LS (1982) A genetic defect in cortisol metabolism as the basis for the syndrome of apparent mineralocorticoid excess. In: Mnatero F, Biglieri EG, Edwards CRW (eds) Endocrinology of hypertension, Serono Symposia, vol 50. Academic, New York, pp 85–101Google Scholar
  106. New MI, Crawford C, Virdis R (1995) Low renin hypertension in childhood, Chapter 53. In: Lifshitz F (ed) Pediatric endocrinology, 3rd edn. Marcel Dekker, New York, p 776Google Scholar
  107. New MI, Nimkarn S, Brandon DD, Cunningham-Rundles S, Wilson RC, Newfield RS, Vandermeulen J, Barron N, Russo C, Loriaux DL, O’Malley B (2001) Resistance to multiple steroids in two sisters. J Steroid Biochem Mol Biol 76:161–166PubMedGoogle Scholar
  108. Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L et al (2009) Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet 41:666–676PubMedPubMedCentralGoogle Scholar
  109. O’Shaughnessy KM (2015) Gordon syndrome: a continuing story. Pediatr Nephrol 30(11):1903–1908PubMedGoogle Scholar
  110. Oberfield SE, Levine LS, Stoner E et al (1981) Adrenal glomerulosa function in patients with dexamethasone-suppressible normokalemic hyperaldosteronism. J Clin Endocrinol Metab 53:158PubMedGoogle Scholar
  111. Padmanabhan S, Newton-Cheh C, Dominiczak AF (2012) Genetic basis of blood pressure and hypertension. Trends Genet 28:397–408PubMedGoogle Scholar
  112. Pan S, Naruse H, Nakayama T (2015) Progress and issues of the genome-wide association study for hypertension. Curr Med Chem 22(8):1016–1029PubMedGoogle Scholar
  113. Pankow JS, Rose KM, Oberman A, Hunt SC, Atwood LD, Djousse L et al (2000) Possible locus on chromosome 18q influencing postural systolic blood pressure changes. Hypertension 36:471–476PubMedGoogle Scholar
  114. Perola M, Kainulainen K, Pajukanta P, Terwillinger JD, Hiekkalinna T, Ellonen P et al (2000) Genome-wide scan of predisposing loci for increased diastolic blood pressure in Finnish siblings. J Hypertens 18:1579–1585PubMedGoogle Scholar
  115. Pinon GM, Fagart J, Souque A, Auzou G, Vandewalle A, Rafestin-Oblin ME (2004) Identification of steroid ligands able to inactivate the mineralocorticoid receptor harboring the S810L mutation responsible for a severe form of hypertension. Mol Cell Endocrinol 217:181–188PubMedGoogle Scholar
  116. Pizzolo F, Friso S, Morandini F, Antoniazzi F, Zaltron C, Udali S, Gandini A, Cavarzere P, Salvagno G, Giorgetti A, Speziali G, Choi SW, Olivieri O (2015) Apparent mineralocorticoid excess by a novel mutation and epigenetic modulation by HSD11B2 promoter methylation. J Clin Endocrinol Metab 100(9):E1234–E1241PubMedGoogle Scholar
  117. Province MA, Kardia SLR, Ranade K et al (2003) A meta-analysis of genome-wide linkage scans for hypertension: the National Heart Lung and Blood Institute Family Blood Pressure Program. Am J Hypertens 16:144–147PubMedGoogle Scholar
  118. Rafestin-Oblin ME, Souque A, Bocchi B, Pinon G, Fagart J, Vandewalle A (2003) The severe form of hypertension caused by the activating S810L mutation in the mineralocorticoid receptor is cortisone related. Endocrinology 144:528–533PubMedGoogle Scholar
  119. Rapp JP (2000) Genetic analysis of inherited hypertension in the rat. Physiol Rev 80:135–172PubMedGoogle Scholar
  120. Rice T, Rankinen T, Province MA, Chagnon YC, Perusse L, Borecki IB et al (2000) Genome-wide linkage analysis of systolic and diastolic blood pressure: the Quebec family study. Circulation 102:1956–1963PubMedGoogle Scholar
  121. Rosa S, Duff C, Meyer M, Lang-Muritano M, Balercia G, Boscaro M et al (2007) P450c17 deficiency: clinical and molecular characterization of six patients. J Clin Endocrinol Metab 92:1000–1007PubMedGoogle Scholar
  122. Rossier BC (1997) 1996 Homer Smith Award Lecture. Cum grano salis: the epithelial sodium channel and the control of blood pressure. J Am Soc Nephrol 8:980–992PubMedGoogle Scholar
  123. Saavedra JM (2009) Opportunities and limitations of genetic analysis of hypertensive rat strains. J Hypertens 27:1129–1133PubMedPubMedCentralGoogle Scholar
  124. Santoro M, Carlomagno F, Romano A, Bottaro DP, Dathan NA, Grieco M et al (1995) Activation of RET as a dominant transforming gene by germline mutations of MEN2A and MEN2B. Science 267:381–383PubMedGoogle Scholar
  125. Savage DB, Tan GD, Acerini CL, Jebb SA, Agostini M, Gurnell M et al (2003) Human metabolic syndrome resulting from dominant-negative mutations in the nuclear receptor peroxisome proliferator-activated receptor-gamma. Diabetes 52:910–917PubMedGoogle Scholar
  126. Scheffler IE (1998) Molecular genetics of succinate: quinone oxidoreductase in eukaryotes. Prog Nucleic Acid Res Mol Biol 60:267–315PubMedGoogle Scholar
  127. Scholl UI, Stolting G, Nelson-Williams C, Vichot AA, Choi M, Loring E, Prasad ML, Goh G, Carling T, Juhlin CC, Quack I, Rump LC et al (2015) Recurrent gain of function mutation in calcium channel CACNA1H causes early-onset hypertension with primary aldosteronism. elife 4:e06315PubMedPubMedCentralGoogle Scholar
  128. Schuster H, Wienker TF, Bahring S, Bilginturan N, Toka HR, Neitzel H et al (1996) Severe autosomal dominant hypertension and brachydactyly in a unique Turkish kindred maps to human chromosome 12. Nat Genet 13:98–100PubMedGoogle Scholar
  129. Shackleton CH (1993) Mass spectrometry in the diagnosis of steroid-related disorders and in hypertension research. J Steroid Biochem Mol Biol 45:127–140PubMedGoogle Scholar
  130. Sharma P, Fatibene J, Ferraro F, Jia H, Monteith S, Brown C et al (2000) A genome-wide search for susceptibility loci to human essential hypertension. Hypertension 35:1291–1296PubMedGoogle Scholar
  131. Shimkets RA, Warnock DG, Bositis CM, Nelson-Williams C, Hansson JH, Schambelan M et al (1994) Liddle’s syndrome: heritable human hypertension caused by mutations in the beta subunit of the epithelial sodium channel. Cell 79:407–414PubMedGoogle Scholar
  132. Simino J, Rao DC, Freedman BI (2012) Novel findings and future directions on the genetics of hypertension. Curr Opin Nephrol Hypertens 21(5):500–507PubMedGoogle Scholar
  133. Skinner CA, Rumsby G (1994) Steroid 11 beta-hydroxylase deficiency caused by a 5-base pair duplication in the CYP11B1 gene. Hum Mol Genet 3:377–378PubMedGoogle Scholar
  134. Sober S, Org E, Kepp K, Juhanson P, Eyheramendy S et al (2009) Targeting 160 candidate genes for blood pressure regulation with a genome-wide genotyping array. PLoS One 4(6):e6034PubMedPubMedCentralGoogle Scholar
  135. Stowasser M, Gordon RD, Tunny TJ, Klemm SA, Finn WL, Krek AL (1992) Familial hyperaldosteronism type II: five families with a new variety of primary aldosteronism. Clin Exp Pharmacol Physiol 19:319–322PubMedGoogle Scholar
  136. Stowasser M, Pimenta E, Gordon RD (2011) Familial or genetic primary aldosteronism and Gordon syndrome. Endocrinol Metab Clin N Am 40:343–368Google Scholar
  137. Sutherland DJA, Ruse JL, Laidlaw JC (1966) Hypertension, increased aldosterone secretion and low plasma renin activity relieved by dexamethasone. Can Med Assoc J 95:1109PubMedPubMedCentralGoogle Scholar
  138. Toka O, Tank J, Schacterle C, Aydin A, Maass PG, Elitok S, Bartels-Klein E, Hollfinger I, Lindschau C, Mai K, Boschmann M, Rahn G, Movsesian MA, Müller T, Doescher A, Gnoth S, Mühl A, Toka HR, Wefeld-Neuenfeld Y, Utz W, Töpper A, Jordan J, Schulz-Menger J, Klussmann E, Bähring S, Luft FC (2015) Clinical effects of phosphodiesterase 3a mutations in inherited hypertension with brachydactyly. Hypertension 66(4):800–808PubMedGoogle Scholar
  139. Torpy DJ, Gordon RD, Lin JP, Huggard PR, Taymans SE, Stowasser M et al (1998) Familial hyperaldosteronism type II: description of a large kindred and exclusion of the aldosterone synthase (CYP11B2) gene. J Clin Endocrinol Metab 83:3214–3218PubMedGoogle Scholar
  140. Ugrasbul F, Wiens T, Rubinstein P, New MI, Wilson RC (1999) Prevalence of mild apparent mineralocorticoid excess in Mennonites. J Clin Endocrinol Metab 84:4735–4738PubMedGoogle Scholar
  141. Ulick S, Chu MD (1982) Hypersecretion of a new cortico-steroid, 18-hydroxycortisol in two types of adrenocortical hypertension. Clin Exp Hypertens 4(9/10):1771–1777Google Scholar
  142. Ulick S, Chu MD, Land M (1983) Biosynthesis of 18-oxocortisol by aldosterone-producing adrenal tissue. J Biol Chem 258:5498–5502PubMedGoogle Scholar
  143. Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291:1304–1351PubMedGoogle Scholar
  144. Wang C, Chan TK, Yeung RT, Coghlan JP, Scoggins BA, Stockigt JR (1981) The effect of triamterene and sodium intake on renin, aldosterone, and erythrocyte sodium transport in Liddle’s syndrome. J Clin Endocrinol Metab 52:1027–1032PubMedGoogle Scholar
  145. Wang DG, Fan J-B, Siao C-J, Berno A, Young P, Sapolsky R et al (1998) Large-scale identification, mapping and genotyping of single-nucleotide polymorphisms in the human genome. Science 280:1077–1082PubMedGoogle Scholar
  146. Wei LK, Au A, Teh LK, Lye HS (2017) Recentadvances in the genetics of hypertension. Adv Exp Med Biol. 2017;956:561–581Google Scholar
  147. Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678Google Scholar
  148. White PC, Dupont J, New MI, Lieberman E, Hochberg Z, Rosler A (1991) A mutation in CYP11B1 [Arg448His] associated with steroid 22-beta-hydroxylase deficiency in Jews of Moroccan origin. J Clin Invest 87:1664–1667PubMedPubMedCentralGoogle Scholar
  149. Wilson H, Disse-Nicodeme S, Choate K, Ishikawa K, Nelson-Williams C, Desitter I, Gunel M, Milford DV, Lipkin GW, Achard J-M, Feely MP, Dussol B, Berland Y, Unwin RJ, Mayan H, Simon DB, Farfel Z, Jeunemaitre X, Lifton RP (2001) Human hypertension caused by mutations in WNK kinases. Science 293:1107–1111PubMedGoogle Scholar
  150. Wilson FH, Kahle KT, Sabath E, Lalioti MD, Rapson AK, Hoover RS, Hebert SC, Gamba G, Lifton RP (2003) Molecular pathogenesis of inherited hypertension with hyperkalemia: the Na-Cl cotransporter is inhibited by wildtype but not mutant WNK4. Proc Natl Acad Sci U S A 100:680–684PubMedPubMedCentralGoogle Scholar
  151. Wilson FH, Hariri A, Farhi A, Zhao H, Petersen KF, Toka HR et al (2004) A cluster of metabolic defects caused by mutation in a mitochondrial tRNA. Science 306:1190–1194PubMedPubMedCentralGoogle Scholar
  152. Xu X, Rogus JJ, Terwedow HA, Yang J, Wang Z, Chen C et al (1999) An extreme-sib-pair genome scan for genes regulating blood pressure. Am J Hum Genet 64:1694–1701PubMedPubMedCentralGoogle Scholar
  153. Yanase T, Simpson ER, Waterman MR (1991) 17-Alpha-hydroxylase/17,20-lyase deficiency: from clinical investigation to molecular definition. Endocr Rev 12:91–10PubMedGoogle Scholar
  154. Yang CL, Angell J, Mitchell R, Ellison DH (2003) WNK kinases regulate thiazide-sensitive Na-Cl cotransport. J Clin Invest 11:1039–1045Google Scholar
  155. Yang K-Q, Xiao Y, Tian T, Gao L-G, Zhou X-L (2014) Molecular genetics of Liddle’s syndrome. Clin Chim Acta 436:202–206PubMedGoogle Scholar
  156. Yiu VW, Dluhy RG, Lifton RP, Guay-Woodford LM (1997) Low peripheral plasma renin activity as a critical marker in pediatric hypertension. Pediatr Nephrol 11:343–346PubMedGoogle Scholar
  157. Zachmann M, Vollmin JA, New MI, Curtius C-C, Prader A (1971) Congenital adrenal hyperplasia due to deficiency of 11-hydroxylation of 17a-hydroxylated steroids. J Clin Endocrinol Metab 33:501PubMedGoogle Scholar
  158. Zennaro MC, Jeunmaitre X (2016) SFE/SFHTA/AFCE consensus on primary aldosteronism, part 5: genetic diagnosis of primary aldosteronism. Ann Endocrinol (Paris) 77(3):214–219Google Scholar
  159. Zhu X, Yen-Pei CC, Yan D, Weder A, Cooper R, Luke A et al (2003) Associations between hypertension and genes in the renin–angiotensin system. Hypertension 41:1027–1034PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Julie R. Ingelfinger
    • 1
  1. 1.Division of NephrologyMassGeneral for Children at Massachusetts General Hospital, Harvard Medical School, Department of PediatricsBostonUSA

Section editors and affiliations

  • Julie R. Ingelfinger
    • 1
  1. 1.Pediatric Nephrology UnitMassGeneral Hospital for Children at MGH, Harvard Medical SchoolBostonUSA

Personalised recommendations