Vasoactive Factors and Blood Pressure in Children

  • Ihor V. YosypivEmail author
Reference work entry


Control of arterial blood pressure (BP) is accomplished, in part, by the net effect of vasodilator and vasoconstrictor substances. This chapter presents current data on the ontogeny of the most relevant vasoactive peptide systems in the systemic circulation and in the developing kidney, and highlights how any alteration in the integrity of vasomotor control may lead to deregulation of BP and associated hypertension in children.


Renin Angiotensin II ACE Kallikrein Nitric oxide Endothelin Urotensin 1 


  1. Abadir PM, Carey RM, Siragy HM (2003) Angiotensin AT2 receptors directly stimulate renal nitric oxide in bradykinin B2-receptor-null mice. Hypertension 42:600–604PubMedGoogle Scholar
  2. Affolter J, Webb DJ (2001) Urotensin II: a new mediator in cardiopulmonary regulation? Lancet 358:774–775PubMedGoogle Scholar
  3. Ahn D, Ge Y, Stricklett PK et al (2004) Collecting duct-specific knockout of endothelin-1 causes hypertension and sodium retention. J Clin Invest 114:504–511PubMedPubMedCentralGoogle Scholar
  4. Ajala AR, Almeida SS, Rangel M et al (2012) Association of ACE gene insertion/deletion polymorphism with birth weight, blood pressure levels, and ACE activity in healthy children. Am J Hypertens 25:827–832PubMedGoogle Scholar
  5. Ames RS, Sarau HM, Chambers JK et al (1999) Human urotensin-II is a potent vasoconstrictor and agonist for the orphan receptor GPR14. Nature 401:282–286PubMedGoogle Scholar
  6. Arai H, Hori S, Aramori I et al (1990) Cloning and expression of a cDNA encoding an endothelin receptor. Nature 348:730–732PubMedGoogle Scholar
  7. Barker DJ, Bagby SP (2005) Developmental antecedents of cardiovascular disease: a historical perspective. J Am Soc Nephrol 16:2537–2544PubMedGoogle Scholar
  8. Batenburg WW, Krop M, Garrelds IM et al (2007) Prorenin is the endogenous agonist of the (pro)renin receptor: binding kinetics of renin and prorenin in rat vascular smooth muscle cells overexpressing the human (pro)renin receptor. J Hypertens 25:2441–2453PubMedGoogle Scholar
  9. Beierwaltes WH, Prada J, Carretero OA (1985) Effect of glandular kallikrein on renin release in isolated rat glomeruli. Hypertension 7:27–31PubMedGoogle Scholar
  10. Berry C, Touyz R, Dominiczak AF et al (2001) Angiotensin receptors: signaling, vascular pathophysiology, and interactions with ceramide. Am J Physiol 281:H2337–H2365Google Scholar
  11. Bierd TM, Kattwinkel J, Chevalier RL et al (1990) Interrelationship of atrial natriuretic peptide, atrial volume, and renal function in premature infants. J Pediatr 116:753–759PubMedGoogle Scholar
  12. Bogdarina I, Welham S, King PJ et al (2007) Epigenetic modification of the renin-angiotensin system in the fetal programming of hypertension. Circ Res 100:520–526PubMedPubMedCentralGoogle Scholar
  13. Boini KM, Nammi S, Grahammer F et al (2008) Role of serum- and glucocorticoid-inducible kinase SGK1 in glucocorticoid regulation of renal electrolyte excretion and blood pressure. Kidney Blood Press Res 31:280–289PubMedGoogle Scholar
  14. Brasier AR, Li J (1996) Mechanisms for inducible control of angiotensinogen gene transcription. Hypertension 27:465–475PubMedGoogle Scholar
  15. Brawley L, Itoh S, Torrens C et al (2003) Dietary protein restriction in pregnancy induces hypertension and vascular defects in rat male offspring. Pediatr Res 54:83–90PubMedGoogle Scholar
  16. Brenner BM, Stein JH (1989) Atrial natriuretic peptides. Churchill Livingstone, New YorkGoogle Scholar
  17. Brosnihan KB, Li P, Ferrario CM (1996) Angiotensin-(1–7) dilates canine coronary arteries through kinins and nitric oxide. Hypertension 27:523–528PubMedGoogle Scholar
  18. Brugts JJ, Isaacs A, de Maat MP et al (2011) A pharmacogenetic analysis of determinants of hypertension and blood pressure response to angiotensin- converting enzyme inhibitor therapy in patients with vascular disease and healthy individuals. J Hypertens 29:509–519PubMedGoogle Scholar
  19. Burcklé CA, Danser AHJ, Müller DN et al (2006) Elevated blood pressure and heart rate in human renin receptor transgenic rats. Hypertension 47:552–556PubMedGoogle Scholar
  20. Burns KD, Homma T, Harris RC (1993) The intrarenal renin-angiotensin system. Semin Nephrol 13:13–30PubMedGoogle Scholar
  21. Cervenka L, Harrison-Bernard LM, Dipp S et al (1999) Early onset salt-sensitive hypertension in bradykinin B(2) receptor null mice. Hypertension 34:176–180PubMedGoogle Scholar
  22. Chartier L, Schiffrin EL (1987) Role of calcium in effects of atrial natriuretic peptide on aldosterone production in adrenal glomerulosa cells. Am J Physiol 252:E485–E491PubMedGoogle Scholar
  23. Chen X, Li W, Yoshida H et al (1997) Targeting deletion of angiotensin type 1B receptor gene in the mouse. Am J Physiol 272:F299–F304PubMedGoogle Scholar
  24. Cheung BM, Leung R, Man YB et al (2004) Plasma concentration of urotensin II is raised in hypertension. J Hypertens 22:1341–1344PubMedGoogle Scholar
  25. Cheung C, Gibbs D, Brace R (1987) Atrial natriuretic factor in maternal and fetal sheep. Am J Physiol 252:E279–E282PubMedGoogle Scholar
  26. Cheung C (1995) Regulation of atrial natriuretic factor secretion and expression in the ovine fetus. Neurosci Behav Rev 19:159–164Google Scholar
  27. Clements JA (1994) The human kallikrein gene family: a diversity of expression and function. Mol Cell Endocrinol 99:C1–C6PubMedGoogle Scholar
  28. Coulouarn Y, Lihrmann I, Jegou S et al (1998) Cloning of the cDNA encoding the urotensin II precursor in frog and human reveals intense expression of the urotensin II gene in motoneurons of the spinal cord. Proc Natl Acad Sci USA 95:15803–15808PubMedGoogle Scholar
  29. Cowley AW Jr, Mori T, Mattson D et al (2003) Role of renal NO production in the regulation of medullary blood flow. Am J Physiol 284:R1355–R1369Google Scholar
  30. Cui J, Melista E, Chazaro I et al (2005) Sequence variation of bradykinin receptors B1 and B2 and association with hypertension. J Hypertens 23:55–62PubMedGoogle Scholar
  31. Danser AH, Derkx FH, Schalekamp MA et al (1998) Determinants of interindividual variation of renin and prorenin concentrations: evidence for a sexual dimorphism of (pro)renin levels in humans. J Hypertens 16:853–862PubMedGoogle Scholar
  32. Davis JO, Freeman RH (1976) Mechanisms regulating renin release. Physiol Rev. 56:1–56PubMedGoogle Scholar
  33. de Bold AJ, Borenstein HB, Veress AT et al (1981) A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci 28:89–94PubMedGoogle Scholar
  34. Debonneville C, Flores SY, Kamynina E et al (2001) Phosphorylation of Nedd4- 2 by Sgk1 regulates epithelial Na(+) channel cell surface expression. EMBO J 20:7052–7059PubMedPubMedCentralGoogle Scholar
  35. Deschepper CF (1994) Angiotensinogen: hormonal regulation and relative importance in the generation of angiotensin II. Kidney Int 46:1561–1563PubMedGoogle Scholar
  36. Desir G (2012) Novel insights into the physiology of renalase and its role in hypertension and heart disease. Pediatr Nephrol 27:719–725PubMedGoogle Scholar
  37. de Vries WB, Karemaker R, Mooy NF et al (2008) Cardiovascular follow-up at school age after perinatal glucocorticoid exposure in prematurely born children: perinatal glucocorticoid therapy and cardiovascular follow-up. Arch Pediatr Adolesc Med 162:738–744PubMedGoogle Scholar
  38. Donoghue M, Hsieh F, Baronas RE et al (2000) A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res 87:E1–E9PubMedGoogle Scholar
  39. Duka I, Duka A, Kintsurashvili E et al (2003) Mechanisms mediating the vasoactive effects of the B1 receptors of bradykinin. Hypertension 42:1021–1025PubMedGoogle Scholar
  40. Edwards LJ, Simonetta G, Owens JA et al (1999) Restriction of placental and fetal growth in sheep alters fetal blood pressure responses to angiotensin II and captopril. J Physiol 515:897–904PubMedPubMedCentralGoogle Scholar
  41. El-Dahr SS, Dipp S, Guan S et al (1993) Renin, angiotensinogen, and kallikrein gene expression in two-kidney Goldblatt hypertensive rats. Am J Hypertens 6:914–919PubMedGoogle Scholar
  42. El-Dahr SS, Yosipiv IV, Lewis L et al (1995) Role of bradykinin B2 receptors in the developmental changes of renal hemodynamics in the neonatal rat. Am J Physiol 269:F786–F792PubMedGoogle Scholar
  43. El-Dahr SS, Figueroa CD, Gonzalez CB et al (1997) Ontogeny of bradykinin B2 receptors in the rat kidney: implications for segmental nephron maturation. Kidney Int 51:739–749PubMedGoogle Scholar
  44. El-Dahr SS, Dipp S, Yosipiv IV et al (1998) Activation of kininogen expression during distal nephron differentiation. Am J Physiol 275:F173–F182PubMedGoogle Scholar
  45. Erdös EG, Oshima G (1974) The angiotensin I converting enzyme of the lung and kidney. Acta Physiol Lat Am 24:507–514PubMedGoogle Scholar
  46. Erdös EG, Skidgel RA (1990) Renal metabolism of angiotensin I and II. Kidney Int 30:S24–S27Google Scholar
  47. Ervin MG, Ross MG, Leake RD et al (1992) V1- and V2-receptor contributions to ovine fetal renal and cardiovascular responses to vasopressin. Am J Physiol 262:R636–R643PubMedGoogle Scholar
  48. Esther CR Jr, Howard TE, Marino EM et al (1996) Mice lacking angiotensin- converting enzyme have low blood pressure, renal pathology, and reduced male fertility. Lab Invest 7:953–965Google Scholar
  49. Fineman JR, Wong J, Morin FC et al (1994) Chronic nitric oxide inhibition in utero produces persistent pulmonary hypertension in newborn lambs. J Clin Invest 93:2675–2683PubMedPubMedCentralGoogle Scholar
  50. Fletcher AJ, McGarrigle HH, Edwards CM et al (2002) Effects of low dose dexamethasone treatment on basal cardiovascular and endocrine function in fetal sheep during late gestation. J Physiol 545:649–660PubMedPubMedCentralGoogle Scholar
  51. Flynn JT, Alderman MH (2005) Characteristics of children with primary hypertension seen at a referral center. Pediatr Nephrol 20:961–966PubMedGoogle Scholar
  52. Flynn JT (2011) Not ready for prime time: aliskiren for treatment of hypertension or proteinuria in children. Pediatr Nephrol 26:491–492PubMedGoogle Scholar
  53. Forty EJ, Ashton N (2013) The urotensin system is up-regulated in the pre- hypertensive spontaneously hypertensive rat. PLoS One 8:e83317PubMedPubMedCentralGoogle Scholar
  54. Franco Mdo C, Dantas AP, Akamine EH et al (2002) Enhanced oxidative stress as a potential mechanism underlying the programming of hypertension in utero. J Cardiovasc Pharmacol 40:501–519PubMedGoogle Scholar
  55. Fujimori K, Honda S, Sanpei M et al (2005) Effects of exogenous big endothelin-1 on regional blood flow in fetal lambs. Obstet Gynecol 106:818–823PubMedGoogle Scholar
  56. Fukamizu A, Takahashi S, Seo MS et al (1990) Structure and expression of the human angiotensinogen gene: Identification of a unique and highly active promoter. J Biol Chem 265:7576–7582PubMedGoogle Scholar
  57. Gainer JV, Morrow JD, Loveland A et al (1998) Effect of bradykinin-receptor blockade on the response to angiotensin-converting-enzyme inhibitor in normotensive and hypertensive subjects. N Engl J Med 339:1285–1292PubMedGoogle Scholar
  58. Garcia-Villalba P, Denkers ND, Wittwer CT et al (2003) Real-time PCR quantification of AT1 and AT2 angiotensin receptor mRNA expression in the developing rat kidney. Nephron Exp Nephrol 94:e154–e159PubMedGoogle Scholar
  59. Gasparo M, Catt KJ, Inagami T et al (2000) International Union of Pharmacology XXIII: the angiotensin II receptors. Pharmacol Rev 52:415–472PubMedGoogle Scholar
  60. Ge Y, Bagnall AJ, Stricklett PK et al (2008) Combined knockout of collecting duct endothelin A and B receptors causes hypertension and sodium retention. Am J Physiol 295:F1635–F1640Google Scholar
  61. Goldblatt H, Lynch R, Hanzai R (1934) Studies on experimental: production of persistent elevation of systolic blood pessure by means of renal ischemia. J Exp Med 59:347–350PubMedPubMedCentralGoogle Scholar
  62. Gomez RA, Lynch KR, Sturgill BC et al (1989) Distribution of renin mRNA and its protein in the developing kidney. Am J Physiol 257:F850–F858PubMedGoogle Scholar
  63. Goodfriend TL, Elliott ME, Catt KJ (1996) Angiotensin receptors and their antagonists. N Engl J Med 334:1649–1654PubMedGoogle Scholar
  64. Goonasekera CD, Shah V, Rees DD et al (2000) Vascular endothelial cell activation associated with increased plasma asymmetric dimethyl arginine in children and young adults with hypertension: a basis for atheroma? Blood Press 9:16–21PubMedGoogle Scholar
  65. Goto M, Mukoyama M, Suga S et al (1997) Growth-dependent induction of angiotensin II type 2 receptor in rat mesangial cells. Hypertension 30:358–362PubMedGoogle Scholar
  66. Gribouval O, Gonzales M, Neuhaus T et al (2005) Mutations in genes in the renin-angiotensin system are associated with autosomal recessive renal tubular dysgenesis. Nat Genet 37:964–968PubMedGoogle Scholar
  67. Gross V, Schunck WH, Honeck H et al (2000) Inhibition of pressure natriuresis in mice lacking the AT2 receptor. Kidney Int 57:191–202PubMedGoogle Scholar
  68. Gu W, Liu J, Niu Q et al (2011) A-6G and A-20C polymorphisms in the angiotensinogen promoter and hypertension risk in Chinese: a meta-analysis. PLoS One 6:e29489PubMedPubMedCentralGoogle Scholar
  69. Gurley SB, Allred A, Le TH et al (2006) Altered blood pressure responses and normal cardiac phenotype in ACE2-null mice. J Clin Invest 116:2218–2225PubMedPubMedCentralGoogle Scholar
  70. Hackenthal E, Paul M, Ganten D et al (1990) Morphology, physiology, and molecular biology of renin secretion. Physiol Rev 70:1067–1116PubMedGoogle Scholar
  71. Han KH, Lim JM, Kim WY et al (2005) Expression of endothelial nitric oxide synthase in developing rat kidney. Am J Physiol 288:F694–F702Google Scholar
  72. Handa RK, Johns EJ (1985) Interaction of the renin-angiotensin system and the renal nerves in the regulation of rat kidney function. J Physiol 369:311–321PubMedPubMedCentralGoogle Scholar
  73. Haulica I, Bild W, Serban DN (2005) Angiotensin peptides and their pleiotropic actions. J Renin Angiotensin Aldosterone Syst 6:121–131PubMedGoogle Scholar
  74. Hein L, Barsh GS, Pratt RE et al (1995) Behavioural and cardiovascular effects of disrupting the angiotensin II type-2 receptor in mice. Nature 377:744–747PubMedGoogle Scholar
  75. Hersey R, Nazir M, Whitney K et al (1987) Atrial natriuretic peptide in heart and specific binding in organs from fetal and newborn rats. Cell Biochem Funct 7:35–41Google Scholar
  76. Higaki J, Baba S, Katsuya T et al (2000) Deletion allele of angiotensin- converting enzyme gene increases risk of essential hypertension in Japanese men: the Suita Study. Circulation 101:2060–2065PubMedGoogle Scholar
  77. Himathongkam T, Dluhy RG, Williams GH (1975) Potassim-aldosterone-renin interrelationships. J Clin Endocrinol Metab 41:153–159PubMedGoogle Scholar
  78. Hirata Y, Emori T, Eguchi S et al (1993) Endothelin receptor subtype B mediates synthesis of nitric oxide by cultured bovine endothelial cells. J Clin Invest 91:1367–1373PubMedPubMedCentralGoogle Scholar
  79. Hirose T, Hashimoto M, Totsune K et al (2009) Association of (pro)renin receptor gene polymorphism with blood pressure in Japanese men: the Ohasama study. Am J Hypertens 22:294–299PubMedGoogle Scholar
  80. Hirose T, Hirose M, Hashimoto K et al (2011) Association of (pro)renin receptor gene polymorphisms with lacunar infarction and left ventricular hypertrophy in Japanese women: the Ohasama study. Hypertens Res 34:530–535PubMedGoogle Scholar
  81. Hirsch JR, Meyer M, Forssmann WG (2006) ANP and urodilatin: who is who in the kidney. Eur J Med Res 11:447–454PubMedGoogle Scholar
  82. Holland OB, Carr B, Brasier AR (1995) Aldosterone synthase gene regulation by angiotensin. Endocr Res 21:455–462PubMedGoogle Scholar
  83. Huh SY, Andrew R, Rich-Edwards JW et al (2008) Association between umbilical cord glucocorticoids and blood pressure at age 3 years. BMC Med 6:25–28PubMedPubMedCentralGoogle Scholar
  84. Hunt PJ, Espiner EA, Nicholls MG et al (1996) Differing biological effects of equimolar atrial and brain natriuretic peptide infusions in normal man. J Clin Endocrinol Metab 81:3871–3876PubMedGoogle Scholar
  85. Inagami T, Iwai N, Sasaki K et al (1993) Angiotensin II receptors: cloning and regulation. Arzneimittelforschung 43:226–228PubMedGoogle Scholar
  86. Ingelfinger JR, Zuo WM, Fon EA et al (1990) In situ hybridization evidence for angiotensinogen messenger RNA in the rat proximal tubule: a hypothesis for the intrarenal renin angiotensin system. J Clin Invest 85:417–423PubMedPubMedCentralGoogle Scholar
  87. Iosipiv IV, Schroeder M (2003) A role for angiotensin II AT1 receptors in ureteric bud cell branching. Am J Physiol 285:F199–F207Google Scholar
  88. Ito M, Oliverio MI, Mannon PJ et al (1995) Regulation of blood pressure by the type 1A angiotensin II receptor gene. Proc Natl Acad Sci USA 92:3521–3525PubMedGoogle Scholar
  89. Iwai N, Inagami T (1992) Identification of two subtypes in the rat type I angiotensin II receptor. FEBS Lett 298:257–260PubMedGoogle Scholar
  90. Iwai N, Ohmichi N, Nakamura Y et al (1994) DD genotype of the angiotensin- converting enzyme gene is a risk factor for left ventricular hypertrophy. Circulation 90:2622–2628PubMedGoogle Scholar
  91. Jain S, Tang X, Chittampalli SN et al (2002) Angiotensinogen gene polymorphism at −217 affects basal promoter activity and is associated with hypertension in African-Americans. J Biol Chem 277:36889–36896PubMedGoogle Scholar
  92. Jeunemaitre X, Soubrier F, Kotelevtsev YV et al (1992) Molecular basis of human hypertension: role of angiotensinogen. Cell 71:169–180PubMedGoogle Scholar
  93. Jin XH, McGrath HE, Gildea JJ et al (2004) Renal interstitial guanosine cyclic 3′,5′-monophosphate mediates pressure-natriuresis via protein kinase G. Hypertension 43:1133–1139PubMedGoogle Scholar
  94. John SWM, Krege JH, Oliver PM et al (1995) Genetic decreases in atrial natriuretic peptide and salt-sensitive hypertension. Science 267:679–681PubMedGoogle Scholar
  95. Jung FF, Bouyounes B, Barrio R et al (1993) Angiotensin converting enzyme in renal ontogeny: hypothesis for multiple roles. Pediatr Nephrol 7:834–840PubMedGoogle Scholar
  96. Kakuchi J, Ichiki T, Kiyama S et al (1995) Developmental expression of renal angiotensin II receptor genes in the mouse. Kidney Int 47:140–147PubMedGoogle Scholar
  97. Kelly RT, Rose JC, Meis PJ et al (1983) Vasopressin is important for restoring cardiovascular homeostasis in fetal lambs subjected to hemorrhage. Am J Obstet Gynecol 146:807–812PubMedGoogle Scholar
  98. Kielstein JT, Impraim B, Simmel S et al (2004) Cardiovascular effects of systemic nitric oxide synthase inhibition with asymmetrical dimethylarginine in humans. Circulation 109:172–177PubMedGoogle Scholar
  99. Kielstein JT, Zoccali C (2005) Asymmetric dimethylarginine: A cardiovascular risk factor and a uremic toxin coming of age? Am J Kidney Dis 46:186–202PubMedGoogle Scholar
  100. Kim SM, Mizel D, Huang YG et al (2006) Adenosine as a mediator of macula densa-dependent inhibition of renin secretion. Am J Physiol Renal Physiol 290:F1016–F1023PubMedGoogle Scholar
  101. Knowles J, Esposito G, Mao L et al (2001) Pressure independent enhancement of cardiac hypertrophy in natriuretic peptide receptor A deficient mice. J Clin Invest 107:975–984PubMedPubMedCentralGoogle Scholar
  102. Kobori H, Ozawa Y, Suzaki Y et al (2006) Young Scholars Award Lecture: intratubular angiotensinogen in hypertension and kidney diseases. Am J Hypertens 19:541–550PubMedPubMedCentralGoogle Scholar
  103. Kobori H, Nangaku M, Navar LG et al (2007) The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev 59:251–287PubMedGoogle Scholar
  104. Kohan DE (1999) Endothelin synthesis by rabbit renal tubule cells. Am J Physiol 261:F221–F226Google Scholar
  105. Kumar RS, Thekkumkara TJ, Sen GC (1991) The mRNAs encoding the two angiotensin-converting isozymes are transcribed from the same gene by a tissue-specific choice of alternative transcription initiation sites. J Biol Chem 266:3854–3862PubMedGoogle Scholar
  106. Levin ER, Gardner DG, Samson WK (1998) Natriuretic peptides. N Engl J Med 339:321–328PubMedGoogle Scholar
  107. Longo M, Jain V, Vedernikov YP et al (2005) Fetal origins of adult vascular dysfunction in mice lacking endothelial nitric oxide synthase. Am J Physiol 288:R1114–R1121Google Scholar
  108. Lopez ML, Pentz ES, Robert B et al (2001) Embryonic origin and lineage of juxtaglomerular cells. Am J Physiol 281:F345–F356Google Scholar
  109. Lorenz JN, Greenberg SG, Briggs JP (1993) The macula densa mechanism for control of renin secretion. Semin Nephrol 13:531–542PubMedGoogle Scholar
  110. Lu M, Liu YH, Goh HS et al (2010) Hydrogen sulfide inhibits plasma renin activity. J Am Soc Nephrol 21:993–1002PubMedPubMedCentralGoogle Scholar
  111. Lüscher TF, Boulanger CM, Dohi Y et al (1992) Endothelium-derived contracting factors. Hypertension 19:117–130PubMedGoogle Scholar
  112. Lynch KR, Peach MJ (1991) Molecular biology of angiotensinogen. Hypertension 17:263–269PubMedGoogle Scholar
  113. Maeda T, Yoshimura T, Okamura H (2003) Asymmetric dimethylarginine: an endogenous inhibitor of nitric oxide synthase, in maternal and fetal circulation. J Soc Gynecol Investig 10:2–4PubMedGoogle Scholar
  114. Marceau F, Hess JF, Bachvarov DR (1998) The B1 receptors for kinins. Pharmacol Rev 50:357–386PubMedGoogle Scholar
  115. Matsushita M, Shichiri M, Imai T et al (2001) Co-expression of urotensin II and its receptor (GPR14) in human cardiovascular and renal tissues. J Hypertens 19:2185–2190PubMedGoogle Scholar
  116. McEachern AE, Shelton ER, Bhakta S et al (1991) Expression cloning of a rat B2 bradykinin receptor. Proc Natl Acad Sci USA 88:7724–7728PubMedGoogle Scholar
  117. Miyata N, Park F, Li XF et al (1998) Distribution of angiotensin AT1 and AT2 receptor subtypes in the rat kidney. Am J Physiol 277:F437–F446Google Scholar
  118. Miyazaki H, Fukamizu A, Hirose S et al (1984) Structure of the human renin gene. Proc Natl Acad Sci USA 81:5999–6003PubMedGoogle Scholar
  119. Miyazaki M, Takai S (2001) Local angiotensin II-generating system in vascular tissues: the roles of chymase. Hypertens Res 24:189–193PubMedGoogle Scholar
  120. Morganti A, Lopez-Ovejero JA, Pickering TG et al (1979) Role of the sympathetic nervous system in mediating the renin response to head-up tilt. Their possible synergism in defending blood pressure against postural changes during sodium deprivation. Am J Cardiol 43:600–604PubMedGoogle Scholar
  121. Nagata M, Tanimoto K, Fukamizu A et al (1996) Nephrogenesis and renovascular development in angiotensinogen-deficient mice. Lab Invest 75:745–753PubMedGoogle Scholar
  122. Navar LG (1997) The kidney in blood pressure regulation and development of hypertension. Med Clin North Am 81:1165–1198PubMedGoogle Scholar
  123. Navar LG, Harrison-Bernard LM, Nishiyama A et al (2002) Regulation of intrarenal angiotensin II in hypertension. Hypertension 39:316–322PubMedPubMedCentralGoogle Scholar
  124. Nguyen G, Delarue F, Burcklé C et al (2002) Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Invest 109:1417–1427PubMedPubMedCentralGoogle Scholar
  125. Niimura F, Labosky PA, Kakuchi J et al (1995) Gene targeting in mice reveals a requirement for angiotensin in the development and maintenance of kidney morphology and growth factor regulation. J Clin Invest 96:2947–2954PubMedPubMedCentralGoogle Scholar
  126. Norwood VF, Craig MR, Harris JM et al (1997) Differential expression of angiotensin II receptors during early renal morphogenesis. Am J Physiol 272:R662–R668PubMedGoogle Scholar
  127. Oliverio MI, Kim HS, Ito M et al (1998) Reduced growth, abnormal kidney structure, and type 2 (AT2) angiotensin receptor-mediated blood pressure regulation in mice lacking both AT1A and AT1B receptors for angiotensin II. Proc Natl Acad Sci USA 95:15496–15501PubMedGoogle Scholar
  128. Oshima K, Miyazaki Y, Brock JW et al (2001) Angiotensin type II receptor expression and ureteral budding. J Urol 166:1848–1852PubMedGoogle Scholar
  129. Oshima Y, Kinouchi K, Ichihara A et al (2011) Prorenin receptor is essential for normal podocyte structure and function. J Am Soc Nephrol 22:2203–2212PubMedPubMedCentralGoogle Scholar
  130. Ott C, Schneider MP, Delles C et al (2011) Association of (pro)renin receptor gene polymorphism with blood pressure in Caucasian men. Pharmacogenet Genomics 21:347–349PubMedGoogle Scholar
  131. Päivä H, Kähönen M, Lehtimäki T et al (2008) Asymmetric dimethylarginine (ADMA) has a role in regulating systemic vascular tone in young healthy subjects: the cardiovascular risk in young finns study. Am J Hypertens 21:873–878PubMedGoogle Scholar
  132. Paul M, Mehr AP, Kreutz R (2006) Physiology of local renin-angiotensin systems. Physiol Rev. 86:747–803PubMedGoogle Scholar
  133. Pesquero JB, Bader M (1998) Molecular biology of the kallikrein-kinin system: from structure to function. Braz J Med Biol Res 31:197–203Google Scholar
  134. Peters J, Schlaghecke R, Thouet H et al (1990) Endogenous vasopressin supports blood pressure and prevents severe hypotension during epidural anesthesia in conscious dogs. Anesthesiology 73:694–702PubMedGoogle Scholar
  135. Pladys P, Lahaie I, Cambonie G et al (2004) Role of brain and peripheral angiotensin II in hypertension and altered arterial baroreflex programmed during fetal life in rat. Pediatr Res 55:1042–1049PubMedGoogle Scholar
  136. Prieto M, Dipp S, Meleg-Smith S et al (2001) Ureteric bud derivatives express angiotensinogen and AT1 receptors. Physiol Genomics 6:29–37PubMedGoogle Scholar
  137. Ramchandran R, Sen GC, Misono K et al (1994) Regulated cleavage-secretion of the membrane-bound angiotensin-converting enzyme. J Biol Chem 69:2125–2130Google Scholar
  138. Rentzsch B, Todiras M, Iliescu R et al (2008) Transgenic angiotensin-converting enzyme 2 overexpression in vessels of SHRSP rats reduces blood pressure and improves endothelial function. Hypertension 52:967–973PubMedGoogle Scholar
  139. Richer C, Hornych H, Amiel-Tison C et al (1977) Plasma renin activity and its postnatal development in preterm infants: preliminary report. Biol Neonate 31:301–304PubMedGoogle Scholar
  140. Riediger F, Quack I, Qadri F et al (2011) Prorenin receptor is essential for podocyte autophagy and survival. J Am Soc Nephrol 22:2193–2202PubMedPubMedCentralGoogle Scholar
  141. Rigat B, Hubert C, Alhenc-Gelas F et al (1990) An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 86:1343–1346PubMedPubMedCentralGoogle Scholar
  142. Roques BP, Noble F, Dauge V et al (1993) Neutral endopeptidase 24.11: structure, inhibition, and experimental and clinical pharmacology. Pharmacol Rev 45:87–146PubMedGoogle Scholar
  143. Rosenfeld CR, Samson WK, Roy TA et al (1992) Vasoconstrictor-induced secretion of ANP in fetal sheep. Am J Physiol 263:E526–E533PubMedGoogle Scholar
  144. Sánchez SI, Seltzer AM, Fuentes LB et al (2008) Inhibition of angiotensin II receptors during pregnancy induces malformations in developing rat kidney. Eur J Pharmacol 588:114–123PubMedGoogle Scholar
  145. Santos RA, Simoes Silva AC, Maric C et al (2003) Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci USA 100:8258–8263PubMedGoogle Scholar
  146. Santos RA, Ferreira AJ (2007) Angiotensin-(1–7) and the renin-angiotensin system. Curr Opin Nephrol Hypertens 16:122–128PubMedGoogle Scholar
  147. Schunkert H, Ingelfinger JR, Jacob H et al (1992) Reciprocal feedback regulation of kidney angiotensinogen and renin mRNA expressions by angiotensin II. Am J Physiol 263:E863–E869PubMedGoogle Scholar
  148. Schweda F, Friis U, Wagner C et al (2007) Renin release. Physiology (Bethesda) 22:310–319Google Scholar
  149. Schweitz H, Vigne P, Moinier D et al (1992) A new member of the natriuretic peptide family is present in the venom of the Green Mamba (Dendroaspis angusticeps). JBC 267:13928–13932Google Scholar
  150. Shenouda A, Douglas SA, Ohlstein EH et al (2002) Localization of urotensin-II immunoreactivity in normal human kidneys and renal carcinoma. J Histochem Cytochem 50:885–889PubMedGoogle Scholar
  151. Simpson CM, Penny DJ, Stocker CF et al (2006) Urotensin II is raised in children with congenital heart disease. Heart 92:983–984PubMedPubMedCentralGoogle Scholar
  152. Siragy HM (1993) Evidence that intrarenal bradykinin plays a role in regulation of renal function. Am J Physiol 265:E648–E654PubMedGoogle Scholar
  153. Siragy HM, Carey RM (1997) The subtype-2 (AT2) angiotensin receptor mediates renal production of nitric oxide in conscious rats. J Clin Invest 100:264–269PubMedPubMedCentralGoogle Scholar
  154. Solhaug MJ, Ballèvre LD, Guignard JP et al (1996) Nitric oxide in the developing kidney. Pediatr Nephrol 10:529–533PubMedGoogle Scholar
  155. Song R, Preston G, Yosypiv IV (2012) Ontogeny of angiotensin-converting enzyme 2. Pediatric Res 71:13–19Google Scholar
  156. Song R, Preston G, Yosypiv IV (2013b) Ontogeny of the prorenin receptor. Pediatric Res 74:5–10Google Scholar
  157. Song R, Preston G, Ichihara A et al (2013a) Deletion of the prorenin receptor from the ureteric bud causes renal hypodysplasia. PLoS ONE 8:e63835PubMedPubMedCentralGoogle Scholar
  158. Song R, Preston G, Kidd L et al (2016) Prorenin receptor is critical for nephron progenitors. Dev Biology 409:382–391Google Scholar
  159. Stalker HP, Holland NH, Kotchen JM et al (1976) Plasma renin activity in healthy children. J Pediatr 89:256–258PubMedGoogle Scholar
  160. Sudoh T, Minamino N, Kangawa K et al (1990) C-type natriuretic peptide (NP): A new member of natriuretic peptide family identified in porcine brain. BBRC 168:863–870PubMedGoogle Scholar
  161. Szentivanyi M Jr, Park F, Maeda CY et al (2000) Nitric oxide in the renal medulla protects from vasopressin-induced hypertension. Hypertension 35:740–745PubMedGoogle Scholar
  162. Taddei S, Virdis A, Mattei P et al (1996a) Defective L-arginine–nitric oxide pathway in offspring of essential hypertensive patients. Circulation 94:1298–1303PubMedGoogle Scholar
  163. Taddei S, Virdis A, Mattei P et al (1996b) Defective L-arginine–nitric oxide pathway in offspring of essential hypertensive patients. Circulation 94:1298–1303PubMedGoogle Scholar
  164. Takahashi N, Lopez ML, Cowhig JE Jr et al (2005) Ren1c homozygous null mice are hypotensive and polyuric, but heterozygotes are indistinguishable from wild-type. J Am Soc Nephrol 16:125–132PubMedGoogle Scholar
  165. Tamura N, Ogawa Y, Chusho H et al (2000) Cardiac fibrosis in mice lacking brain natriuretic peptide. Proc Natl Acad Sci USA 97:4239–4244PubMedGoogle Scholar
  166. Tangalakis K, Lumbers ER, Moritz KM et al (1992) Effect of cortisol on blood pressure and vascular reactivity in the ovine fetus. Exp Physiol 77:709–717PubMedGoogle Scholar
  167. Tanimoto K, Sugiyama F, Goto Y et al (1994) Angiotensinogen-deficient mice with hypotension. J Biol Chem 269:31334–31337PubMedGoogle Scholar
  168. Teichert AM, Scott JA, Robb GB et al (2008) Endothelial nitric oxide synthase gene expression during murine embryogenesis: commencement of expression in the embryo occurs with the establishment of a unidirectional circulatory system. Circ Res 103:24–33PubMedGoogle Scholar
  169. Tomita H, Brace RA, Cheung CY et al (1985) Vasopressin dose-response effects on fetal vascular pressures, heart rate, and blood volume. Am J Physiol 249:H974–H980PubMedGoogle Scholar
  170. Totsune K, Takahashi K, Arihara Z et al (2001) Role of urotensin II in patients on dialysis. Lancet 358:810–811PubMedGoogle Scholar
  171. Touyz RM, Schiffrin EL (2000) Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells. Pharmacol Rev 52:639–672PubMedGoogle Scholar
  172. Tsuchida S, Matsusaka T, Chen X et al (1998) Murine double nullizygotes of the angiotensin type 1A and 1B receptor genes duplicate severe abnormal phenotypes of angiotensinogen nullizygotes. J Clin Invest 101:755–760PubMedPubMedCentralGoogle Scholar
  173. Tsutsumi Y, Matsubara H, Masaki H et al (1999) Angiotensin II type 2 receptor overexpression activates the vascular kinin system and causes vasodilation. J Clin Invest 104:925–935PubMedPubMedCentralGoogle Scholar
  174. Tufro-McReddie A, Gomez RA (1993) Ontogeny of the renin-angiotensin system. Semin Nephrol 13:519–530PubMedGoogle Scholar
  175. Ujiie K, Terada Y, Nonoguchi H et al (1992) Messenger RNA expression and synthesis of endothelin-1 along rat nephron segments. J Clin Invest 90:1043–1048PubMedPubMedCentralGoogle Scholar
  176. Vinson GP, Laird SM, Whitehouse BJ et al (1991) The biosynthesis of aldosterone. J Steroid Biochem Mol Biol 39:851–858PubMedGoogle Scholar
  177. Wei Y, Rodi CP, Day ML et al (1987) Developmental changes in the rat atriopeptin hormonal system. J Clin Invest. 79:1325–1329PubMedPubMedCentralGoogle Scholar
  178. Weil J, Bidlingmaier F, Döhlemann C et al (1986) Comparison of plasma atrial natriuretic peptide levels in healthy children from birth to adolescence and in children with cardiac diseases. Pediatr Res 20:1328–1331PubMedGoogle Scholar
  179. Wolf G, Haberstroh U, Neilson EG (1992) Angiotensin II stimulates the proliferation and biosynthesis of type I collagen in cultured murine mesangial cells. Am J Pathol 140:95–107PubMedPubMedCentralGoogle Scholar
  180. Wong J, Vanderford PA, Winters J et al (1995) Endothelin b receptor agonists produce pulmonary vasodilation in intact newborn lambs with pulmonary hypertension. J Cardiovasc Pharmacol 25:207–215PubMedGoogle Scholar
  181. Wu Y, Xu J, Velazquez H et al (2011) Renalase deficiency aggravates ischemic myocardial damage. Kidney Int 79:853–860PubMedGoogle Scholar
  182. Wysocki J, Ye M, Rodriguez E, González-Pacheco FR et al (2010) Targeting the degradation of angiotensin II with recombinant angiotensin-converting enzyme 2: prevention of angiotensin II-dependent hypertension. Hypertension 55:90–98PubMedGoogle Scholar
  183. Xiong W, Chao L, Chao J (1989) Renal kallikrein mRNA localization by in situ hybridization. Kidney Int 35:1324–1329PubMedGoogle Scholar
  184. Xu P, Costa-Goncalves AC, Todiras M et al (2008) Endothelial dysfunction and elevated blood pressure in MAS gene-deleted mice. Hypertension 51:574–580PubMedGoogle Scholar
  185. Yamamoto T, Hirohama T, Uemura H (2002) Endothelin B receptor-like immunoreactivity in podocytes of the rat kidney. Arch Histol Cytol 65:245–250PubMedGoogle Scholar
  186. Yanagisawa H, Kurihara S, Kimura K et al (1988) A novel peptide vasoconstrictor, endothelin, is produced by vascular endothelium and modulates smooth muscle Ca2+ channels. J Hypertens Suppl 6:S188–S191Google Scholar
  187. Yang G, Wu L, Jiang B et al (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 322:188Google Scholar
  188. Yosipiv IV, Dipp S, El-Dahr SS (1994) Ontogeny of somatic angiotensin-converting enzyme. Hypertension:23, 369–374Google Scholar
  189. Yosipiv IV, El-Dahr SS (1995) Developmental regulation of ACE gene expression by endogenous kinins and angiotensin II. Am J Physiol 269:F172–F179PubMedGoogle Scholar
  190. Yosipiv IV, El-Dahr SS (1996) Activation of angiotensin-generating systems in the developing rat kidney. Hypertension 27:281–286PubMedGoogle Scholar
  191. Yosipiv IV, Dipp S, El-Dahr SS (1997) Role of bradykinin B2 receptors in neonatal kidney growth. J Am Soc Nephrol 8:920–928PubMedGoogle Scholar
  192. Yu ZY, Lumbers ER, Simonetta G (2002) The cardiovascular and renal effects of acute and chronic inhibition of nitric oxide production in fetal sheep. Exp Physiol 87:343–351PubMedGoogle Scholar
  193. Zeller R, Bloch KD, Williams BS et al (1987) Localized expression of the atrial natriuretic factor gene during cardiac embryogenesis. Genes Dev 1:693–698PubMedGoogle Scholar
  194. Zhang W, Xia X, Reisenauer MR et al (2007) Aldosterone-induced Sgk1 relieves Dot1a–Af9-mediated transcriptional repression of epithelial Na+ channel alpha. J Clin Invest 117:773–783PubMedPubMedCentralGoogle Scholar
  195. Zhong JC, Huang DY, Yang YM et al (2004) Upregulation of angiotensin-converting enzyme 2 by all-trans retinoic acid in spontaneously hypertensive rats. Hypertension 44:907–912PubMedGoogle Scholar
  196. Zhou MS, Schulman IH, Raij L (2004) Nitric oxide, angiotensin II, and hypertension. Semin Nephrol 24:366–378PubMedGoogle Scholar
  197. Zhu L, Sui L, Wu L, et al. (2015). Association between essential hypertension and three vasoactive peptides, urotensin II, endothelin and adrenomedullin. Clin Exp Hypertens 37:604–608.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of PediatricsTulane UniversityNew OrleansUSA

Section editors and affiliations

  • Julie R. Ingelfinger
    • 1
  1. 1.Pediatric Nephrology UnitMassGeneral Hospital for Children at MGH, Harvard Medical SchoolBostonUSA

Personalised recommendations