Neurohumoral and Autonomic Regulation of Blood Pressure

  • Jeffrey L. SegarEmail author
Reference work entry


Interacting neural, hormonal, and metabolic mechanisms act locally and systemically to regulate cardiovascular function. This chapter discusses the basic physiological mechanisms of the neurohumoral and autonomic contributions to blood pressure regulation. Much that we will present about these mechanisms stems from studies in experimental animal models. Differential rates of maturation of these systems affect their ability to maintain blood pressure and delivery of oxygen and nutrients at specific times of life. This chapter outlines autonomic control of the fetal and postnatal cardiovascular system, particularly highlighting developmental changes in arterial baroreflex, cardiopulmonary reflex, and chemoreflex function. Additionally, humoral factors that act within the central and peripheral nervous system to influence sympathovagal balance will be discussed.


Autonomic Baroreflex Blood pressure Fetus Parasympathetic Sympathetic 


  1. Abboud F, Thames M (1983) Interaction of cardiovascular reflexes in circulatory control. In: Shepherd JT, Abboud FM (eds) Handbook of physiology. Section 2, Vol III, Part 2. American Physiological Society, Bethesda, pp 675–753Google Scholar
  2. Alkon A, Boyce WT, Davis NV, Eskenazi B (2011) Developmental changes in autonomic nervous system resting and reactivity measures in Latino children from 6 to 60 months of age. J Dev Behav Pediatr 32(9):668–677PubMedGoogle Scholar
  3. Alper RH, Jacob JH, Brody MJ (1987) Regulation of arterial pressure lability in rats with chronic sinoaortic deafferentation. Am J Phys 253:H466–H474Google Scholar
  4. Andresen MC (1984) Short and long-term determinants of baroreceptor function in aged normotensive and spontaneously hypertensive rats. Circ Res 54:750–759PubMedGoogle Scholar
  5. Andriessen P, Oetomo SB, Peters C, Vermeulen B, Wijn PF, Blanco CE (2005) Baroreceptor reflex sensitivity in human neonates: the effect of postmenstrual age. J Physiol 568(Pt 1):333–341PubMedPubMedCentralGoogle Scholar
  6. Anwar MA, Schwab M, Poston L, Nathanielsz PW (1999) Betamethasone-mediated vascular dysfunction and changes in hematological profile in the ovine fetus. Am J Phys 276:H1137–H1143Google Scholar
  7. Assali NS, Brinkman CR, Wood R Jr, Danavino A, Nuwayhid B (1978) Ontogenesis of the autonomic control of cardiovascular function in the sheep. In: Longo LD, Reneau DD (eds) Fetal and newborn cardiovascular physiology. Garland STPM Press, New York, pp 47–91Google Scholar
  8. Baker DG, Coleridge HM, Coleridge JCG (1979) Vagal afferent C fibers from the ventricle. In: Hainsworth R, Kidd C, Linden RJ (eds) Cardiac receptors. Cambridge University Press, Cambridge, p 117Google Scholar
  9. Barres C, Lewis SJ, Jacob HJ, Brody MJ (1992) Arterial pressure lability and renal sympathetic nerve activity are disassociated in SAD rats. Am J Phys 263:R639–R646Google Scholar
  10. Bauer DJ (1939) Vagal reflexes appearing in the rabbit at different ages. J Physiol 95:187–202PubMedPubMedCentralGoogle Scholar
  11. Bennet L, Rossenrode S, Gunning MI, Gluckman PD, Gunn AJ (1999) The cardiovascular and cerebrovascular responses of the immature fetal sheep to acute umbilical cord occlusion. J Physiol 517(Pt 1):247–257PubMedPubMedCentralGoogle Scholar
  12. Berecek KH, Swords BH (1990) Central role for vasopressin in cardiovascular regulation and the pathogenesis of hypertension. Hypertension 16:213–224PubMedGoogle Scholar
  13. Biscoe TJ, Purves MJ, Sampson SR (1969) Types of nervous activity which may be recorded from the carotid sinus nerve in the sheep foetus. J Physiol 202:1–23PubMedPubMedCentralGoogle Scholar
  14. Bishop VS, Haywood JR (1991) Hormonal control of cardiovascular reflexes. In: Zucker IH, Gilmore JP (eds) Reflex control of the circulation. CRC Press, Boca Raton, pp 253–271Google Scholar
  15. Bishop VS, Hasser EM, Nair UC (1987) Baroreflex control of renal nerve activity in conscious animals. Circ Res 61:I76–I81PubMedGoogle Scholar
  16. Blanco CE, Dawes GS, Hanson MA, McCooke HB (1984) The response to hypoxia of arterial chemoreceptors in fetal sheep and newborn lambs. J Physiol 351:25–37PubMedPubMedCentralGoogle Scholar
  17. Blanco CE, Dawes GS, Hanson MA, McCooke HB (1988a) Carotid baroreceptors in fetal and newborn sheep. Pediatr Res 24:342–346PubMedGoogle Scholar
  18. Blanco CE, Hanson MA, McCooke HB (1988b) Effects on carotid chemoreceptor resetting of pulmonary ventilation in the fetal lamb in utero. J Dev Physiol 10(2):167–174PubMedGoogle Scholar
  19. Booth LC, Malpas SC, Barrett CJ, Guild SJ, Gunn AJ, Bennet L (2009) Is baroreflex control of sympathetic activity and heart rate active in the preterm fetal sheep? Am J Physiol Regul Integr Comp Physiol 296(3):R603–R609PubMedGoogle Scholar
  20. Booth LC, Bennet L, Guild SJ, Barrett CJ, May CN, Gunn AJ, Malpas SC (2011a) Maturation-related changes in the pattern of renal sympathetic nerve activity from fetal life to adulthood. Exp Physiol 96(2):85–93PubMedGoogle Scholar
  21. Booth LC, Gunn AJ, Malpas SC, Barrett CJ, Davidson JO, Guild SJ, Bennet L (2011b) Baroreflex control of renal sympathetic nerve activity and heart rate in near-term fetal sheep. Exp Physiol 96(8):736–744PubMedGoogle Scholar
  22. Braga VA, Medeiros IA, Ribeiro TP, Franca-Silva MS, Botelho-Ono MS, Guimaraes DD (2011) Angiotensin-II-induced reactive oxygen species along the SFO-PVN-RVLM pathway: implications in neurogenic hypertension. Braz J Med Biol Res = Revista brasileira de pesquisas medicas e biologicas/Sociedade Brasileira de Biofisica [et al] 44(9):871–876PubMedGoogle Scholar
  23. Brinkman CRI, Ladner C, Weston P, Assali NS (1969) Baroreceptor functions in the fetal lamb. Am J Phys 217:1346–1351Google Scholar
  24. Buckley NM, Gootman PM, Gootman GD, Reddy LC, Weaver LC, Crane LA (1976) Age-dependent cardiovascular effects of afferent stimulation in neonatal pigs. Biol Neonate 30:268–279Google Scholar
  25. Bunnemann B, Fuxe K, Ganten D (1993) The renin-angiotensin system in the brain: an update 1993. Reg Peptides 46:487–509Google Scholar
  26. Carroll JL, Kim I (2005) Postnatal development of carotid body glomus cell O2 sensitivity. Respir Physiol Neurobiol 149(1–3):201–215PubMedGoogle Scholar
  27. Chapleau MW, Hajduczok G, Abboud FM (1988) Mechanisms of resetting of arterial baroreceptors: an overview. Am J Med Sci 295:327–334PubMedGoogle Scholar
  28. Chapleau MW, Hajduczok G, Abboud FM (1991) Resetting of the arterial baroreflex: peripheral and central mechanisms. In: Zucker IH, Gilmore JP (eds) Reflex control of the circulation. CRC Press, Boca Raton, pp 165–194Google Scholar
  29. Charkoudian N, Rabbitts JA (2009) Sympathetic neural mechanisms in human cardiovascular health and disease. Mayo Clin Proc 84(9):822–830PubMedPubMedCentralGoogle Scholar
  30. Charkoudian N, Joyner MJ, Johnson CP, Eisenach JH, Dietz NM, Wallin BG (2005) Balance between cardiac output and sympathetic nerve activity in resting humans: role in arterial pressure regulation. J Physiol 568(Pt 1):315–321PubMedPubMedCentralGoogle Scholar
  31. Charkoudian N, Joyner MJ, Sokolnicki LA, Johnson CP, Eisenach JH, Dietz NM, Curry TB, Wallin BG (2006) Vascular adrenergic responsiveness is inversely related to tonic activity of sympathetic vasoconstrictor nerves in humans. J Physiol 572(Pt 3):821–827PubMedPubMedCentralGoogle Scholar
  32. Chatow U, Davidson S, Reichman BL, Akselrod S (1995) Development and maturation of the autonomic nervous system in premature and full-term infants using spectral analysis of heart rate fluctuations. Pediatr Res 37:294–302PubMedGoogle Scholar
  33. Chen H-G, Wood CE, Bell ME (1992) Reflex control of fetal arterial pressure and hormonal responses to slow hemorrhage. Am J Phys 262:H225–H233Google Scholar
  34. Chirico D, Liu J, Klentrou P, Shoemaker JK, O’Leary DD (2015) The effects of sex and pubertal maturation on cardiovagal baroreflex sensitivity. J Pediatr 167(5):1067–1073PubMedGoogle Scholar
  35. Chlorakos A, Langille BL, Adamson SL (1998) Cardiovascular responses attenuate with repeated NO synthesis inhibition in conscious fetal sheep. Am J Phys 274:H1472–H1480Google Scholar
  36. Clairambault J, Curzi-Dascalova L, Kauffmann F, Médigue C, Leffler C (1992) Heart rate variability in normal sleeping full-term and preterm neonates. Early Hum Dev 28:169–183PubMedGoogle Scholar
  37. Clapp JF, Szeto HH, Abrams R, Mann LI (1980) Physiologic variability and fetal electrocortical activity. Am J Obstet Gynecol 136:1045–1050PubMedGoogle Scholar
  38. Cohn HE, Sacks EJ, Heymann MA, Rudolph AM (1974) Cardiovascular responses to hypoxemia and acidemia in fetal lambs. Am J Obstet Gynecol 120(6):817–824PubMedGoogle Scholar
  39. Cornish KG, Barazanji MW, Yong T, Gilmore JP (1989) Volume expansion attenuates baroreflex sensitivity in the conscious nonhuman primate. Am J Phys 257:R595–R598Google Scholar
  40. Cozzolino D, Grandone A, Cittadini A, Palmiero G, Esposito G, De Bellis A, Furlan R, Perrotta S, Perrone L, Torella D, Miraglia Del Giudice E (2015) Subclinical myocardial dysfunction and cardiac autonomic dysregulation are closely associated in obese children and adolescents: the potential role of insulin resistance. PLoS One 10(4):e0123916PubMedPubMedCentralGoogle Scholar
  41. Dampney RA (2016) Central neural control of the cardiovascular system: current perspectives. Adv Physiol Educ 40(3):283–296PubMedGoogle Scholar
  42. Dampney RA, Coleman MJ, Fontes MA, Hirooka Y, Horiuchi J, Li YW, Polson JW, Potts PD, Tagawa T (2002) Central mechanisms underlying short- and long-term regulation of the cardiovascular system. Clin Exp Pharmacol Physiol 29(4):261–268PubMedGoogle Scholar
  43. David M, Hirsch M, Karin J, Toledo E, Akselrod S (2007) An estimate of fetal autonomic state by time-frequency analysis of fetal heart rate variability. J Appl Physiol 102(3):1057–1064PubMedGoogle Scholar
  44. Dawes GS (1961) Changes in the circulation at birth. Br Med Bull 17:148–153PubMedGoogle Scholar
  45. Dawes GS, Johnston BM, Walker DW (1980) Relationship of arterial pressure and heart rate in fetal, new-born and adult sheep. J Physiol 309:405–417PubMedPubMedCentralGoogle Scholar
  46. Derks JB, Giussani DA, Jenkins SL, Wentworth RA, Visser GHA, Padbury JF, Nathanielsz PW (1997) A comparative study of cardiovascular, endocrine and behavioural effects of betamethasone and dexamethasone administration to fetal sheep. J Physiol 499:217–226PubMedPubMedCentralGoogle Scholar
  47. Docherty CC, Kalmar-Nagy J (2001) Development of fetal vascular responses to endothelin-1 and acetylcholine in the sheep. Am J Phys 280:R554–R562Google Scholar
  48. Docherty CC, Kalmar-Nagy J, Engelen M, Koenen SV, Nijland M, Kuc RE, Davenport AP, Nathanelsz PW (2001) Effect of in vivo fetal infusion of dexamethasone at 0.75 GA on fetal ovine resistance artery responses to ET-1. Am J Phys 281:R261–R268Google Scholar
  49. Dodt C, Keyser B, Molle M, Fehm HL, Elam M (2000) Acute suppression of muscle sympathetic nerve activity by hydrocortisone in humans. Hypertension 35:758–763PubMedGoogle Scholar
  50. Downing SE (1960) Baroreceptor reflexes in new-born rabbits. J Physiol 150:201–213PubMedPubMedCentralGoogle Scholar
  51. Ellsbury DL, Smith OJ, Segar JL (2000) Ablation of the paraventricular nucleus attenuates sympathoexcitation at birth. Pediatr Res 39:244AGoogle Scholar
  52. Ervin MG, Ross MG, Leake RD, Fisher DA (1992) V1 and V2-receptor contributions to ovine fetal renal and cardiovascular responses to vasopressin. Am J Phys 262:R636–R643Google Scholar
  53. Ervin MG, Padbury JF, Polk DH, Ikegami M, Berry LM, Jobe AH (2000) Antenatal glucocorticoids alter premature newborn lamb neuroendocrine and endocrine responses to hypoxia. Am J Phys 279:R830–R838Google Scholar
  54. Eyre EL, Duncan MJ, Birch SL, Fisher JP (2014) The influence of age and weight status on cardiac autonomic control in healthy children: a review. Auton Neurosci 186:8–21PubMedGoogle Scholar
  55. Fifer WP, Greene M, Hurtado A, Myers MM (1999) Cardiorespiratory responses to bidirectional tilts in infants. Early Hum Dev 55(3):265–279PubMedGoogle Scholar
  56. Fitzgibbon LK, Coverdale NS, Phillips AA, Shoemaker JK, Klentrou P, Wade TJ, Cairney J, O’Leary DD (2012) The association between baroreflex sensitivity and blood pressure in children. Appl Physiol Nutr Metab 37(2):301–307PubMedGoogle Scholar
  57. Fletcher AJW, McGarrigle HHG, Edwards CMB, Fowden AL (2002) Effects of low dose dexamethasone treatment on basal cardiovascular and endocrine function in fetal sheep during late gestation. J Physiol 545:649–660PubMedPubMedCentralGoogle Scholar
  58. Fletcher AJ, Gardner DS, Edwards CM, Fowden AL, Giussani DA (2003) Cardiovascular and endocrine responses to acute hypoxaemia during and following dexamethasone infusion in the ovine fetus. J Physiol 549(Pt 1):271–287PubMedPubMedCentralGoogle Scholar
  59. Fletcher AJ, Gardner DS, Edwards CM, Fowden AL, Giussani DA (2006) Development of the ovine fetal cardiovascular defense to hypoxemia towards full term. Am J Physiol Heart Circ Physiol 291(6):H3023–H3034PubMedGoogle Scholar
  60. Gai WP, Messenger JP, Yu YH, Gieroba ZJ, Blessing WW (1995) Nitric oxide-synthesising neurons in the central subnucleus of the nucleus tractus solitarius provide a major innervation of the rostral nucleus ambiguus in the rabbit. J Comp Neurol 357(3):348–361PubMedGoogle Scholar
  61. Gardner DS, Fletcher JW, Bloomfield MR, Fowden AL, Giussani DA (2002) Effects of prevailing hypoxaemia, acidaemia or hypoglycaemia upon the cardiovascular, endocrine and metabolic responses to acute hypoxaemia in the ovine fetus. J Physiol 540:351–366PubMedPubMedCentralGoogle Scholar
  62. Gebber GL (1990) Central determinants of sympathetic nerve discharge. In: Loewy AD, Spyer KM (eds) Central regulation of autonomic function. Oxford University Press, New York, pp 126–144Google Scholar
  63. Genovesi S, Pieruzzi F, Giussani M, Tono V, Stella A, Porta A, Pagani M, Lucini D (2008) Analysis of heart period and arterial pressure variability in childhood hypertension: key role of baroreflex impairment. Hypertension 51(5):1289–1294PubMedGoogle Scholar
  64. Giussani DA, Spencer JAD, Moore PJ, Bennet L, Hanson MA (1993) Afferent and efferent components of the cardiovascular reflex responses to acute hypoxia in term fetal sheep. J Physiol 461:431–449PubMedPubMedCentralGoogle Scholar
  65. Giussani DA, McGarrigle HH, Moore PJ, Bennet L, Spencer JA, Hanson MA (1994a) Carotid sinus nerve section and the increase in plasma cortisol during acute hypoxia in fetal sheep. J Physiol 477(Pt 1):75–80PubMedPubMedCentralGoogle Scholar
  66. Giussani DA, McGarrigle HHG, Spencer JAD, Moore PJ, Bennet L, Hanson MA (1994b) Effect of carotid denervation on plasma vasopressin levels during acute hypoxia in the late-gestation sheep fetus. J Physiol 477:81–87PubMedPubMedCentralGoogle Scholar
  67. Goetz KL, Madwed JB, Leadley RJJ (1991) Atrial receptors: reflex effects in quadrupeds. In: Reflex control of the circulation. CRC Press, Boca Raton, p 291Google Scholar
  68. Gomez RA, Meernik JG, Kuehl WD, Robillard JE (1984) Developmental aspects of the renal response to hemorrhage during fetal life. Pediatr Res 18:40–46PubMedGoogle Scholar
  69. Gootman PM (1991) Developmental aspects of reflex control of the circulation. In: Zucker IH, Gilmore JP (eds) Reflex control of the circulation. CRC Press, Boca Raton, pp 965–1027Google Scholar
  70. Gootman PM, Buckley BJ, DiRusso SM, Gootman N, Yao AC, Pierce PE, Griswold PG, Epstein MD, Cohen HL, Nudel DB (1986) Age-related responses to stimulation of cardiopulmonary receptors in swine. Am J Phys 251:H748–H755Google Scholar
  71. Gournay V, Drouin E, Roze JC (2002) Development of baroreflex control of heart rate in preterm and full term infants. Arch Dis Child Fetal Neonatal Ed 86(3):F151–F154PubMedPubMedCentralGoogle Scholar
  72. Grünfeld JP, Eloy L (1987) Glucocorticoids modulate vascular reactivity in the rat. Hypertension 10:608–618PubMedGoogle Scholar
  73. Grünfled JP (1990) Glucocorticoids in blood pressure regulation. Horm Res 34:111–113Google Scholar
  74. Guillery EN, Robillard JE (1993) The renin-angiotensin system and blood pressure regulation during infancy and childhood. In: Rocchini AP (ed) The pediatric clinics of North America: childhood hypertension. W.B. Saunders Company, Philadelphia, pp 61–77Google Scholar
  75. Gunn TR, Johnston BM, Iwamoto HS, Fraser M, Nicholls MG, Gluckman PD (1985) Haemodynamic and catecholamine responses to hypothermia in the fetal sheep in utero. J Dev Physiol 7:241–249PubMedGoogle Scholar
  76. Gunn TR, Ball KT, Power GG, Gluckman PD (1991) Factors influencing the initiation of nonshivering thermogenesis. Am J Obstet Gynecol 164:210–217PubMedGoogle Scholar
  77. Gupta BN, Thames MD (1983) Behavior of left ventricular mechanoreceptors with myelinated and nonmyelinated afferent vagal fibers in cats. Circ Res 52:291–301PubMedGoogle Scholar
  78. Hainsworth R (1991) Reflexes from the heart. Physiol Rev 71:617–658PubMedGoogle Scholar
  79. Hajduczok G, Chapleau MW, Abboud FM (1991a) Increase in sympathetic activity with age: II. Role of impairment of cardiopulmonary baroreflexes. Am J Phys 260:H1121–H1127Google Scholar
  80. Hajduczok G, Chapleau MW, Johnson SL, Abboud FM (1991b) Increase in sympathetic activity with age. I. Role of impairment of arterial baroreflexes. Am J Phys 260:H1113–H1120Google Scholar
  81. Hanson MA (1997) Role of chemoreceptors in effects of chronic hypoxia. Comp Biochem Physiol 119A:695–703Google Scholar
  82. Hanson MA, Kumar P, Williams BA (1989) The effect of chronic hypoxia upon the development of respiratory chemoreflexes in the newborn kitten. J Physiol 411:563–574PubMedPubMedCentralGoogle Scholar
  83. Hart EC, Charkoudian N, Wallin BG, Curry TB, Eisenach JH, Joyner MJ (2009) Sex differences in sympathetic neural-hemodynamic balance: implications for human blood pressure regulation. Hypertension 53(3):571–576PubMedPubMedCentralGoogle Scholar
  84. Head GA, Mayorov DN (2001) Central angiotensin and baroreceptor control of circulation. Ann N Y Acad Sci 940:361–379PubMedGoogle Scholar
  85. Heesch CM, Abboud FM, Thames MD (1984) Acute resetting of carotid sinus baroreceptors. II. Possible involvement of electrogenic Na+ pump. Am J Phys 247:H833–H839Google Scholar
  86. Herrera EA, Kane AD, Hansell JA, Thakor AS, Allison BJ, Niu Y, Giussani DA (2012) A role for xanthine oxidase in the control of fetal cardiovascular function in late gestation sheep. J Physiol 590(Pt 8):1825–1837PubMedPubMedCentralGoogle Scholar
  87. Hertzberg T, Lagercrantz H (1987) Postnatal sensitivity of the peripheral chemoreceptors in newborn infants. Arch Dis Child 62:1238–1241PubMedPubMedCentralGoogle Scholar
  88. Hertzberg T, Hellstrom S, Holgert H, Lagercrantz H, Pequignot JM (1992) Ventilatory response to hyperoxia in newborn rats born in hypoxia – possible relationship to carotid body dopamine. J Physiol 456:645–654PubMedPubMedCentralGoogle Scholar
  89. Hilton SM (1982) The defense-arousal system and its relevance for circulatory and respiratory control. J Exp Biol 100:159–174PubMedGoogle Scholar
  90. Hirooka Y (2011) Oxidative stress in the cardiovascular center has a pivotal role in the sympathetic activation in hypertension. Hypertens Res 34(4):407–412PubMedGoogle Scholar
  91. Irion GL, Mack CE, Clark KE (1990) Fetal hemodynamic and fetoplacental vasopressin response to exogenous arginine vasopressin. Am J Obstet Gynecol 162:115–120Google Scholar
  92. Ismay MJ, Lumbers ER, Stevens AD (1979) The action of angiotensin II on the baroreflex response of the conscious ewe and the conscious fetus. J Physiol 288:467–479PubMedPubMedCentralGoogle Scholar
  93. Itskovitz J, LaGamma EF, Rudolph AM (1983) Baroreflex control of the circulation in chronically instrumented fetal lambs. Circ Res 52:589–596PubMedGoogle Scholar
  94. Iwamota HS, Rudolph AM (1979) Effects of endogenous angiotensin II on the fetal circulation. J Dev Physiol 1:283–293Google Scholar
  95. Iwamota HS, Rudolph AM, Mirkin BL, Keil LC (1983) Circulatory and humoral responses of sympathectomized fetal sheep to hypoxemia. Am J Phys 245:H267–H772Google Scholar
  96. Jensen A, Hanson MA (1995) Circulatory responses to acute asphyxia in intact and chemodenervated fetal sheep near term. Reprod Fertil Dev 7(5):1351–1359PubMedGoogle Scholar
  97. Jensen A, Bamford OS, Dawes GS, Hofmeyr G, Parkes MJ (1986) Changes in organ blood flow between high and low voltage electrocortical activity in fetal sheep. J Dev Physiol 8:187–194PubMedGoogle Scholar
  98. Jensen EC, Bennet L, Guild SJ, Booth LC, Stewart J, Gunn AJ (2009) The role of the neural sympathetic and parasympathetic systems in diurnal and sleep state-related cardiovascular rhythms in the late-gestation ovine fetus. Am J Physiol Regul Integr Comp Physiol 297(4):R998–R1008PubMedGoogle Scholar
  99. Jimbo M, Suzuki H, Ichikawa M, Kumagai K, Nishizawa M, Saruta T (1994) Role of nitric oxide in regulation of baroreceptor reflex. J Auton Nerv Syst 50:209–219PubMedGoogle Scholar
  100. Jones OW III, Cheung CY, Brace RA (1991) Dose-dependent effects of angiotensin II on the ovine fetal cardiovascular system. Am J Obstet Gynecol 165:1524–1533PubMedGoogle Scholar
  101. Jones PP, Shapiro LF, Keisling GA, Jordan J, Shannon JR, Quaife RA, Seals DR (2001) Altered autonomic support of arterial blood pressure with age in healthy men. Circulation 104(20):2424–2429PubMedGoogle Scholar
  102. Joyner MJ, Charkoudian N, Wallin BG (2010) Sympathetic nervous system and blood pressure in humans: individualized patterns of regulation and their implications. Hypertension 56(1):10–16PubMedPubMedCentralGoogle Scholar
  103. Kane AD, Herrera EA, Hansell JA, Giussani DA (2012) Statin treatment depresses the fetal defence to acute hypoxia via increasing nitric oxide bioavailability. J Physiol 590(Pt 2):323–334PubMedGoogle Scholar
  104. Karin J, Hirsch M, Akselrod S (1993) An estimate of fetal autonomic state by spectral analysis of fetal heart rate fluctuations. Pediatr Res 34(2):134–138PubMedGoogle Scholar
  105. Kelly RT, Rose JC, Meis PJ, Hargrave BY, Morris M (1983) Vasopressin is important for restoring cardiovascular homeostasis in fetal lambs subjected to hemorrhage. Am J Obstet Gynecol 146:807–812PubMedGoogle Scholar
  106. Kim S, Iwao H (2001) Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacol Rev 52:11–34Google Scholar
  107. Koos BJ, Maeda T (2001) Adenosine A2A receptors mediate cardiovascular responses to hypoxia in fetal sheep. Am J Phys 280:H83–H89Google Scholar
  108. Koos BJ, Chau A, Ogunyemi D (1995) Adenosine mediates metabolic and cardiovascular responses to hypoxia in fetal sheep. J Physiol Lond 488:761–766PubMedPubMedCentralGoogle Scholar
  109. Kumar P, Hanson MA (1989) Re-setting of the hypoxic sensitivity of aortic chemoreceptors in the new-born lamb. J Dev Physiol 11:199–206PubMedGoogle Scholar
  110. Lagercrantz H, Bistoletti P (1973) Catecholamine release in the newborn at birth. Pediatr Res 11:889–893Google Scholar
  111. Lenard Z, Studinger P, Mersich B, Kocsis L, Kollai M (2004) Maturation of cardiovagal autonomic function from childhood to young adult age. Circulation 110(16):2307–2312PubMedGoogle Scholar
  112. Lin LH, Nitschke Dragon D, Jin J, Tian X, Chu Y, Sigmund C, Talman WT (2012) Decreased expression of neuronal nitric oxide synthase in the nucleus tractus solitarii inhibits sympathetically mediated baroreflex responses in rat. J Physiol 590(Pt 15):3545–3559PubMedPubMedCentralGoogle Scholar
  113. Lohmeier TE, Iliescu R (2015) The baroreflex as a long-term controller of arterial pressure. Physiology (Bethesda) 30(2):148–158Google Scholar
  114. Lohmeier TE, Iliescu R, Dwyer TM, Irwin ED, Cates AW, Rossing MA (2010) Sustained suppression of sympathetic activity and arterial pressure during chronic activation of the carotid baroreflex. Am J Physiol Heart Circ Physiol 299(2):H402–H409PubMedPubMedCentralGoogle Scholar
  115. Lucini D, de Giacomi G, Tosi F, Malacarne M, Respizzi S, Pagani M (2013) Altered cardiovascular autonomic regulation in overweight children engaged in regular physical activity. Heart 99(6):376–381PubMedGoogle Scholar
  116. Luk J, Ajaelo I, Wong V, Wong J, Chang D, Chou L, Reid IA (1993) Role of V1 receptors in the action of vasopressin on the baroreflex control of heart rate. Am J Phys 265:R524–R529Google Scholar
  117. Lumbers ER (1995) Functions of the renin-angiotensin system during development. Clin Exp Phamarcol Physiol 22:499–505Google Scholar
  118. Ma SX, Fang Q, Morgan B, Ross MG, Chao CR (2003) Cardiovascular regulation and expressions of NO synthase-tyrosine hydroxylase in nucleus tractus solitarius of ovine fetus. Am J Physiol Heart Circ Physiol 284(4):H1057–H1063PubMedGoogle Scholar
  119. Macefield VG, Williamson PM, Wilson LR, Kelly JJ, Gandevia SC, Whitworth JA (1998) Muscle sympathetic vasoconstrictor activity in hydrocortisone-induced hypertension in humans. Blood Press 7:215–222PubMedGoogle Scholar
  120. Mann LI, Duchin S, Weiss RR (1974) Fetal EEG sleep stages and physiologic variability. Am J Obstet Gynecol 119:533–538PubMedGoogle Scholar
  121. Matsuda T, Bates JN, Lewis SJ, Abboud FM, Chapleau MW (1995) Modulation of baroreceptor activity by nitric oxide and S-nitrosocysteine. Circ Res 76(3):426–433PubMedGoogle Scholar
  122. Mazurak N, Sauer H, Weimer K, Dammann D, Zipfel S, Horing B, Muth ER, Teufel M, Enck P, Mack I (2016) Effect of a weight reduction program on baseline and stress-induced heart rate variability in children with obesity. Obesity (Silver Spring) 24(2):439–445Google Scholar
  123. Mazursky JE, Segar JL, Nuyt A-M, Smith BA, Robillard JE (1996) Regulation of renal sympathetic nerve activity at birth. Am J Phys 270:R86–R93Google Scholar
  124. Mazursky JE, Birkett CL, Bedell KA, Ben-Haim SA, Segar JL (1998) Development of baroreflex influences on heart rate variability in preterm infants. Early Hum Dev 53:37–52PubMedGoogle Scholar
  125. McDonald TJ, Le WW, Hoffman GE (2000) Brainstem catecholaminergic neurons activated by hypoxemia express GR and are coordinately activated with fetal sheep hypothalamic paraventricular CRH neurons. Brain Res 885:70–78PubMedGoogle Scholar
  126. Merrill DC, Segar JL, McWeeny OJ, Smith BA, Robillard JE (1994) Cardiopulmonary and arterial baroreflex responses to acute volume expansion during fetal and postnatal development. Am J Phys 267:H1467–H1475Google Scholar
  127. Merrill DC, McWeeny OJ, Segar JL, Robillard JE (1995) Impairment of cardiopulmonary baroreflexes during the newborn period. Am J Phys 268:H134–H1351Google Scholar
  128. Merrill DC, Segar JL, McWeeny OJ, Robillard JE (1999) Sympathetic responses to cardiopulmonary vagal afferent stimulation during development. Am J Phys 277:H1311–H1316Google Scholar
  129. Mills E, Smith PG (1986) Mechanisms of adrenergic control of blood pressure in developing rats. Am J Phys 250(2 Pt 2):R188–R192Google Scholar
  130. Minisi AJ, Thames MD (1991) Reflexes from ventricular receptors with vagal afferents. In: Zucker IH, Gilmore JP (eds) Reflex control of the circulation. CRC Press, Boca Raton, p 359Google Scholar
  131. Minoura S, Gilbert RD (1986) Postnatal changes of cardiac function in lambs: effects of ganglionic block and afterload. J Dev Physiol 9:123–135Google Scholar
  132. Molnar J, Nijland M, Howe DC, Nathanelsz PW (2002) Evidence for microvascular dysfunction after prenatal dexamethasone at 0.7, 0.75, and 0.8 gestation in sheep. Am J Phys 283:R561–R567Google Scholar
  133. Myers DA, Robertshaw D, Nathanielsz PW (1990) Effect of bilateral splanchnic nerve section on adrenal function in the ovine fetus. Endocrinology 127(5):2328–2335PubMedGoogle Scholar
  134. Myers MM, Gomez-Gribben E, Smith KS, Tseng A, Fifer WP (2006) Developmental changes in infant heart rate responses to head-up tilting. Acta Paediatr 95(1):77–81PubMedGoogle Scholar
  135. Ng PC, Lee CH, Bnur FL, Chan IH, Lee AW, Wong E, Chan HB, Lam CW, Lee BS, Fok TF (2006) A double-blind, randomized, controlled study of a “stress dose” of hydrocortisone for rescue treatment of refractory hypotension in preterm infants. Pediatrics 117(2):367–375PubMedGoogle Scholar
  136. Nuwayhid B, Brinkman CR, Bevan JA, Assali NS (1975) Development of autonomic control of fetal circulation. Am J Phys 228:237–344Google Scholar
  137. Nuyt A-M, Segar JL, Holley AT, O’Mara MS, Chapleau MW, Robillard JE (1996) Arginine vasopressin modulation of arterial baroreflex responses in fetal and newborn sheep. Am J Phys 271:R1643–R1653Google Scholar
  138. O’Connor SJ, Ousey JC, Gardner DS, Fowden AL, Giussani DA (2006) Development of baroreflex function and hind limb vascular reactivity in the horse fetus. J Physiol 572(Pt 1):155–164PubMedPubMedCentralGoogle Scholar
  139. O’Mara MS, Merrill DC, McWeeny OJ, Robillard JE (1995) Ontogeny and regulation of arterial and cardiopulmonary baroreflex control of renal sympathetic nerve activity (RSNA) in response to hypotensive (NH) and hypotensive hemorrhage (HH) postnatally. Pediatr Res 37:31AGoogle Scholar
  140. Ogundipe OA, Kullama LK, Stein H, Nijland MJ, Ervin G, Padbury J, Ross MG (1993) Fetal endocrine and renal responses to in utero ventilation and umbilical cord occlusion. Am J Obstet Gynecol 169:1479–1486PubMedGoogle Scholar
  141. Padbury JF, Martinez AM (1988) Sympathoadrenal system activity at birth: integration of postnatal adaptation. Sem Perinatal 12:163–172Google Scholar
  142. Padbury JF, Diakomanolis ES, Hobel CJ, Perlman A, Fisher DA (1981) Neonatal adaptation: sympatho-adrenal response to umbilical cord cutting. Pediatr Res 15:1483–1487PubMedGoogle Scholar
  143. Padbury JF, Polk DH, Ervin G, Berry LM, Ikegami M, Jobe AH (1995) Postnatal cardiovascular and metabolic responses to a single intramuscular dose of betamethasone in fetal sheep born prematurely by cesarean section. Pediatr Res 38:709–715PubMedGoogle Scholar
  144. Parer JT (1984) The effect of atropine on heart rate and oxygen consumption of the hypoxic fetus. Am J Obstet Gynecol 148(8):1118–1122PubMedGoogle Scholar
  145. Persson PB, Ehmke H, Kirchheim HR (1989) Cardiopulmonary-arterial baroreceptor interaction in control of blood pressure. NIPS 4:56–59Google Scholar
  146. Picton-Warlow CG, Mayer FE (1970) Cardiovascular responses to postural changes in the neonate. Arch Dis Child 45:354–359PubMedPubMedCentralGoogle Scholar
  147. Ponte J, Purves MJ (1973) Types of afferent nervous activity which may be measured in the vagus nerve of the sheep foetus. J Physiol 229:51–76PubMedPubMedCentralGoogle Scholar
  148. Prabhakar NR, Kumar GK, Peng YJ (2012) Sympatho-adrenal activation by chronic intermittent hypoxia. J Appl PhysiolGoogle Scholar
  149. Provencher PH, Saltis J, Funder JW (1995) Glucocorticoids but not mineralocorticoids modulate endothelin-1 and angiotensin II binding in SHR vascular smooth muscle cells. J Steroid Biochem Mol Biol 52:219–225PubMedGoogle Scholar
  150. Raff H, Kane CW, Wood CE (1991) Arginine vasopressin responses to hypoxia and hypercapnia in late-gestation fetal sheep. Am J Phys 260:R1077–R1081Google Scholar
  151. Reid IA (1992) Interactions between ANG II, sympathetic nervous system and baroreceptor reflex in regulation of blood pressure. Am J Phys 262:E763–E778Google Scholar
  152. Reid DL, Jensen A, Phernetton TM, Rankin JHG (1990) Relationship between plasma catecholamine levels and electrocortical state in the mature fetal lamb. J Dev Physiol 13:75–79PubMedGoogle Scholar
  153. Richardson BS, Patrick JE, Abduljabbar H (1985) Cerebral oxidative metabolism in the fetal lamb: relationship to electrocortical state. Am J Obstet Gynecol 153:426–431PubMedGoogle Scholar
  154. Riquelme RA, Llanos JA, McGarrigle HH, Sanhueza EM, Hanson MA, Giussani DA (1998) Chemoreflex contribution to adrenocortical function during acute hypoxemia in the llama fetus at 0.6 to 0.7 of gestation. Endocrinology 139(5):2564–2570PubMedGoogle Scholar
  155. Robillard JE, Weitzman RE, Fisher DA, Smith FG Jr (1979) The dynamics of vasopressin release and blood volume regulation during fetal hemorrhage in the lamb fetus. Pediatr Res 13:606–610PubMedGoogle Scholar
  156. Robillard JE, Gomez RA, VanOrden D, Smith FG Jr (1982) Comparison of the adrenal and renal responses to angiotensin II in fetal lambs and adult sheep. Circ Res 50:140–147PubMedGoogle Scholar
  157. Robillard JE, Weismann DN, Gomez RA, Ayres NA, Lawton WJ, VanOrden DE (1983) Renal and adrenal responses to converting-enzyme inhibition in fetal and newborn life. Am J Phys 244:R249–R256Google Scholar
  158. Robillard JE, Nakamura KT, DiBona GF (1986) Effects of renal denervation on renal responses to hypoxemia in fetal lambs. Am J Phys 250(2 Pt 2):F294–F301Google Scholar
  159. Rossi NF, Maliszewska-Scislo M, Chen H, Black SM, Sharma S, Ravikov R, Augustyniak RA (2010) Neuronal nitric oxide synthase within paraventricular nucleus: blood pressure and baroreflex in two-kidney, one-clip hypertensive rats. Exp Physiol 95(8):845–857PubMedPubMedCentralGoogle Scholar
  160. Ruijtenbeek K, LeNoble FA, Janssen GM, Kessels CG, Fazzi GE, Blanco CE, De Mey JG (2000) Chronic hypoxia stimulates periarterial sympathetic nerve development in chicken embryo. Circulation 102:2892–2897PubMedGoogle Scholar
  161. Sanhueza EM, Johansen-Bibby AA, Fletcher AJ, Riquelme RA, Daniels AJ, Seron-Ferre M, Gaete CR, Carrasco JE, Llanos AJ, Giussani DA (2003) The role of neuropeptide Y in the ovine fetal cardiovascular response to reduced oxygenation. J Physiol 546(Pt 3):891–901PubMedPubMedCentralGoogle Scholar
  162. Sanhueza EM, Riquelme RA, Herrera EA, Giussani DA, Blanco CE, Hanson MA, Llanos AJ (2005) Vasodilator tone in the llama fetus: the role of nitric oxide during normoxemia and hypoxemia. Am J Physiol Regul Integr Comp Physiol 289(3):R776–R783PubMedGoogle Scholar
  163. Sato A, Suzuki H, Iwaita Y, Nakazato Y, Kato H, Saruta T (1992) Potentiation of inositol trisphosphate production by dexamethasone. Hypertension 19:109–115PubMedGoogle Scholar
  164. Schneider U, Schleussner E, Fiedler A, Jaekel S, Liehr M, Haueisen J, Hoyer D (2009) Fetal heart rate variability reveals differential dynamics in the intrauterine development of the sympathetic and parasympathetic branches of the autonomic nervous system. Physiol Meas 30(2):215–226PubMedGoogle Scholar
  165. Scroop GC, Marker JD, Stankewytsch B, Seamark RF (1986) Angiotensin I and II in the assessment of baroreceptor function in fetal and neonatal sheep. J Dev Physiol 8:123–137PubMedGoogle Scholar
  166. Segar JL, Hajduczok G, Smith BA, Robillard JE (1992) Ontogeny of baroreflex control of renal sympathetic nerve activity and heart rate. Am J Phys 263:H1819–H1826Google Scholar
  167. Segar JL, Merrill DC, Smith BA, Robillard JE (1994a) Role of endogenous angiotensin II on resetting of the arterial baroreflex during development. Am J Phys 266:H52–H59Google Scholar
  168. Segar JL, Mazursky JE, Robillard JE (1994b) Changes in ovine renal sympathetic nerve activity and baroreflex function at birth. Am J Phys 267:H1824–H1832Google Scholar
  169. Segar JL, Merrill DC, Smith BA, Robillard JE (1994c) Role of sympathetic activity in the generation of heart rate and arterial pressure variability in fetal sheep. Pediatr Res 35:250–254PubMedGoogle Scholar
  170. Segar JL, Minnick A, Nuyt A-M, Robillard JE (1995) Developmental changes in central vasopressin regulation of cardiovascular function. Pediatr Res 37:34AGoogle Scholar
  171. Segar JL, Minnick A, Nuyt AM, Robillard JE (1997) Role of endogenous ANG II and AT1 receptors in regulating arterial baroreflex responses in newborn lambs. Am J Phys 272:R1862–R1873Google Scholar
  172. Segar JL, Lumbers ER, Nuyt AM, Smith OJ, Robillard JE (1998) Effect of antenatal glucocorticoids on sympathetic nerve activity at birth in preterm sheep. Am J Phys 274:R160–R167Google Scholar
  173. Segar JL, Smith OJ, Holley AT (1999) Mechano- and chemoreceptor modulation of renal sympathetic nerve activity at birth in fetal sheep. Am J Phys 276:R1295–R1301Google Scholar
  174. Segar JL, Bedell KA, Smith OJ (2001) Glucocorticoid modulation of cardiovascular and autonomic function in preterm lambs: role of ANG II. Am J Phys 280:R646–R654Google Scholar
  175. Segar JL, Van Natta T, Smith OJ (2002) Effects of fetal ovine adrenalectomy on sympathetic and baroreflex responses at birth. Am J Phys 283:R460–R467Google Scholar
  176. Semenza GL (2000) HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 88:1474–1480PubMedGoogle Scholar
  177. Seri I, Tan R, Evans J (2001) Cardiovascular effects of hydrocortisone in preterm infants with pressor-resistant hypotension. Pediatrics 107(5):1070–1074PubMedGoogle Scholar
  178. Shaltout HA, Rose JC, Figueroa JP, Chappell MC, Diz DI, Averill DB (2010) Acute AT(1)-receptor blockade reverses the hemodynamic and baroreflex impairment in adult sheep exposed to antenatal betamethasone. Am J Physiol Heart Circ Physiol 299(2):H541–H547PubMedPubMedCentralGoogle Scholar
  179. Shaltout HA, Chappell MC, Rose JC, Diz DI (2011) Exaggerated sympathetic mediated responses to behavioral or pharmacological challenges following antenatal betamethasone exposure. Am J Phys Endocrinol Metab 300(6):E979–E985Google Scholar
  180. Shaltout HA, Rose JC, Chappell MC, Diz DI (2012) Angiotensin-(1-7) deficiency and baroreflex impairment precede the antenatal betamethasone exposure-induced elevation in blood pressure. Hypertension 59(2):453–458PubMedPubMedCentralGoogle Scholar
  181. Shi L, Mao C, Thornton SN, Sun W, Wu J, Yao J, Xu Z (2005) Effects of intracerebroventricular losartan on angiotensin II-mediated pressor responses and c-fos expression in near-term ovine fetus. J Comp Neurol 493(4):571–579PubMedGoogle Scholar
  182. Shi L, Mao C, Zeng F, Hou J, Zhang H, Xu Z (2010) Central angiotensin I increases fetal AVP neuron activity and pressor responses. Am J Phys Endocrinol Metab 298(6):E1274–E1282Google Scholar
  183. Shinebourne EA, Vapaavuori EK, Williams RL, Heymann MA, Rudolph AM (1972) Development of baroreflex activity in unanesthetized fetal and neonatal lambs. Circ Res 31:710–718PubMedGoogle Scholar
  184. Slotkin TA, Lappi SE, McCook EC, Tayyeb MI, Eylers JP, Seidler FJ (1992) Glucocorticoids and the development of neuronal function: effects of prenatal dexamethasone exposure on central noradrenergic activity. Biol Neonate 61:326–336PubMedGoogle Scholar
  185. Smith FG, Abu-Amarah I (1998) Renal denervation alters cardiovascular and endocrine responses to hemorrhage in conscious newborn lambs. Am J Phys 275:H285–H291Google Scholar
  186. Smith PM, Ferguson AV (2010) Circulating signals as critical regulators of autonomic state – central roles for the subfornical organ. Am J Physiol Regul Integr Comp Physiol 299(2):R405–R415PubMedGoogle Scholar
  187. Smith FG, Smith BA, Segar JL, Robillard JE (1991) Endocrine effects of ventilation, oxygenation and cord occlusion in near-term fetal sheep. J Dev Physiol 15:133–138PubMedGoogle Scholar
  188. Smith F, Klinkefus J, Robillard J (1992) Effects on volume expansion on renal sympathetic nerve activity and cardiovascular and renal function in lambs. Am J Phys 262:R651–R658Google Scholar
  189. Spyer KM (1994) Central nervous mechanisms contributing to cardiovascular control. J Physiol 474:1–19PubMedPubMedCentralGoogle Scholar
  190. Stark RI, Daniel SS, Husain MK, Tropper PJ, James LS (1985) Cerebrospinal fluid and plasma vasopressin in the fetal lamb: basal concentration and the effect of hypoxia. Endocrinology 116:65–72PubMedGoogle Scholar
  191. Stark RI, Myers MM, Daniel SS, Garland M, Kim YI (1999) Gestational age related changes in cardiac dynamics of the fetal baboon. Early Hum Dev 53(3):219–237PubMedGoogle Scholar
  192. Stein HM, Oyama K, Martinez A, Chappell BA, Buhl E, Blount L, Padbury JF (1993) Effects of corticosteroids in preterm sheep on adaptation and sympathoadrenal mechanisms at birth. Am J Phys 264:E763–E769Google Scholar
  193. Sterni LM, Bamford OS, Tomares SM, Montrose MH, Carroll JL (1995) Developmental changes in intracellular Ca2+ response of carotid chemoreceptor cells to hypoxia. Am J Phys 268:L801–L808Google Scholar
  194. Szymonowicz W, Walker AM, Yu VY, Stewart ML, Cannata J, Cussen L (1990) Regional cerebral blood flow after hemorrhagic hypotension in the preterm, near-term, and newborn lamb. Pediatr Res 28(4):361–366PubMedGoogle Scholar
  195. Tabsh K, Nuwayhid B, Ushioda E, Erkkola R, Brinkman CR, Assali NS (1982) Circulatory effects of chemical sympathectomy in fetal, neonatal and adult sheep. Am J Phys 243:H113–H122Google Scholar
  196. Tanaka K, Chiba T (1994) Nitric oxide synthase containing neurons in the carotid body and sinus of the guinea pig. Microsc Res Tech 29(2):90–93PubMedGoogle Scholar
  197. Tanaka H, Thulesius O, Borres M, Yamaguchi H, Mino M (1994) Blood pressure responses in Japanese and Swedish children in the supine and standing position. Eur Heart J 15(8):1011–1019PubMedGoogle Scholar
  198. Tangalakis T, Lumbers ER, Moritz KM, Towstoless MK, Wintour EM (1992) Effect of cortisol on blood pressure and vascular reactivity in the ovine fetus. Exp Physiol 77:709–717PubMedGoogle Scholar
  199. Thakor AS, Giussani DA (2009a) Effects of acute acidemia on the fetal cardiovascular defense to acute hypoxemia. Am J Physiol Regul Integr Comp Physiol 296(1):R90–R99PubMedGoogle Scholar
  200. Thakor AS, Giussani DA (2009b) Nitric oxide reduces vagal baroreflex sensitivity in the late gestation fetus. Pediatr Res 65(3):269–273PubMedGoogle Scholar
  201. Thakor AS, Richter HG, Kane AD, Dunster C, Kelly FJ, Poston L, Giussani DA (2010) Redox modulation of the fetal cardiovascular defence to hypoxaemia. J Physiol 588(Pt 21):4235–4247PubMedPubMedCentralGoogle Scholar
  202. Thames MD, Donald SE, Shepherd JT (1980) Stimulation of cardiac receptors with Veratrum alkaloids inhibits ADH secretion. Am J Phys 239:H784–H788Google Scholar
  203. Thoresen M, Cowan F, Walløe L (1991) Cardiovascular responses to tilting in healthy newborn babies. Early Hum Dev 26:213–222PubMedGoogle Scholar
  204. Togashi H, Yoshioka M, Tochihara M, Matsumoto M, Saito H (1990) Differential effects of hemorrhage on adrenal and renal nerve activity in anesthetized rats. Am J Phys 259:H1134–H1141Google Scholar
  205. Tomita H, Brace RA, Cheung CY, Longo LD (1985) Vasopressin dose-response effects on fetal vascular pressures, heart rate, and blood volume. Am J Phys 249:H974–H980Google Scholar
  206. Tomomatsu E, Nishi K (1982) Comparison of carotid sinus baroreceptor sensitivity in newborn and adult rabbits. Am J Phys 243:H546–H550Google Scholar
  207. Toney GM, Porter JP (1993) Effects of blockade of AT1 and AT2 receptors in brain on the central angiotensin II pressor response in conscious spontaneously hypertensive rats. Neuropharmacology 32:581–589PubMedGoogle Scholar
  208. Toubas PL, Silverman NH, Heymann MA, Rudolph AM (1981) Cardiovascular effects of acute hemorrhage in fetal lambs. Am J Phys 240:H45–H48Google Scholar
  209. Unger T, Rohmeiss P, Demmert G, Ganten D, Lang RE, Luft F (1987) Opposing cardiovascular effects of brain and plasma AVP: role of V1- and V2-AVP receptors. In: Buckley JP, Ferrario CM (eds) Brain peptides and catecholamines in cardiovascular regulation. Raven Press, New York, pp 393–401Google Scholar
  210. Unno N, Wong CH, Jenkins SL, Wentworth RA, Ding XY, Li C, Robertson SS, Smotherman WP, Nathanielsz PW (1999) Blood pressure and heart rate in the ovine fetus: ontogenic changes and effects of fetal adrenalectomy. Am J Phys 276:H248–H256Google Scholar
  211. Urbina EM, Bao W, Pickoff AS, Berenson GS (1998) Ethnic (black-white) contrasts in heart rate variability during cardiovascular reactivity testing in male adolescents with high and low blood pressure: the Bogalusa Heart Study. Am J Hypertens 11(2):196–202PubMedGoogle Scholar
  212. Van Bel F, Roman C, Iwamoto HS, Rudolph AM (1993) Sympathoadrenal, metabolic, and regional blood flow responses to cold in fetal sheep. Pediatr Res 34:47–50PubMedGoogle Scholar
  213. Vapaavouri EK, Shinebourne EA, Williams RL, Heymann MA, Rudolph AM (1973) Development of cardiovascular responses to autonomic blockade in intact fetal and neonatal lambs. Biol Neonate 22:177–188PubMedGoogle Scholar
  214. Vatner SF, Manders WT (1979) Depressed responsiveness of the carotid sinus reflex in conscious newborn animals. Am J Phys 237:H40–H43Google Scholar
  215. Victor RG, Thoren PN, Morgan DA, Mark AL (1989) Differential control of adrenal and renal sympathetic nerve activity during hemorrhagic hypertension in rats. Circ Res 64:686–694PubMedGoogle Scholar
  216. Wakatsuki A, Murata Y, Ninomoya Y, Masaoka N, Tyner JG, Kutty KK (1992) Physiologic baroreceptor activity in the fetal lamb. Am J Obstet Gynecol 167:820–827PubMedGoogle Scholar
  217. Waldman S, Krauss AN, Auld PAM (1979) Baroreceptors in preterm infants: their relationship to maturity and disease. Dev Med Child Neurol 21:714–722PubMedGoogle Scholar
  218. Walker AM, Cannata J, Dowling MH, Ritchie B, Maloney JE (1978) Sympathetic and parasympathetic control of heart rate in unanaesthetized fetal and newborn lambs. Biol Neonate 33:1350–1143Google Scholar
  219. Wallerath T, Witte K, Schäfer SC, Schwarz PM, Prellwitz W, Wohlfart P, Kleinert H, Lehr HA, Lemmer B, Förstermann U (1999) Down-regulation of the expression of endothelial NO synthase is likely to contribute to glucocorticoid-mediated hypertension. PNAS 96:13357–13362PubMedGoogle Scholar
  220. Wallin BG, Kunimoto MM, Sellgren J (1993) Possible genetic influence on the strength of human muscle nerve sympathetic activity at rest. Hypertension 22(3):282–284PubMedGoogle Scholar
  221. Wassink G, Bennet L, Booth LC, Jensen EC, Wibbens B, Dean JM, Gunn AJ (2007) The ontogeny of hemodynamic responses to prolonged umbilical cord occlusion in fetal sheep. J Appl Physiol 103(4):1311–1317PubMedGoogle Scholar
  222. Weitzman RE, Fisher DA, Robillard J, Erenberg A, Kennedy R, Smith F (1978) Arginine vasopressin response to an osmotic stimulus in the fetal sheep. Pediatr Res 12:35–38PubMedGoogle Scholar
  223. Witcombe NB, Yiallourou SR, Sands SA, Walker AM, Horne RS (2012) Preterm birth alters the maturation of baroreflex sensitivity in sleeping infants. Pediatrics 129(1):e89–e96PubMedGoogle Scholar
  224. Wood CE (1995) Baroreflex and chemoreflex control of fetal hormone secretion. Reprod Fertil Dev 7:479–489PubMedGoogle Scholar
  225. Wood CE, Chen HG (1989) Acidemia stimulates ACTH, vasopressin, and heart rate responses in fetal sheep. Am J Phys 257:R344–R349Google Scholar
  226. Wood CE, Chen H-G, Bell ME (1989) Role of vagosympathetic fibers in the control of adrenocorticotropic hormone, vasopressin, and renin responses to hemorrhage in fetal sheep. Circ Res 64:515–523PubMedGoogle Scholar
  227. Wood CE, Chen GF, Keller-Wood M (2005) Expression of nitric oxide synthase isoforms is reduced in late-gestation ovine fetal brainstem. Am J Physiol Regul Integr Comp Physiol 289(2):R613–R619PubMedGoogle Scholar
  228. Woods JR, Dandavino A, Murayama K, Brinkman CR, Assali NS (1977) Autonomic control of cardiovascular functions during neonatal development and in adult sheep. Circ Res 40:401–407PubMedGoogle Scholar
  229. Xu Z, Shi L, Hu F, White R, Stewart L, Yao J (2003) In utero development of central ANG-stimulated pressor response and hypothalamic fos expression. Brain Res Dev Brain Res 145(2):169–176PubMedGoogle Scholar
  230. Xu Z, Shi L, Yao J (2004) Central angiotensin II-induced pressor responses and neural activity in utero and hypothalamic angiotensin receptors in preterm ovine fetus. Am J Physiol Heart Circ Physiol 286(4):H1507–H1514PubMedGoogle Scholar
  231. Yamanaka Y, Honma K (2006) Cardiovascular autonomic nervous response to postural change in 610 healthy Japanese subjects in relation to age. Auton Neurosci 124(1–2):125–131PubMedGoogle Scholar
  232. Yardly RW, Bowes G, Wilkinson M, Cannata JP, Maloney JE, Ritchie BC, Walker AM (1983) Increased arterial pressure variability after arterial baroreceptor denervation in fetal lambs. Circ Res 52:580–588Google Scholar
  233. Yiallourou SR, Sands SA, Walker AM, Horne RS (2011) Baroreflex sensitivity during sleep in infants: impact of sleeping position and sleep state. Sleep 34(6):725–732PubMedPubMedCentralGoogle Scholar
  234. Yiallourou SR, Sands SA, Walker AM, Horne RS (2012) Maturation of heart rate and blood pressure variability during sleep in term-born infants. Sleep 35(2):177–186PubMedPubMedCentralGoogle Scholar
  235. Yiallourou SR, Witcombe NB, Sands SA, Walker AM, Horne RS (2013) The development of autonomic cardiovascular control is altered by preterm birth. Early Hum Dev 89(3):145–152PubMedGoogle Scholar
  236. Young M (1966) Responses of the systemic circulation of the new-born infant. Br Med Bull 22:70–72PubMedGoogle Scholar
  237. Yu ZY, Lumbers ER (2000) Measurement of baroreceptor-mediated effects on heart rate variability in fetal sheep. Pediatr Res 47:233–239PubMedGoogle Scholar
  238. Yu ZY, Lumbers ER, Simonetta G (2002) The cardiovascular and renal effects of acute and chronic inhibition of nitric oxide production in fetal sheep. Exp Physiol 87:343–351PubMedGoogle Scholar
  239. Zanzinger J, Czachurski J (2000) Chronic oxidative stress in the RVLM modulates sympathetic control of circulation in pigs. Pflugers Arch 439(4):489–494PubMedGoogle Scholar
  240. Zavodna E, Honzikova N, Hrstkova H, Novakova Z, Moudr J, Jira M, Fiser B (2006) Can we detect the development of baroreflex sensitivity in humans between 11 and 20 years of age? Can J Physiol Pharmacol 84(12):1275–1283PubMedGoogle Scholar
  241. Zhao J, Han Z, Zhang X, Du S, Liu AD, Holmberg L, Li X, Lin J, Xiong Z, Gai Y, Yang J, Liu P, Tang C, Du J, Jin H (2015) A cross-sectional study on upright heart rate and BP changing characteristics: basic data for establishing diagnosis of postural orthostatic tachycardia syndrome and orthostatic hypertension. BMJ Open 5(6):e007356PubMedPubMedCentralGoogle Scholar
  242. Zoccal DB, Simms AE, Bonagamba LG, Braga VA, Pickering AE, Paton JF, Machado BH (2008) Increased sympathetic outflow in juvenile rats submitted to chronic intermittent hypoxia correlates with enhanced expiratory activity. J Physiol 586(13):3253–3265PubMedPubMedCentralGoogle Scholar
  243. Zoccal DB, Bonagamba LG, Paton JF, Machado BH (2009) Sympathetic-mediated hypertension of awake juvenile rats submitted to chronic intermittent hypoxia is not linked to baroreflex dysfunction. Exp Physiol 94(9):972–983PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Pediatrics, Roy J. and Lucille A. Carver College of MedicineUniversity of IowaIowa CityUSA

Section editors and affiliations

  • Julie R. Ingelfinger
    • 1
  1. 1.Pediatric Nephrology UnitMassGeneral Hospital for Children at MGH, Harvard Medical SchoolBostonUSA

Personalised recommendations