Perinatal Programming of Arterial Pressure

  • Reetu R. Singh
  • Kate M. Denton
  • John F. BertramEmail author
Reference work entry


A suboptimal perinatal environment can adversely influence gamete, embryonic, fetal, and infant development, setting in motion a train of events that increases the risk of hypertension and cardiovascular disease throughout life. This chapter summarizes the evidence linking an adverse maternal environment to developmental plasticity, in which the fetus adapts to the prevailing environmental conditions, subsequently altering the adult phenotype. Early studies linked low birth weight to the programming of high blood pressure. However, it is now evident that altered fetal development can also occur independently of low birth weight. Thus, the health implications of the maternal environment are much greater than predicted by the proportion of babies suffering growth restriction. We discuss both the stimuli and mechanisms that drive the perinatal programming of arterial pressure. We will consider kidney structure and function as a primary determinant of arterial pressure, as well as vascular, cardiac, and neural adaptations. Finally, therapeutic options to prevent, limit, or reverse these adverse consequences of a challenging start to life are explored.


Maternal environment Maternal nutrition Glucocorticoids Developmental programming Low-birth weight Arterial pressure Kidney Nephron number Perinatal supplements 


  1. Abi Khalil C, Travert F, Fetita S, Rouzet F, Porcher R, Riveline JP, Hadjadj S, Larger E, Roussel R, Vexiau P, Le Guludec D, Gautier JF, Marre M (2010) Fetal exposure to maternal type 1 diabetes is associated with renal dysfunction at adult age. Diabetes 59(10):2631–2636PubMedGoogle Scholar
  2. Aceti A, Santhakumaran S, Logan KM, Philipps LH, Prior E, Gale C, Hyde MJ, Modi N (2012) The diabetic pregnancy and offspring blood pressure in childhood: a systematic review and meta-analysis. Diabetologia 55(11):3114–3127PubMedGoogle Scholar
  3. Alexander B (2003) Placental insufficiency leads to development of hypertension in growth-restricted offspring. Hypertension 41:460–467Google Scholar
  4. Alexander BT, Hendon AE, Ferril G, Dwyer TM (2005) Renal denervation abolishes hypertension in low-birth-weight offspring from pregnant rats with reduced uterine perfusion. Hypertension 45(4):754–758PubMedGoogle Scholar
  5. Almeida JR, Mandarim-de-Lacerda CA (2005) Maternal gestational protein-calorie restriction decreases the number of glomeruli and causes glomerular hypertrophy in adult hypertensive rats. Am J Obstet Gynecol 192(3):945–951PubMedGoogle Scholar
  6. Alwasel SH, Ashton N (2009) Prenatal programming of renal sodium handling in the rat. Clin Sci (Lond) 117(2):75–84Google Scholar
  7. Armitage JA, Lakasing L, Taylor PD, Balachandran AA, Jensen RI, Dekou V, Ashton N, Nyengaard JR, Poston L (2005) Developmental programming of aortic and renal structure in offspring of rats fed fat-rich diets in pregnancy. J Physiol 565(Pt 1):171–184PubMedPubMedCentralGoogle Scholar
  8. Bai SY, Briggs DI, Vickers MH (2012) Increased systolic blood pressure in rat offspring following a maternal low-protein diet is normalized by maternal dietary choline supplementation. J Dev Orig Health Dis 3(5):342–349PubMedGoogle Scholar
  9. Barker DJ, Osmond C (1986) Diet and coronary heart disease in England and Wales during and after the second world war. J Epidemiol Community Health 40(1):37–44PubMedPubMedCentralGoogle Scholar
  10. Barker DJ, Osmond C (1987) Death rates from stroke in England and Wales predicted from past maternal mortality. Br Med J (Clin Res Ed) 295(6590):83–6Google Scholar
  11. Barker DJ, Osmond C, Golding J, Kuh D, Wadsworth ME (1989) Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ 298(6673):564–567PubMedPubMedCentralGoogle Scholar
  12. Benediktsson R, Calder AA, Edwards CR, Seckl JR (1997) Placental 11 beta-hydroxysteroid dehydrogenase: a key regulator of fetal glucocorticoid exposure. Clin Endocrinol 46(2):161–166Google Scholar
  13. Benyshek D, Johnston C, Martin J (2006) Glucose metabolism is altered in the adequately-nourished grand-offspring (F3 generation) of rats malbnourished during gestation and perinatal life. Diabetologia 49:1117–1119PubMedGoogle Scholar
  14. Bertram JF, Hoy WE (2016) Ageing: nephron loss in the ageing kidney - it’s more than you think. Nat Rev Nephrol 12(10):585–586PubMedGoogle Scholar
  15. Bhat SK, Beilin LJ, Robinson M, Burrows S, Mori TA (2015) Contrasting effects of prenatal life stress on blood pressure and body mass index in young adults. J Hypertens 33(4):711–719. discussion 719PubMedGoogle Scholar
  16. Blake KV, Gurrin LC, Evans SF, Beilin LJ, Landau LI, Stanley FJ, Newnham JP (2000) Maternal cigarette smoking during pregnancy, low birth weight and subsequent blood pressure in early childhood. Early Hum Dev 57(2):137–147PubMedGoogle Scholar
  17. Block DB, Mesquita FF, de Lima IP, Boer PA, Gontijo JA (2015) Fetal kidney programming by maternal smoking exposure: effects on kidney structure, blood pressure and urinary sodium excretion in adult offspring. Nephron 129(4):283–292PubMedGoogle Scholar
  18. Bogdarina I, Haase A, Langley-Evans S, Clark AJ (2010) Glucocorticoid effects on the programming of AT1b angiotensin receptor gene methylation and expression in the rat. PLoS One 5(2):e9237PubMedPubMedCentralGoogle Scholar
  19. Bogdarina I, Welham S, King PJ, Burns SP, Clark AJ (2007) Epigenetic modification of the renin-angiotensin system in the fetal programming of hypertension. Circ Res 100(4):520–526PubMedPubMedCentralGoogle Scholar
  20. Bourdon A, Parnet P, Nowak C, Tran NT, Winer N, Darmaun D (2016) L-Citrulline supplementation enhances fetal growth and protein synthesis in rats with intrauterine growth restriction. J Nutr 146(3):532–541PubMedGoogle Scholar
  21. Brennan KA, Kaufman S, Reynolds SW, McCook BT, Kan G, Christiaens I, Symonds ME, Olson DM (2008) Differential effects of maternal nutrient restriction through pregnancy on kidney development and later blood pressure control in the resulting offspring. Am J Physiol Regul Integr Comp Physiol 295(1):R197–R205PubMedPubMedCentralGoogle Scholar
  22. Brennan KA, Olson DM, Symonds ME (2006) Maternal nutrient restriction alters renal development and blood pressure regulation of the offspring. Proc Nutr Soc 65(1):116–124PubMedGoogle Scholar
  23. Brenner B, Garcia D, Anderson S (1988) Glomeruli and blood pressure. Less one, more the other? Am J Hypertens 1:335–347PubMedGoogle Scholar
  24. Brenner BM, Lawler EV, Mackenzie HS (1996) The hyperfiltration theory: a paradigm shift in nephrology. Kidney Int 49(6):1774–1777PubMedGoogle Scholar
  25. Buitelaar JK, Huizink AC, Mulder EJ, de Medina PGR, Visser GHA (2003) Prenatal stress and cognitive development and temperament in infants. Neurobiology of Aging 24(Suppl 1(0)):S53–S60PubMedGoogle Scholar
  26. Burdge G, Slater-Jefferies J, Torrens C, Phillips E, Hanson M, Lillycrop K (2007) Dietary protein restriction of pregnant rats in the F0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations. Br J Nutr 97:435–439PubMedPubMedCentralGoogle Scholar
  27. Bygren LO, Kaati G, Edvinsson S (2001) Longevity determined by paternal ancestors’ nutrition during their slow growth period. Acta Biotheor 49(1):53–59PubMedGoogle Scholar
  28. Cappuccio FP, Stranges S, Kandala NB, Miller MA, Taggart FM, Kumari M, Ferrie JE, Shipley MJ, Brunner EJ, Marmot MG (2007) Gender-specific associations of short sleep duration with prevalent and incident hypertension: the Whitehall II study. Hypertension 50(4):693–700PubMedPubMedCentralGoogle Scholar
  29. Carlstrom M, Brown RD, Yang T, Hezel M, Larsson E, Scheffer PG, Teerlink T, Lundberg JO, Persson AE (2013) L-arginine or tempol supplementation improves renal and cardiovascular function in rats with reduced renal mass and chronic high salt intake. Acta Physiol (Oxf) 207(4):732–741Google Scholar
  30. Catalano PM, Farrell K, Thomas A, Huston-Presley L, Mencin P, de Mouzon SH, Amini SB (2009) Perinatal risk factors for childhood obesity and metabolic dysregulation. Am J Clin Nutr 90(5):1303–1313PubMedPubMedCentralGoogle Scholar
  31. Celsi G, Kistner A, Aizman R, Eklof AC, Ceccatelli S, de Santiago A, Jacobson SH (1998) Prenatal dexamethasone causes oligonephronia, sodium retention, and higher blood pressure in the offspring. Pediatr Res 44(3):317–322PubMedGoogle Scholar
  32. Chen YW, Chenier I, Tran S, Scotcher M, Chang SY, Zhang SL (2010) Maternal diabetes programs hypertension and kidney injury in offspring. Pediatr Nephrol 25(7):1319–1329PubMedGoogle Scholar
  33. Clayton DB, Brock JW 3rd (2012) In utero intervention for urologic diseases. Nat Rev Urol 9(4):207–217PubMedGoogle Scholar
  34. Corstius HB, Zimanyi MA, Maka N, Herath T, Thomas W, van der Laarse A, Wreford NG, Black MJ (2005) Effect of intrauterine growth restriction on the number of cardiomyocytes in rat hearts. Pediatr Res 57(6):796–800PubMedGoogle Scholar
  35. Cuffe JS, Dickinson H, Simmons DG, Moritz KM (2011) Sex specific changes in placental growth and MAPK following short term maternal dexamethasone exposure in the mouse. Placenta 32(12):981–989PubMedGoogle Scholar
  36. Cuffe JS, Walton SL, Singh RR, Spiers JG, Bielefeldt-Ohmann H, Wilkinson L, Little MH, Moritz KM (2014) Mid- to late term hypoxia in the mouse alters placental morphology, glucocorticoid regulatory pathways and nutrient transporters in a sex-specific manner. J Physiol 592(14):3127–3141PubMedPubMedCentralGoogle Scholar
  37. Dagan A, Gattineni J, Cook V, Baum M (2007) Prenatal programming of rat proximal tubule Na+/H+ exchanger by dexamethasone. Am J Physiol Regul Integr Comp Physiol 292(3):R1230–R1235PubMedGoogle Scholar
  38. Dagan A, Habib S, Gattineni J, Dwarakanath V, Baum M (2009) Prenatal programming of rat thick ascending limb chloride transport by low-protein diet and dexamethasone. Am J Physiol Regul Integr Comp Physiol 297(1):R93–R99PubMedPubMedCentralGoogle Scholar
  39. Dagan A, Kwon HM, Dwarakanath V, Baum M (2008) Effect of renal denervation on prenatal programming of hypertension and renal tubular transporter abundance. Am J Physiol Renal Physiol 295(1):F29–F34PubMedPubMedCentralGoogle Scholar
  40. Dasinger JH, Intapad S, Backstrom MA, Carter AJ, Alexander BT (2016a) Intrauterine growth restriction programs an accelerated age-related increase in cardiovascular risk in male offspring. Am J Physiol Renal Physiol 311(2):F312–F319PubMedPubMedCentralGoogle Scholar
  41. Dasinger JH, Intapad S, Rudsenske BR, Davis GK, Newsome AD, Alexander BT (2016b) Chronic blockade of the androgen receptor abolishes age-dependent increases in blood pressure in female growth-restricted rats. Hypertension 67(6):1281–1290PubMedPubMedCentralGoogle Scholar
  42. de Belchior AC, Angeli JK, Faria Tde O, Siman FD, Silveira EA, Meira EF, da Costa CP, Vassallo DV, Padilha AS (2012) Post-weaning protein malnutrition increases blood pressure and induces endothelial dysfunctions in rats. PLoS One 7(4):e34876PubMedPubMedCentralGoogle Scholar
  43. Denic A, Lieske JC, Chakkera HA, Poggio ED, Alexander MP, Singh P, Kremers WK, Lerman LO, Rule AD (2016) The substantial loss of nephrons in healthy human kidneys with aging. J Am Soc Nephrol 28(1):313–320PubMedPubMedCentralGoogle Scholar
  44. Denton KM, Flower RL, Stevenson KM, Anderson WP (2003) Adult rabbit offspring of mothers with secondary hypertension have increased blood pressure. Hypertension 41(3 Pt 2):634–639PubMedGoogle Scholar
  45. Devakumar D, Fall CH, Sachdev HS, Margetts BM, Osmond C, Wells JC, Costello A, Osrin D (2016) Maternal antenatal multiple micronutrient supplementation for long-term health benefits in children: a systematic review and meta-analysis. BMC Med 14:90PubMedPubMedCentralGoogle Scholar
  46. Dickinson H, Walker DW, Wintour EM, Moritz K (2007) Maternal dexamethasone treatment at midgestation reduces nephron number and alters renal gene expression in the fetal spiny mouse. Am J Physiol Regul Integr Comp Physiol 292(1):R453–R461PubMedGoogle Scholar
  47. Digne-Malcolm H, Frise MC, Dorrington KL (2016) How do antihypertensive drugs work? Insights from studies of the renal regulation of arterial blood pressure. Front Physiol 7:320PubMedPubMedCentralGoogle Scholar
  48. Dodic M, Abouantoun T, O’Connor A, Wintour EM, Moritz KM (2002) Programming effects of short prenatal exposure to dexamethasone in sheep. Hypertension 40(5):729–734PubMedGoogle Scholar
  49. Dodic M, May CN, Wintour EM, Coghlan JP (1998) An early prenatal exposure to excess glucocorticoid leads to hypertensive offspring in sheep. Clin Sci (Lond) 94(2):149–155Google Scholar
  50. Dodic M, McAlinden AT, Jefferies AJ, Wintour EM, Cock ML, May CN, Evans RG, Moritz KM (2006) Differential effects of prenatal exposure to dexamethasone or cortisol on circulatory control mechanisms mediated by angiotensin II in the central nervous system of adult sheep. J Physiol 571(Pt 3):651–660PubMedPubMedCentralGoogle Scholar
  51. Doyle LW, Ford GW, Davis NM, Callanan C (2000) Antenatal corticosteroid therapy and blood pressure at 14 years of age in preterm children. Clin Sci (Lond) 98(2):137–142Google Scholar
  52. Duong Van Huyen JP, Vessieres E, Perret C, Troise A, Prince S, Guihot AL, Barbry P, Henrion D, Bruneval P, Laurent S, Lelievre-Pegorier M, Fassot C (2010) In utero exposure to maternal diabetes impairs vascular expression of prostacyclin receptor in rat offspring. Diabetes 59(10):2597–2602PubMedGoogle Scholar
  53. Edwards LJ, McMillen IC (2001) Maternal undernutrition increases arterial blood pressure in the sheep fetus during late gestation. J Physiol 533(Pt 2):561–570PubMedPubMedCentralGoogle Scholar
  54. Elahi MM, Matata BM (2014) Gender differences in the expression of genes involved during cardiac development in offspring from dams on high fat diet. Mol Biol Rep 41(11):7209–7216PubMedGoogle Scholar
  55. Engel SM, Berkowitz GS, Wolff MS, Yehuda R (2005) Psychological trauma associated with the world trade center attacks and its effect on pregnancy outcome. Paediatr Perinat Epidemiol 19(5):334–341PubMedGoogle Scholar
  56. Fan L, Lindsley SR, Comstock SM, Takahashi DL, Evans AE, He GW, Thornburg KL, Grove KL (2013) Maternal high-fat diet impacts endothelial function in nonhuman primate offspring. Int J Obes 37(2):254–262Google Scholar
  57. Filler G, Yasin A, Kesarwani P, Garg AX, Lindsay R, Sharma AP (2011) Big mother or small baby: which predicts hypertension? J Clin Hypertens (Greenwich) 13(1):35–41Google Scholar
  58. Franca-Silva N, Oliveira ND, Balbi AP (2016) Morphofunctional renal alterations in rats induced by intrauterine hyperglycemic environment. Arch Med Sci 12(2):243–251PubMedGoogle Scholar
  59. Franco Mdo C, Ponzio BF, Gomes GN, Gil FZ, Tostes R, Carvalho MH, Fortes ZB (2009) Micronutrient prenatal supplementation prevents the development of hypertension and vascular endothelial damage induced by intrauterine malnutrition. Life Sci 85(7–8):327–333PubMedGoogle Scholar
  60. Fraser A, Nelson SM, Macdonald-Wallis C, Sattar N, Lawlor DA (2013) Hypertensive disorders of pregnancy and cardiometabolic health in adolescent offspring. Hypertension 62(3):614–620PubMedGoogle Scholar
  61. Gademan MG, van Eijsden M, Roseboom TJ, van der Post JA, Stronks K, Vrijkotte TG (2013) Maternal prepregnancy body mass index and their children’s blood pressure and resting cardiac autonomic balance at age 5 to 6 years. Hypertension 62(3):641–647PubMedGoogle Scholar
  62. Gardner DS, Pearce S, Dandrea J, Walker R, Ramsay MM, Stephenson T, Symonds ME (2004) Peri-implantation undernutrition programs blunted angiotensin II evoked baroreflex responses in young adult sheep. Hypertension 43(6):1290–1296PubMedPubMedCentralGoogle Scholar
  63. Geerts CC, Grobbee DE, van der Ent CK, de Jong BM, van der Zalm MM, van Putte-Katier N, Kimpen JL, Uiterwaal CS (2007) Tobacco smoke exposure of pregnant mothers and blood pressure in their newborns: results from the wheezing illnesses study Leidsche Rijn birth cohort. Hypertension 50(3):572–578PubMedGoogle Scholar
  64. Gezmish O, Tare M, Parkington HC, Morley R, Porrello ER, Bubb KJ, Black MJ (2009) Maternal vitamin D deficiency leads to cardiac hypertrophy in rat offspring. Reprod Sci 17(2):168–176PubMedGoogle Scholar
  65. Glastras SJ, Chen H, McGrath RT, Zaky AA, Gill AJ, Pollock CA, Saad S (2016) Effect of GLP-1 receptor activation on offspring kidney health in a rat model of maternal obesity. Sci Rep 6:23525PubMedPubMedCentralGoogle Scholar
  66. Glastras SJ, Wong MG, Chen H, Zhang J, Zaky A, Pollock CA, Saad S (2015) FXR expression is associated with dysregulated glucose and lipid levels in the offspring kidney induced by maternal obesity. Nutr Metab (Lond) 12:40Google Scholar
  67. Goh K, Shore A, Quinn M, Tooke J (2001) Impaired microvascular vasodilatory function in 3-month old infants of low birth weight. Diabetes Care 24:1102–1107PubMedGoogle Scholar
  68. Gopalakrishnan GS, Gardner DS, Dandrea J, Langley-Evans SC, Pearce S, Kurlak LO, Walker RM, Seetho IW, Keisler DH, Ramsay MM, Stephenson T, Symonds ME (2005) Influence of maternal pre-pregnancy body composition and diet during early-mid pregnancy on cardiovascular function and nephron number in juvenile sheep. Br J Nutr 94(6):938–947PubMedPubMedCentralGoogle Scholar
  69. Gopalakrishnan GS, Gardner DS, Rhind SM, Rae MT, Kyle CE, Brooks AN, Walker RM, Ramsay MM, Keisler DH, Stephenson T, Symonds ME (2004) Programming of adult cardiovascular function after early maternal undernutrition in sheep. Am J Physiol Regul Integr Comp Physiol 287(1):R12–R20PubMedGoogle Scholar
  70. Goyal R, Goyal D, Leitzke A, Gheorghe CP, Longo LD (2010) Brain renin-angiotensin system: fetal epigenetic programming by maternal protein restriction during pregnancy. Reprod Sci 17(3):227–238PubMedGoogle Scholar
  71. Grassi G, Mark A, Esler M (2015) The sympathetic nervous system alterations in human hypertension. Circ Res 116(6):976–990PubMedPubMedCentralGoogle Scholar
  72. Gray C, Li M, Reynolds CM, Vickers MH (2013) Pre-weaning growth hormone treatment reverses hypertension and endothelial dysfunction in adult male offspring of mothers undernourished during pregnancy. PLoS One 8(1):e53505PubMedPubMedCentralGoogle Scholar
  73. Gray C, Vickers MH, Segovia SA, Zhang XD, Reynolds CM (2015) A maternal high fat diet programmes endothelial function and cardiovascular status in adult male offspring independent of body weight, which is reversed by maternal conjugated linoleic acid (CLA) supplementation. PLoS One 10(2):e0115994PubMedPubMedCentralGoogle Scholar
  74. Gray SP, Denton KM, Cullen-McEwen L, Bertram JF, Moritz KM (2010) Prenatal exposure to alcohol reduces nephron number and raises blood pressure in progeny. J Am Soc Nephrol 21(11):1891–1902PubMedPubMedCentralGoogle Scholar
  75. Grigore D, Ojeda NB, Robertson EB, Dawson AS, Huffman CA, Bourassa EA, Speth RC, Brosnihan KB, Alexander BT (2007) Placental insufficiency results in temporal alterations in the renin angiotensin system in male hypertensive growth restricted offspring. Am J Physiol Regul Integr Comp Physiol 293(2):R804–R811PubMedPubMedCentralGoogle Scholar
  76. Grimaldi D, Carter JR, Van Cauter E, Leproult R (2016) Adverse impact of sleep restriction and circadian misalignment on Autonomic function in healthy young adults. Hypertension 68(1):243–250PubMedPubMedCentralGoogle Scholar
  77. Han TS, Hart CL, Haig C, Logue J, Upton MN, Watt GC, Lean ME (2015) Contributions of maternal and paternal adiposity and smoking to adult offspring adiposity and cardiovascular risk: the Midspan family study. BMJ Open 5(11):e007682PubMedPubMedCentralGoogle Scholar
  78. Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, Slagboom PE, Lumey LH (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA 105(44):17046–17049PubMedGoogle Scholar
  79. Hinchliffe SA, Sargent PH, Howard CV, Chan YF, van Velzen D (1991) Human intrauterine renal growth expressed in absolute number of glomeruli assessed by the disector method and Cavalieri principle. Lab Investig 64(6):777–784PubMedGoogle Scholar
  80. Hochner H, Friedlander Y, Calderon-Margalit R, Meiner V, Sagy Y, Avgil-Tsadok M, Burger A, Savitsky B, Siscovick DS, Manor O (2012) Associations of maternal prepregnancy body mass index and gestational weight gain with adult offspring cardiometabolic risk factors: the Jerusalem perinatal family follow-up study. Circulation 125(11):1381–1389PubMedPubMedCentralGoogle Scholar
  81. Hokke SN, Armitage JA, Puelles VG, Short KM, Jones L, Smyth IM, Bertram JF, Cullen-McEwen LA (2013) Altered ureteric branching morphogenesis and nephron endowment in offspring of diabetic and insulin-treated pregnancy. PLoS One 8(3):e58243PubMedPubMedCentralGoogle Scholar
  82. Hoppe CC, Evans RG, Moritz KM, Cullen-McEwen LA, Fitzgerald SM, Dowling J, Bertram JF (2007) Combined prenatal and postnatal protein restriction influences adult kidney structure, function and arterial pressure. Am J Physiol Regul Integr Comp Physiol 292:R462–R469PubMedGoogle Scholar
  83. Hosaka M, Asayama K, Staessen JA, Ohkubo T, Hayashi K, Tatsuta N, Kurokawa N, Satoh M, Hashimoto T, Hirose T, Obara T, Metoki H, Inoue R, Kikuya M, Nakai K, Imai Y, Satoh H (2013) Breastfeeding leads to lower blood pressure in 7-year-old Japanese children: Tohoku study of child development. Hypertens Res 36(2):117–122PubMedGoogle Scholar
  84. Hoy WE, Hughson MD, Singh GR, Douglas-Denton R, Bertram JF (2006) Reduced nephron number and glomerulomegaly in Australian Aborigines: a group at high risk for renal disease and hypertension. Kidney Int 70(1):104–110PubMedGoogle Scholar
  85. Hughson MD, Farris AB 3rd, Douglas-Denton R, Hoy WE, Bertram JF (2003) Glomerular number and size in autopsy kidneys: the relationship to birth weight. Kidney Int 63(6): 2113–22PubMedGoogle Scholar
  86. Hughson MD, Douglas-Denton R, Bertram JF, Hoy WE (2006) Hypertension, glomerular number, and birth weight in African Americans and white subjects in the southeastern United States. Kidney Int 69(4):671–678PubMedGoogle Scholar
  87. Hughson MD, Gobe GC, Hoy WE, Manning RD Jr, Douglas-Denton R, Bertram JF (2008) Associations of glomerular number and birth weight with clinicopathological features of African Americans and whites. Am J Kidney Dis 52(1):18–28PubMedGoogle Scholar
  88. Intapad S, Tull FL, Brown AD, Dasinger JH, Ojeda NB, Fahling JM, Alexander BT (2013) Renal denervation abolishes the age-dependent increase in blood pressure in female intrauterine growth-restricted rats at 12 months of age. Hypertension 61(4):828–834PubMedPubMedCentralGoogle Scholar
  89. Intapad S, Warrington JP, Spradley FT, Palei AC, Drummond HA, Ryan MJ, Granger JP, Alexander BT (2014) Reduced uterine perfusion pressure induces hypertension in the pregnant mouse. Am J Physiol Regul Integr Comp Physiol 307(11):R1353–R1357PubMedPubMedCentralGoogle Scholar
  90. Jackson CM, Alexander BT, Roach L, Haggerty D, Marbury DC, Hutchens ZM, Flynn ER, Maric-Bilkan C (2012) Exposure to maternal overnutrition and a high-fat diet during early postnatal development increases susceptibility to renal and metabolic injury later in life. Am J Physiol Renal Physiol 302(6):F774–F783PubMedGoogle Scholar
  91. Jones P, Liang G (2009) Rethinking how DNA methylation patterns are maintained. Nat Rev Genet 10:805–811PubMedPubMedCentralGoogle Scholar
  92. Jouret B, Dulac Y, Bassil E, Taktak A, Cristini C, Tauber M (2011) Endothelial functional and mechanical arterial properties in children born small for gestational age: comparison with obese children. Horm Res Pediatr 76:240–247Google Scholar
  93. Kaati G, Bygren LO, Edvinsson S (2002) Cardiovascular and diabetes mortality determined by nutrition during parents’ and grandparents’ slow growth period. Eur J Hum Genet 10(11):682–688PubMedGoogle Scholar
  94. Katkhuda R, Peterson ES, Roghair RD, Norris AW, Scholz TD, Segar JL (2012) Sex-specific programming of hypertension in offspring of late-gestation diabetic rats. Pediatr Res 72(4):352–361PubMedPubMedCentralGoogle Scholar
  95. Keller G, Zimmer G, Mall G, Ritz E, Amann K (2003) Nephron number in patients with primary hypertension. N Engl J Med 348(2): 101–8PubMedGoogle Scholar
  96. Kenna K, Sozo F, De Matteo R, Hanita T, Gray SP, Tare M, Moritz K, Bertram JF, Black MJ, Brien JF, Parkington HC, Walker DW, Harding R (2012) Alcohol exposure during late gestation: multiple developmental outcomes in sheep. J Dev Orig Health Dis 3(4):224–236PubMedGoogle Scholar
  97. Kett MM, Denton KM (2011) Renal programming: cause for concern? Am J Physiol Regul Integr Comp Physiol 300(4):R791–R803PubMedGoogle Scholar
  98. Khan IY, Dekou V, Douglas G, Jensen R, Hanson MA, Poston L, Taylor PD (2005) A high-fat diet during rat pregnancy or suckling induces cardiovascular dysfunction in adult offspring. Am J Physiol Regul Integr Comp Physiol 288(1):R127–R133PubMedGoogle Scholar
  99. Kitraki E, Kittas C, Stylianopoulou F (1997) Glucocorticoid receptor gene expression during rat embryogenesis. An in situ hybridization study. Differentiation 62(1):21–31PubMedGoogle Scholar
  100. Krishnaveni GV, Veena SR, Hill JC, Kehoe S, Karat SC, Fall CH (2010) Intrauterine exposure to maternal diabetes is associated with higher adiposity and insulin resistance and clustering of cardiovascular risk markers in Indian children. Diabetes Care 33(2):402–404PubMedGoogle Scholar
  101. Langley-Evans S, Jackson A (1995) Captopril normalises systolic blood pressure in rats with hypertension induced by fetal exposure to maternal low protein diets. Comp Biochem Physiol A Physiol 110:223–228PubMedGoogle Scholar
  102. Langley-Evans S, Welham S, Jackson A (1999) Fetal exposure to a maternal low protein diet impairs nephrogenesis and promotes hypertension in the rat. Life Sci 64:965–974PubMedGoogle Scholar
  103. Law CM, Barker DJ (1994) Fetal influences on blood pressure. J Hypertens 12(12):1329–1332PubMedGoogle Scholar
  104. Lawlor DA, Macdonald-Wallis C, Fraser A, Nelson SM, Hingorani A, Davey Smith G, Sattar N, Deanfield J (2012) Cardiovascular biomarkers and vascular function during childhood in the offspring of mothers with hypertensive disorders of pregnancy: findings from the Avon Longitudinal Study of Parents and Children. Eur Heart J 33(3):335–345PubMedGoogle Scholar
  105. Leary SD, Brion MJ, Lawlor DA, Smith GD, Ness AR (2013) Lack of emergence of associations between selected maternal exposures and offspring blood pressure at age 15 years. J Epidemiol Community Health 67(4):320–326PubMedGoogle Scholar
  106. Leeson C, Kattenhorn M, Morley R, Lucas A, Deanfield J (2001) Impact of low birth weight and cardiovascular risk factors on endothelial function in early adult life. Circulation 103:1264–1268PubMedGoogle Scholar
  107. Leotta G, Rabbia F, Milan A, Mulatero P, Veglio F (2007) Effects of birth weight on spontaneous baroreflex sensitivity in adult life. Nutr Metab Cardiovasc Dis 17(4):303–310PubMedGoogle Scholar
  108. Li J, LaMarca B, Reckelhoff JF (2012) A model of preeclampsia in rats: the reduced uterine perfusion pressure (RUPP) model. Am J Physiol Heart Circ Physiol 303(1):H1–H8PubMedPubMedCentralGoogle Scholar
  109. Liggins GC, Howie RN (1972) A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants. Pediatrics 50(4):515–525PubMedGoogle Scholar
  110. Lima IL, Rodrigues AF, Bergamaschi CT, Campos RR, Hirata AE, Tufik S, Xylaras BD, Visniauskas B, Chagas JR, Gomes GN (2014) Chronic sleep restriction during pregnancy-repercussion on cardiovascular and renal functioning of male offspring. PLoS One 9(11):e113075PubMedPubMedCentralGoogle Scholar
  111. Louey S, Cock ML, Harding R (2003) Postnatal development of arterial pressure: influence of the intrauterine environment. Arch Physiol Biochem 111(1):53–60PubMedGoogle Scholar
  112. Luyckx VA, Bertram JF, Brenner BM, Fall C, Hoy WE, Ozanne SE, Vikse BE (2013) Effect of fetal and child health on kidney development and long-term risk of hypertension and kidney disease. Lancet 382(9888):273–283PubMedGoogle Scholar
  113. Maduwegedera D, Kett MM, Flower RL, Lambert GW, Bertram JF, Wintour EM, Denton KM (2007) Sex differences in postnatal growth and renal development in offspring of rabbit mothers with chronic secondary hypertension. Am J Physiol Regul Integr Comp Physiol 292(2):R706–R714PubMedGoogle Scholar
  114. Magaton A, Gil FZ, Casarini DE, Cavanal Mde F, Gomes GN (2007) Maternal diabetes mellitus–early consequences for the offspring. Pediatr Nephrol 22(1):37–43PubMedGoogle Scholar
  115. Maia AR, Batista TM, Victorio JA, Clerici SP, Delbin MA, Carneiro EM, Davel AP (2014) Taurine supplementation reduces blood pressure and prevents endothelial dysfunction and oxidative stress in post-weaning protein-restricted rats. PLoS One 9(8):e105851PubMedPubMedCentralGoogle Scholar
  116. Mairesse J, Lesage J, Breton C, Breant B, Hahn T, Darnaudery M, Dickson SL, Seckl J, Blondeau B, Vieau D, Maccari S, Viltart O (2007) Maternal stress alters endocrine function of the feto-placental unit in rats. Am J Physiol Endocrinol Metab 292(6):E1526–E1533PubMedGoogle Scholar
  117. Makrakis J, Zimanyi MA, Black MJ (2007) Retinoic acid enhances nephron endowment in rats exposed to maternal protein restriction. Pediatr Nephrol 22(11):1861–1867PubMedGoogle Scholar
  118. Mamum A, O’Callaghan M, Callaway L, Williams G, Naiman J, Lawlor D (2009) Associations of gestational weight gain with offspring body mass index and blood pressure at 21 years of age: evidence from a birth cohort study. Circulation 119:1720–1727Google Scholar
  119. Manning J, Beutler K, Knepper MA, Vehaskari VM (2002) Upregulation of renal BSC1 and TSC in prenatally programmed hypertension. Am J Physiol Renal Physiol 283(1):F202–F206PubMedGoogle Scholar
  120. Manning J, Vehaskari VM (2001) Low birth weight-associated adult hypertension in the rat. Pediatr Nephrol 16(5):417–422PubMedGoogle Scholar
  121. Martin H, Gazelius B, Norman M (2000) Impaired acetylcholine-induced vascular relaxation in low birth weight infants: implications for adult hypertension? Pediatr Res 47:457–464PubMedGoogle Scholar
  122. Martin H, Hu J, Gennser G, Norman M (2001) Impaired endothelial fucntion and increased carotid stiffness in 9 year-old children with low birth weigh. Circulation 102:2739–2744Google Scholar
  123. McArdle AM, Roberts CT, Maduwegedera D, Flower RL, Denton KM (2010) Chronic maternal hypertension characterized by renal dysfunction is associated with reduced placental blood flow during late gestation in rabbits. Am J Physiol Regul Integr Comp Physiol 298(4):R1043–R1049PubMedGoogle Scholar
  124. Mesquita FF, Gontijo JA, Boer PA (2010) Expression of renin-angiotensin system signalling compounds in maternal protein-restricted rats: effect on renal sodium excretion and blood pressure. Nephrol Dial Transplant 25(2):380–388PubMedGoogle Scholar
  125. Miettola S, Hartikainen AL, Vaarasmaki M, Bloigu A, Ruokonen A, Jarvelin MR, Pouta A (2013) Offspring’s blood pressure and metabolic phenotype after exposure to gestational hypertension in utero. Eur J Epidemiol 28(1):87–98PubMedGoogle Scholar
  126. Moritz KM, Cuffe JS, Wilson LB, Dickinson H, Wlodek ME, Simmons DG, Denton KM (2010) Review: sex specific programming: a critical role for the renal renin-angiotensin system. Placenta 31(Suppl):S40–S46PubMedGoogle Scholar
  127. Moritz KM, De Matteo R, Dodic M, Jefferies AJ, Arena D, Wintour EM, Probyn ME, Bertram JF, Singh RR, Zanini S, Evans RG (2011) Prenatal glucocorticoid exposure in the sheep alters renal development in utero: implications for adult renal function and blood pressure control. Am J Physiol Regul Integr Comp Physiol 301(2):R500–R509PubMedGoogle Scholar
  128. Moritz KM, Johnson K, Douglas-Denton R, Wintour EM, Dodic M (2002) Maternal glucocorticoid treatment programs alterations in the renin-angiotensin system of the ovine fetal kidney. Endocrinology 143(11):4455–4463PubMedGoogle Scholar
  129. Morrison JL, Botting KJ, Dyer JL, Williams SJ, Thornburg KL, McMillen IC (2007) Restriction of placental function alters heart development in the sheep fetus. Am J Physiol Regul Integr Comp Physiol 293(1):R306–R313PubMedGoogle Scholar
  130. Murphy VE, Gibson PG, Smith R, Clifton VL (2005) Asthma during pregnancy: mechanisms and treatment implications. Eur Respir J 25(4):731–750PubMedGoogle Scholar
  131. Nepomnaschy PA, Welch KB, McConnell DS, Low BS, Strassmann BI, England BG (2006) Cortisol levels and very early pregnancy loss in humans. Proc Natl Acad Sci USA 103(10):3938–3942PubMedGoogle Scholar
  132. Nivoit P, Morens C, Van Assche FA, Jansen E, Poston L, Remacle C, Reusens B (2009) Established diet-induced obesity in female rats leads to offspring hyperphagia, adiposity and insulin resistance. Diabetologia 52(6):1133–1142PubMedGoogle Scholar
  133. O’Regan D, Kenyon CJ, Seckl JR, Holmes MC (2008) Prenatal dexamethasone ‘programmes’ hypotension, but stress-induced hypertension in adult offspring. J Endocrinol 196(2):343–352PubMedPubMedCentralGoogle Scholar
  134. O’Sullivan L, Cuffe JS, Paravicini TM, Campbell S, Dickinson H, Singh RR, Gezmish O, Black MJ, Moritz KM (2013) Prenatal exposure to dexamethasone in the mouse alters cardiac growth patterns and increases pulse pressure in aged male offspring. PLoS One 8(7):e69149PubMedPubMedCentralGoogle Scholar
  135. Ojeda NB, Intapad S, Alexander BT (2014) Sex differences in the developmental programming of hypertension. Acta Physiol (Oxf) 210(2):307–316Google Scholar
  136. Ojeda NB, Intapad S, Royals TP, Black JT, Dasinger JH, Tull FL, Alexander BT (2011) Hypersensitivity to acute ANG II in female growth-restricted offspring is exacerbated by ovariectomy. Am J Physiol Regul Integr Comp Physiol 301(4):R1199–R1205PubMedPubMedCentralGoogle Scholar
  137. Ojeda NB, Royals TP, Black JT, Dasinger JH, Johnson JM, Alexander BT (2010) Enhanced sensitivity to acute angiotensin II is testosterone dependent in adult male growth-restricted offspring. Am J Physiol Regul Integr Comp Physiol 298(5):R1421–R1427PubMedPubMedCentralGoogle Scholar
  138. Oken E, Huh SY, Taveras EM, Rich-Edwards JW, Gillman MW (2005) Associations of maternal prenatal smoking with child adiposity and blood pressure. Obes Res 13(11):2021–2028PubMedPubMedCentralGoogle Scholar
  139. Ortiz LA, Quan A, Weinberg A, Baum M (2001) Effect of prenatal dexamethasone on rat renal development. Kidney Int 59(5):1663–1669PubMedPubMedCentralGoogle Scholar
  140. Ortiz LA, Quan A, Zarzar F, Weinberg A, Baum M (2003) Prenatal dexamethasone programs hypertension and renal injury in the rat. Hypertension 41(2):328–334PubMedPubMedCentralGoogle Scholar
  141. Oyen N, Diaz LJ, Leirgul E, Boyd HA, Priest J, Mathiesen ER, Quertermous T, Wohlfahrt J, Melbye M (2016) Prepregnancy diabetes and offspring risk of congenital heart disease: a Nationwide cohort study. Circulation 133(23):2243–2253PubMedPubMedCentralGoogle Scholar
  142. Ozaki T, Nishina H, Hanson MA, Poston L (2001) Dietary restriction in pregnant rats causes gender-related hypertension and vascular dysfunction in offspring. J Physiol 530(Pt 1):141–152PubMedPubMedCentralGoogle Scholar
  143. Painter RC, de Rooij SR, Bossuyt PM, Phillips DI, Osmond C, Barker DJ, Bleker OP, Roseboom TJ (2006) Blood pressure response to psychological stressors in adults after prenatal exposure to the Dutch famine. J Hypertens 24(9):1771–1778PubMedGoogle Scholar
  144. Plana-Ripoll O, Liu X, Momen NC, Parner E, Olsen J, Li J (2016) Prenatal exposure to maternal stress following bereavement and cardiovascular disease: a nationwide population-based and sibling-matched cohort study. Eur J Prev Cardiol 23(10):1018–1028PubMedGoogle Scholar
  145. Prior LJ, Davern PJ, Burke SL, Lim K, Armitage JA, Head GA (2014) Exposure to a high-fat diet during development alters leptin and ghrelin sensitivity and elevates renal sympathetic nerve activity and arterial pressure in rabbits. Hypertension 63(2):338–345PubMedGoogle Scholar
  146. Rexhaj E, Bloch J, Jayet PY, Rimoldi SF, Dessen P, Mathieu C, Tolsa JF, Nicod P, Scherrer U, Sartori C (2011) Fetal programming of pulmonary vascular dysfunction in mice: role of epigenetic mechanisms. Am J Physiol Heart Circ Physiol 301(1):H247–H252PubMedGoogle Scholar
  147. Roghair RD, Wemmie JA, Volk KA, Scholz TD, Lamb FS, Segar JL (2011) Maternal antioxidant blocks programmed cardiovascular and behavioural stress responses in adult mice. Clin Sci (Lond) 121(10):427–436Google Scholar
  148. Samuelsson A, Pombo JM, Coen CW, Mallard C, Gressens P, Poston L (2016) [op.5d.03] chronic inflammation during pregnancy influence the progression of early sympathetic-mediated hypertension in offspring arising from maternal obesity. J Hypertens 34(Suppl 2):e63Google Scholar
  149. Samuelsson AM, Matthews PA, Argenton M, Christie MR, McConnell JM, Jansen EH, Piersma AH, Ozanne SE, Twinn DF, Remacle C, Rowlerson A, Poston L, Taylor PD (2008) Diet-induced obesity in female mice leads to offspring hyperphagia, adiposity, hypertension, and insulin resistance: a novel murine model of developmental programming. Hypertension 51(2):383–392PubMedGoogle Scholar
  150. Samuelsson AM, Morris A, Igosheva N, Kirk SL, Pombo JM, Coen CW, Poston L, Taylor PD (2010) Evidence for sympathetic origins of hypertension in juvenile offspring of obese rats. Hypertension 55(1):76–82PubMedGoogle Scholar
  151. Schreuder MF, van Wijk JA, Delemarre-van de Waal HA (2006) Intrauterine growth restriction increases blood pressure and central pulse pressure measured with telemetry in aging rats. J Hypertens 24(7):1337–1343PubMedGoogle Scholar
  152. Segar EM, Norris AW, Yao JR, Hu S, Koppenhafer SL, Roghair RD, Segar JL, Scholz TD (2009) Programming of growth, insulin resistance and vascular dysfunction in offspring of late gestation diabetic rats. Clin Sci (Lond) 117(3):129–138Google Scholar
  153. Shaltout H, Chappell M, Rose J, Diz D (2011) Exaggerated sympathetic mediated responses to behavioural or pharmocological challenges following antenatal betamethasone exposure. Am J Physiol Endocrinol Metab 300:E979–E985PubMedPubMedCentralGoogle Scholar
  154. Shang Y, Jia Y, Sun Q, Shi W, Li R, Wang S, Sui S, Zhao R (2016) Sexually dimorphic effects of maternal dietary protein restriction on fetal growth and placental expression of 11beta-HSD2 in the pig. Anim Reprod Sci 160:40–48Google Scholar
  155. Siddique K, Guzman GL, Gattineni J, Baum M (2014) Effect of postnatal maternal protein intake on prenatal programming of hypertension. Reprod Sci 21(12):1499–1507PubMedPubMedCentralGoogle Scholar
  156. Sinclair KD, Allegrucci C, Singh R, Gardner DS, Sebastian S, Bispham J, Thurston A, Huntley JF, Rees WD, Maloney CA, Lea RG, Craigon J, McEvoy TG, Young LE (2007) DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc Natl Acad Sci USA 104(49):19351–19356PubMedGoogle Scholar
  157. Singh RR, Cullen-McEwen LA, Kett MM, Boon WM, Dowling J, Bertram JF, Moritz KM (2007) Prenatal corticosterone exposure results in altered AT1/AT2, nephron deficit and hypertension in the rat offspring. J Physiol 579(Pt 2):503–513PubMedPubMedCentralGoogle Scholar
  158. Song R, Preston G, Yosypiv IV (2011) Angiotensin II stimulates in vitro branching morphogenesis of the isolated ureteric bud. Mech Dev 128(7–10):359–367PubMedPubMedCentralGoogle Scholar
  159. Speiser PW, Azziz R, Baskin LS, Ghizzoni L, Hensle TW, Merke DP, Meyer-Bahlburg HF, Miller WL, Montori VM, Oberfield SE, Ritzen M, White PC (2010) Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 95(9):4133–4160PubMedPubMedCentralGoogle Scholar
  160. Stark MJ, Wright IM, Clifton VL (2009) Sex-specific alterations in placental 11beta-hydroxysteroid dehydrogenase 2 activity and early postnatal clinical course following antenatal betamethasone. Am J Physiol Regul Integr Comp Physiol 297(2):R510–R514PubMedGoogle Scholar
  161. Stein AD, Zybert PA, van der Pal-de Bruin K, Lumey LH (2006) Exposure to famine during gestation, size at birth, and blood pressure at age 59 y: evidence from the Dutch famine. Eur J Epidemiol 21(10):759–765PubMedGoogle Scholar
  162. Taheripour P, DeFord MA, Arentson-Lantz EJ, Donkin SS, Ajuwon KM, Newcomer SC (2014) Impact of excess gestational and post-weaning energy intake on vascular function of swine offspring. BMC Pregnancy Childbirth 14:405PubMedPubMedCentralGoogle Scholar
  163. Tain YL, Hsieh CS, Lin IC, Chen CC, Sheen JM, Huang LT (2010) Effects of maternal L-citrulline supplementation on renal function and blood pressure in offspring exposed to maternal caloric restriction: the impact of nitric oxide pathway. Nitric Oxide 23(1):34–41PubMedGoogle Scholar
  164. Tain YL, Sheen JM, Chen CC, Yu HR, Tiao MM, Kuo HC, Huang LT (2015) Maternal citrulline supplementation prevents prenatal dexamethasone-induced programmed hypertension. Free Radic Res 48(5):580–586Google Scholar
  165. Tang L, Bi J, Valego N, Carey L, Figueroa J, Chappell M, Rose JC (2010) Prenatal betamethasone exposure alters renal function in immature sheep: sex differences in effects. Am J Physiol Regul Integr Comp Physiol 299 (3): R793–803PubMedPubMedCentralGoogle Scholar
  166. Taylor PD, Khan IY, Hanson MA, Poston L (2004) Impaired EDHF-mediated vasodilatation in adult offspring of rats exposed to a fat-rich diet in pregnancy. J Physiol 558(Pt 3):943–951PubMedPubMedCentralGoogle Scholar
  167. Thomal JT, Palma BD, Ponzio BF, Franco Mdo C, Zaladek-Gil F, Fortes ZB, Tufik S, Gomes GN (2010) Sleep restriction during pregnancy: hypertension and renal abnormalities in young offspring rats. Sleep 33(10):1357–1362PubMedPubMedCentralGoogle Scholar
  168. Tobi EW, Lumey LH, Talens RP, Kremer D, Putter H, Stein AD, Slagboom PE, Heijmans BT (2009) DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet 18(21):4046–4053PubMedPubMedCentralGoogle Scholar
  169. Toledo-Rodriguez M, Loyse N, Bourdon C, Arab S, Pausova Z (2012) Effect of prenatal exposure to nicotine on kidney glomerular mass and AT1R expression in genetically diverse strains of rats. Toxicol Lett 213(2):228–234PubMedGoogle Scholar
  170. Torrens C, Brawley L, Anthony FW, Dance CS, Dunn R, Jackson AA, Poston L, Hanson MA (2006) Folate supplementation during pregnancy improves offspring cardiovascular dysfunction induced by protein restriction. Hypertension 47(5):982–987PubMedGoogle Scholar
  171. Torrens C, Ethirajan P, Bruce KD, Cagampang FR, Siow RC, Hanson MA, Byrne CD, Mann GE, Clough GF (2012) Interaction between maternal and offspring diet to impair vascular function and oxidative balance in high fat fed male mice. PLoS One 7(12):e50671PubMedPubMedCentralGoogle Scholar
  172. Torrens C, Poston L, Hanson MA (2008) Transmission of raised blood pressure and endothelial dysfunction to the F2 generation induced by maternal protein restriction in the F0, in the absence of dietary challenge in the F1 generation. Br J Nutr 100(4):760–766PubMedGoogle Scholar
  173. Tran S, Chen YW, Chenier I, Chan JS, Quaggin S, Hebert MJ, Ingelfinger JR, Zhang SL (2008) Maternal diabetes modulates renal morphogenesis in offspring. J Am Soc Nephrol 19(5):943–952PubMedPubMedCentralGoogle Scholar
  174. Valladares E, Pena R, Ellsberg M, Persson LA, Hogberg U (2009) Neuroendocrine response to violence during pregnancy–impact on duration of pregnancy and fetal growth. Acta Obstet Gynecol Scand 88(7):818–823PubMedGoogle Scholar
  175. Vehaskari VM, Aviles DH, Manning J (2001) Prenatal programming of adult hypertension in the rat. Kidney Int 59(1):238–245PubMedGoogle Scholar
  176. Vijayakumar M, Fall CH, Osmond C, Barker DJ (1995) Birth weight, weight at one year, and left ventricular mass in adult life. Br Heart J 73(4):363–367PubMedPubMedCentralGoogle Scholar
  177. Wang KC, Botting KJ, Padhee M, Zhang S, McMillen IC, Suter CM, Brooks DA, Morrison JL (2012) Early origins of heart disease: low birth weight and the role of the insulin-like growth factor system in cardiac hypertrophy. Clin Exp Pharmacol Physiol 39(11):958–964PubMedGoogle Scholar
  178. West NA, Crume TL, Maligie MA, Dabelea D (2011) Cardiovascular risk factors in children exposed to maternal diabetes in utero. Diabetologia 54(3):504–507PubMedGoogle Scholar
  179. Wichi RB, Souza SB, Casarini DE, Morris M, Barreto-Chaves ML, Irigoyen MC (2005) Increased blood pressure in the offspring of diabetic mothers. Am J Physiol Regul Integr Comp Physiol 288(5):R1129–R1133PubMedGoogle Scholar
  180. Wilkinson LJ, Neal CS, Singh RR, Sparrow DB, Kurniawan ND, Ju A, Grieve SM, Dunwoodie SL, Moritz KM, Little MH (2015) Renal developmental defects resulting from in utero hypoxia are associated with suppression of ureteric beta-catenin signaling. Kidney Int 87(5):975–983PubMedGoogle Scholar
  181. Williams DM, Fraser A, Fraser WD, Hypponen E, Davey Smith G, Deanfield J, Hingorani A, Sattar N, Lawlor DA (2013) Associations of maternal 25-hydroxyvitamin D in pregnancy with offspring cardiovascular risk factors in childhood and adolescence: findings from the Avon Longitudinal Study of Parents and Children. Heart 99(24):1849–1856PubMedPubMedCentralGoogle Scholar
  182. Wintour EM, Moritz KM, Johnson K, Ricardo S, Samuel CS, Dodic M (2003) Reduced nephron number in adult sheep, hypertensive as a result of prenatal glucocorticoid treatment. J Physiol 549(Pt 3):929–935PubMedPubMedCentralGoogle Scholar
  183. Wlodek ME, Mibus A, Tan A, Siebel AL, Owens JA, Moritz KM (2007) Normal lactational environment restores nephron endowment and prevents hypertension after placental restriction in the rat. J Am Soc Nephrol 18(6):1688–1696PubMedGoogle Scholar
  184. Wlodek ME, Westcott K, Siebel AL, Owens JA, Moritz KM (2008) Growth restriction before or after birth reduces nephron number and increases blood pressure in male rats. Kidney Int 74(2):187–195PubMedGoogle Scholar
  185. Woods LL (2007) Maternal nutrition and predisposition to later kidney disease. Curr Drug Targets 8(8):906–913PubMedGoogle Scholar
  186. Woods LL, Ingelfinger JR, Nyengaard JR, Rasch R (2001) Maternal protein restriction suppresses the newborn renin-angiotensin system and programs adult hypertension in rats. Pediatr Res 49(4):460–467PubMedGoogle Scholar
  187. Woods LL, Ingelfinger JR, Rasch R (2005) Modest maternal protein restriction fails to program adult hypertension in female rats. Am J Physiol Regul Integr Comp Physiol 289(4):R1131–R1136PubMedGoogle Scholar
  188. Woods LL, Weeks DA (2005) Prenatal programming of adult blood pressure: role of maternal corticosteroids. Am J Physiol Regul Integr Comp Physiol 289(4):R955–R962PubMedGoogle Scholar
  189. Woods LL, Weeks DA, Rasch R (2004) Programming of adult blood pressure by maternal protein restriction: role of nephrogenesis. Kidney Int 65(4):1339–1348PubMedGoogle Scholar
  190. Wyrwoll CS, Mark PJ, Mori TA, Puddey IB, Waddell BJ (2006) Prevention of programmed hyperleptinemia and hypertension by postnatal dietary omega-3 fatty acids. Endocrinology 147(1):599–606PubMedGoogle Scholar
  191. Xue Q, Chen P, Li X, Zhang G, Patterson AJ, Luo J (2015) Maternal high-fat diet causes a sex-dependent increase in AGTR2 expression and cardiac dysfunction in adult male rat offspring. Biol Reprod 93(2):49PubMedGoogle Scholar
  192. Yamada-Obara N, Yamagishi SI, Taguchi K, Kaida Y, Yokoro M, Nakayama Y, Ando R, Asanuma K, Matsui T, Ueda S, Okuda S, Fukami K (2016) Maternal exposure to high-fat and high-fructose diet evokes hypoadiponectinemia and kidney injury in rat offspring. Clin Exp Nephrol 20(6):853–861PubMedGoogle Scholar
  193. Yu Z, Han S, Zhu J, Sun X, Ji C, Guo X (2013) Pre-pregnancy body mass index in relation to infant birth weight and offspring overweight/obesity: a systematic review and meta-analysis. PLoS One 8(4):e61627PubMedPubMedCentralGoogle Scholar
  194. Zhang DY, Lumbers ER, Simonetta G, Wu JJ, Owens JA, Robinson JS, McMillen IC (2000) Effects of placental insufficiency on the ovine fetal renin-angiotensin system. Exp Physiol 85(1):79–84PubMedGoogle Scholar
  195. Zhang J, Massmann G, Rose J, Figueroa J (2010) Differential effects of clinical doses of antenatal betamethasone on nephron endowment and glomerular filtration rate in adult sheep. Reprod Sci 17:186–195PubMedGoogle Scholar
  196. Zimanyi M, Bertram J, Black M (2004) Does a nephron deficit in rats predispose to salt-sensitive hypertension? Kidney Blood Press Res 27(4):239–247. Epub 2004 Jul 20PubMedGoogle Scholar
  197. Zohdi V, Lim K, Pearson JT, Black MJ (2014) Developmental programming of cardiovascular disease following intrauterine growth restriction: findings utilising a rat model of maternal protein restriction. Forum Nutr 7(1):119–152Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Reetu R. Singh
    • 1
    • 2
  • Kate M. Denton
    • 1
    • 2
  • John F. Bertram
    • 1
    • 3
    Email author
  1. 1.Cardiovascular Disease ProgramMonash Biomedicine Discovery InstituteMelbourneAustralia
  2. 2.Department of PhysiologyMonash UniversityMelbourneAustralia
  3. 3.Department of Anatomy and Developmental BiologySchool of Biomedical Sciences, Monash UniversityMelbourneAustralia

Section editors and affiliations

  • Julie R. Ingelfinger
    • 1
  1. 1.Pediatric Nephrology UnitMassGeneral Hospital for Children at MGH, Harvard Medical SchoolBostonUSA

Personalised recommendations