Skip to main content

Biomechanical Forensics in Pediatric Head Trauma

  • Living reference work entry
  • First Online:
Handbook of Human Motion
  • 220 Accesses

Abstract

Biomechanics is an essential partner with forensic medicine in the estimation of head trauma etiology. Biomechanics is used in forensic investigations typically to estimate the forces applied to the body and the resulting deformations of hard and soft tissues. By integrating animal, tissue, and cellular responses with tissue stiffness measurements, tolerable load limits can be established, and computational biomechanical models are used to simulate real-world events and estimate how and why injuries might occur. Concepts of biomechanics are reviewed, and summaries of current knowledge regarding the biomechanical injury mechanism of pediatric brain, skull, cerebral vasculature, and retina are presented. Strengths and weaknesses of animal experiments and computational models are discussed, and key recommendations for future studies articulated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bonnier C, Mesples B, Carpentier S, Henin D, Gressens P (2002) Delayed white matter injury in a murine model of shaken baby syndrome. Brain Pathol 12:320–328

    Article  Google Scholar 

  • Bylski DI, Kriewall TJ, Akkas N, Melvin JW (1986) Mechanical behavior of fetal dura mater under large deformation biaxial tension. J Biomech 19(1):19–26

    Article  Google Scholar 

  • Coats B and Margulies S (2003) Characterization of pediatric porcine skull properties during impact. Proceedings of the International Research Council of Biomechanics of Injury. Lisbon, Portugal, 57–66

    Google Scholar 

  • Coats B, Margulies S (2006a) Material properties of human infant skull and suture at high rates. J Neurotrauma 23(8):1222–1232

    Article  Google Scholar 

  • Coats B, Margulies S (2006b) Material properties of porcine parietal cortex. J Biomech 39(13):2521–2525

    Article  Google Scholar 

  • Coats B, Margulies S (2008) Potential for head injuries in infants from low-height falls. J Neurosurg Pediatr 2(5):321–330

    Article  Google Scholar 

  • Coats B, Ji S, Margulies SS (2007) Parametric study of head impact in the infant. Stapp Car Crash J 51:1–15

    Google Scholar 

  • Coats B, Binenbaum G, Peiffer R, Forbes B, Margulies S (2010) Ocular hemorrhages in neonatal porcine eyes from single, rapid rotational events. Invest Ophthalmol Vis Sci 51(9):4792–4797

    Article  Google Scholar 

  • Coats B, Smith C, Binenbaum G, Pfeiffer R, Christian C, Duhaime A, Margulies S (2016) Cyclic head rotations produce modest brain injury in infant piglets. J Neurotrauma 34(1):235–247

    Article  Google Scholar 

  • Colter J, Williams A, Moran P, Coats B (2015) Age-related changes in dynamic moduli of ovine vitreous. J Mech Behav Biomed Mater 41:315–324

    Article  Google Scholar 

  • Cory C, Jones M (2003) Can shaking alone cause fatal brain injury? A biomechanical assessment of the Duhaime shaken baby syndrome model. Med Sci Law 43(4):317–333

    Article  Google Scholar 

  • Duhaime A, Alario A, Lewander W, Schut L, Seidl LST, Nudelman S, Budenz D, Hertle R, Loporchio S (1992) Head injury in very young children: mechanisms, injury types, and ophthalmologic findings in 100 hospitalized patients under two years of age. Pediatrics 90(2):179–185

    Google Scholar 

  • Eucker S (2009) Effect of head rotation direction on closed head injury in neonatal piglets. University of Pennsylvania, Philadelphia

    Google Scholar 

  • Eucker S, Smith C, Ralston J, Friess S, Margulies S (2011) Physiological and histopathological responses following closed rotational head injury depend on direction of head motion. Exp Neurol 227(1):79–88

    Article  Google Scholar 

  • Finnie J, Manavis J, Blumbergs P (2010) Diffuse neuronal perikaryal amyloid precursor protein immunoreactivity in an ovine model of non-accidental head injury (the shaken baby syndrome). J Clin Neurosci 17:237–240

    Article  Google Scholar 

  • Finnie JW, Blumbergs PC, Manavis J, Turner RJ, Helps S, Vink R, Byard RW, Chidlow G, Sandoz B, Dutschke J, Anderson RW (2012) Neuropathological changes in a lamb model of non-accidental head injury (the shaken baby syndrome). J Clin Neurosci 19(8):1159–1164

    Article  Google Scholar 

  • Friess S, Ichord R, Ralston J, Ryall K, Halfaer M, Smith C, Margulies S (2009) Repeated traumatic brain injury affects composit cognitive function in piglets. J Neurotrauma 26(7):1111–1121

    Article  Google Scholar 

  • Gandorfer A, Putz E, Welge-Lussen U, Gruterich M, Ulbig M, Kampik A (2001) Ultrastructure of the vitreoretinal interface following plasmin assisted vitrectomy. Br J Ophthalmol 85:6–10

    Article  Google Scholar 

  • Garo A, Hrapko M, van Dommelen J, Peters G (2007) Towards a reliable characterisation of the mechanical behaviour of brain tissue: the effects of post-mortem time and sample preparation. Biorheology 44(1):51–58

    Google Scholar 

  • Gefen A, Margulies S (2004) Are in vivo and in situ brain tissues mechanically similar? J Biomech 37(9):1339–1352

    Article  Google Scholar 

  • Gefen A, Gefen N, Zhu Q, Raghupathi R, Margulies S (2003) Age-dependent changes in material properties of the brain and braincase of the rat. J Neurotrauma 20(11):1163–1177

    Article  Google Scholar 

  • Graham R, Rivara F, Ford M, Spicer C (2014) Sports-related concussion in youth: improving the science, changing the culture. National Research Council, Washington, DC

    Google Scholar 

  • Gurdjian E, Webster J, Lissner H (1950) The mechanism of skull fracture. J Neurosurg 2:106–114

    Article  Google Scholar 

  • Hans SA, Bawab SY, Woodhouse ML (2009) A finite element infant eye model to investigate retinal forces in shaken baby syndrome. Graefes Arch Clin Exp Ophthalmol 247(4):561–571

    Article  Google Scholar 

  • Ibrahim N (2009) Head injury biomechanics in toddlers: integrated clinical, anthropomorphic dummy, animal and finite element model studies – implications for age-dependence. University of Pennsylvania, Philadelphia

    Google Scholar 

  • Ibrahim N, Margulies S (2010) Biomechanics of the toddler head during low-height falls: an anthropomorphic dummy analysis. J Neurosurg Pediatr 6(1):57–68

    Article  Google Scholar 

  • Ibrahim N, Ralston J, Smith C, Margulies S (2010) Physiological and pathological responses to head rotations in toddler piglets. J Neurotrauma 27(6):1021–1035

    Article  Google Scholar 

  • Ibrahim N, Wood J, Margulies S, Christian C (2012) Influence of age and fall type on head injuries in infants and toddlers. Int J Dev Neurosci 30(3):201–206

    Article  Google Scholar 

  • Keaveny T, Hayes W (1993) Mechanical properties of cortical and trabecular bone. In: Hall B (ed) Bone, Bone growth: B, vol 7. CRC Press, Boca Raton, pp 285–344

    Google Scholar 

  • Kriewall T, McPherson F, Tsai A (1981) Bending properties and ash content of fetal cranial bone. J Biomech 14:73–79

    Article  Google Scholar 

  • Kroman A, Kress T, Porta D (2011) Fracture propagation in the human cranium: a re-testing of popular theories. Clin Anat 24:309–318

    Article  Google Scholar 

  • Linde F, Sorensen H (1993) The effect of different storage methods on the mechanical properties of trabecular bone. J Biomech 26(10):1249–1252

    Article  Google Scholar 

  • Loder R (1996) Skull thickness and halo-pin placement in children: the effects of race, gender, and laterality. J Pediatr Orthop 16(3):340–343

    Article  Google Scholar 

  • Luck J, Nightingale R, Loyd A, Prange M, Dibb A, Song Y, Fronheiser L, Myers B (2008) Tensile mechanical properties of the perinatal and pediatric PMHS osteoligamentous cervical spine. Stapp Car Crash J 52:107–134

    Google Scholar 

  • Margulies S, Coats B (2013) Experimental injury biomechanics of the pediatric head and brain. In: Crandall J, Myers B, Meaney D, Schmidtke S (eds) Pediatric Injury Biomechanics: Archive and Textbook. Springer, New York, pp 157–189

    Chapter  Google Scholar 

  • McPherson G, Kriewall T (1980a) The elastic modulus of fetal cranial bone: a first step toward understanding of the biomechanics of fetal head molding. J Biomech 13:9–16

    Article  Google Scholar 

  • McPherson GK, Kriewall TJ (1980b) Fetal head molding: an investigation utilizing a finite element model of the fetal parietal bone. J Biomech 13:17–26

    Article  Google Scholar 

  • McPherson GK, Kriewall TJ (1981) Bending properties and ash content of fetal cranial bone. J Biomech 14:73–39

    Article  Google Scholar 

  • Missios S, Harris B, Dodge C, Simoni M, Costine B, Lee Y, e. al. (2009) Scaled cortical impact in immature swine: effect of age and gender on lesion volume. J Neurotrauma 26(11):1943–1951

    Article  Google Scholar 

  • Nazarian A, Hermannson B, Muller J, Zurakowski D, Snyder B (2009) Effects of tissue preservation on murine bone mechanical properties. J Biomech 42(1):82–86

    Article  Google Scholar 

  • Ohtsuki F (1977) Developmental changes of the cranial bone thickness in the human fetal period. Am J Phys Anthropol 46(1):141–153

    Article  Google Scholar 

  • Prange M (2002) Biomechanics of traumatic brain injury in the infant. University of Pennsylvania, Philadelphia

    Google Scholar 

  • Prange M, Margulies S (2002) Regional, directional, and age-dependent properties of brain undergoing large deformation. J Biomech Eng 124:244–252

    Article  Google Scholar 

  • Prange M, Coats B, Duhaime A, Margulies S (2003) Anthropomorphic simulations of falls, shakes, and inflicted impacts in infants. J Neurosurg 99(1):143–150

    Article  Google Scholar 

  • Prange M, Luck J, Dibb A, Van Ee C, Nightingale R, Myers B (2004) Mechanical properties and anthropometry of the human infant head. Stapp Car Crash J 48:279–299

    Google Scholar 

  • Prevost T, Jin G, de Moya M, Alam H, Suresh S, Socrate S (2011) Dynamic mechanical response of brain tissue in indentation in vivo, in situ and in vivo. Acta Biomater 7(12):4090–4101

    Article  Google Scholar 

  • Raghupathi R, Mehr M, Helfaer M, Margulies S (2004) Traumatic axonal injury is exacerbated following repetitive close head injury in the neonatal pig. J Neurotrauma 21(3):307–316

    Article  Google Scholar 

  • Rangarajan N, Kamalakkannan S, Hasija V, Shams T, Jenny C, Serbanescu I, Ho J, Rusinek M, Levin A (2009) Finite element model of ocular injury in abusive head trauma. J AAPOS 13:364–369

    Article  Google Scholar 

  • Raul JS, Roth S, Ludes B, Willinger R (2008) Influence of the benign enlargement of the subarachnoid space on the bridging veins strain during a shaking event: a finite element study. Int J Legal Med 122:337–340

    Article  Google Scholar 

  • Reece R, Sege R (2000) Childhood head injuries: accidental or inflicted? Arch Pediatr Adolesc Med 154(1):11–15

    Google Scholar 

  • Roche A (1953) Increase in cranial thickness during growth. Hum Biol 25(2):81–92

    MathSciNet  Google Scholar 

  • Roth S, Raul JS, Willinger R (2008) Biofidelic child head FE model to simulate real world trauma. Comput Methods Prog Biomed 90:262–274

    Article  Google Scholar 

  • Sebag J (1991) Age-related differences in the human vitreoretinal interface. Arch Ophthalmol 109(7):966–971

    Article  Google Scholar 

  • Sedlin ED, Hirsch C (1966) Factors affecting the determination of the physical properties of femoral cortical bone. Acta Orthop Scand 37:29–48

    Article  Google Scholar 

  • Smith S, Andrus P, Gleason D, Hall E (1998) Infant rat model of the shaken baby syndrome: preliminary characterization and evidence for the role of free radicals in cortical hemorrhaging and progressive neuronal degeneration. J Neurotrauma 15(9):693–705

    Article  Google Scholar 

  • Sullivan S, Coats B, Margulies S (2015a) Biofidelic neck influences head kinematics of parietal and occipital impacts following short falls in infants. Accid Anal Prev 82:143–153

    Article  Google Scholar 

  • Sullivan S, Eucker S, Gabrieli D, Bradfield C, Coats B, Maltese M, Lee J, Smith C, Margulies S (2015b) White matter tract oriented deformation predicts traumatic axonal brain injury and reveals rotational direction-specific vulnerabilities. Biomech Model Mechanobiol 14(4):877–896

    Article  Google Scholar 

  • Thibault K, Margulies S (1998) Age-dependent material properties of the porcine cerebrum: effect on pediatric inertial head injury criteria. J Biomech 31:1119–1126

    Article  Google Scholar 

  • Thompson A, Bertocci G, Pierce M (2009) Assessment of head injury risk associated iwth feet-first free falls in 12-month-old children using an anthropomorphic test device. J Trauma 66(4):1019–1029

    Article  Google Scholar 

  • Thompson A, Bertocci G, Rice W, Pierce M (2011) Pediatric short-distance household falls: biomechanics and associated injury severity. Accid Anal Prev 43(1):143–150

    Article  Google Scholar 

  • Vappou J, Breton E, Choquet P, Willinger R, Constantinesco A (2008) Assessment of in vivo and post-mortem mechanical behavior of brain tissue using magnetic resonance elastography. J Biomech 41:2954–2959

    Article  Google Scholar 

  • Weber W (1984) Experimental studies of skull fractures in infants. Z Rechtsmed 92(2):87–94

    Article  Google Scholar 

  • Weber W (1985) Biomechanical fragility of the infant skull. Z Rechtsmed 94(2):93–101

    Article  Google Scholar 

  • Wood JL (1971) Dynamic response of human cranial bane. J Biomech 4:1–12

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brittany Coats .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Coats, B., Margulies, S. (2017). Biomechanical Forensics in Pediatric Head Trauma. In: Müller, B., et al. Handbook of Human Motion. Springer, Cham. https://doi.org/10.1007/978-3-319-30808-1_99-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30808-1_99-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30808-1

  • Online ISBN: 978-3-319-30808-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics