Skip to main content

Prosthetic Foot Principles and Their Influence on Gait

  • Living reference work entry
  • First Online:
Handbook of Human Motion

Abstract

This chapter describes mechanical properties of prosthetic feet and their effects on level gait of persons with amputations. These descriptions focus on recent literature and knowledge gained from controlled studies of different properties including stiffness/flexibility, damping, roll-over characteristics, active push-off in late stance phase, and toe clearance during swing phase. The chapter also discusses future directions in prosthetic foot research, including the need for both amputee-independent measurements combined with clinical trials. Specific approaches to future studies of prosthetic feet are proposed that could further our knowledge base and ultimately lead to improved prescription of prosthetic feet for persons with amputations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adamczyk PG, Kuo AD (2013) Mechanical and energetic consequences of rolling foot shape in human walking. J Exp Biol 216:2722–2731

    Article  Google Scholar 

  • Caputo JM, Collins SH (2014) Prosthetic ankle push-off work reduces metabolic rate but not collision work in non-amputee walking. Sci Rep 4(7213):1–9

    Google Scholar 

  • Cavagna GA, Saibene FP, Margaria R (1964) Mechanical work in running. J Appl Physiol 19(2):249–256

    Google Scholar 

  • Curtze C, Hof AL, van Keeken HG, Halbertsma JPK, Postema K, Otten B (2009) Comparative roll-over analysis of prosthetic feet. J Biomech 42:1746–1753

    Article  Google Scholar 

  • De Asha AR, Johnson L, Munjal R, Kulkarni J, Buckley JG (2013) Attenuation of centre-of-pressure trajectory fluctuations under the prosthetic foot when using an articulating hydraulic ankle attachment compared to a fixed attachment. Clin Biomech 28:218–224

    Article  Google Scholar 

  • Dennerlein F, Blab F, Starker F, Schneider U (2014) Simulation of the prosthetic gait with a six-axis robot OT World 2014

    Google Scholar 

  • DIN EN ISO 22675:2006 (2006) Prosthetics – testing of ankle-foot devices and foot units – requirements and test methods

    Google Scholar 

  • Ferris AE, Aldridge JM, Rabago CA, Wilken JM (2012) Evaluation of a powered ankle-foot prosthetic system during walking. Arch Phys Med Rehabil 93:1911–1918

    Article  Google Scholar 

  • Fey NP, Klute GK, Neptune RR (2011) The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees. Clin Biomech 26:1025–1032

    Article  Google Scholar 

  • Fey NP, Klute GK, Neptune RR (2012) Optimization of prosthetic foot stiffness to reduce metabolic cost and intact knee loading during below-knee amputee walking: a theoretical study. J Biomech Eng 134:111005 . 1-10

    Article  Google Scholar 

  • Gard SA, Su PF, Lipschutz RD, Hansen AH (2011) Effect of prosthetic ankle units on roll-over shape characteristics during walking in persons with bilateral transtibial amputations. J Rehabil Res Dev 48(9):1037–1048

    Article  Google Scholar 

  • Geil MD (2002) An iterative method for viscoelastic modeling of prosthetic feet. J Biomech 35:1405–1410

    Article  Google Scholar 

  • Geil MD, Parnianpour M, Quesada P, Berme N, Simon S (2000) Comparison of methods for the calculation of energy storage and return in a dynamic elastic response prosthesis. J Biomech 33:1745–1750

    Article  Google Scholar 

  • Hafner BJ (2005) Clinical prescription and use of prosthetic foot and ankle mechanisms: a review of the literature. J Prosthet Orthot 17(4S):5–11

    Article  Google Scholar 

  • Hansen AH (2005) Scientific methods to determine functional performance of prosthetic ankle-foot systems. J Prosthet Orthot 17(4S):23–29

    Article  Google Scholar 

  • Hansen AH, Childress DS (2010) Investigations of roll-over shape: implications for design, alignment, and evaluation of ankle-foot prostheses and orthoses. Disabil Rehabil 32(26):2201–2209

    Article  Google Scholar 

  • Hansen AH, Wang CC (2010) Effective rocker shapes used by able-bodied persons for walking and fore-aft swaying: implications for design of ankle-foot prostheses. Gait Posture 32:181–184

    Article  Google Scholar 

  • Hansen AH, Childress DS, Knox EH (2000) Prosthetic foot roll-over shapes with implications for alignment of trans-tibial prostheses. Prosthetics Orthot Int 24:205–215

    Article  Google Scholar 

  • Hansen AH, Meier MR, Sessoms PH, Childress DS (2006) The effects of prosthetic foot roll-over shape arc length on gait of trans-tibial prosthesis users. Prosthetics Orthot Int 30(3):286–299

    Article  Google Scholar 

  • Herr HM, Grabowski AM (2012) Bionic ankle-foot prosthesis normalizes walking gait for persons with leg amputation. Proc Royal Soc 279:457–464

    Article  Google Scholar 

  • Hill D, Herr H (2013) Effects of a powered ankle-foot prosthesis on kinetic loading of the contralateral limb: a case series. 2013 I.E. International Conference on Rehabilitation Robotics, June 24–26, Seattle, Washington

    Google Scholar 

  • Hofstad C, Linde H, Limbeek J, Postema K (2004) Prescription of prosthetic ankle-foot mechanisms after lower limb amputation. Cochrane Database Syst Rev (1):CD003978

    Google Scholar 

  • ISO/TS 16955:2016-06 (2016) Prosthetics – quantification of physical parameters of ankle foot devices and foot units

    Google Scholar 

  • Jin L, Adamczyk PG, Roland M, Hahn ME (2016) The effect of high- and low-damping prosthetic foot structures on knee loading in the uninvolved limb across different walking speeds. J Appl Biomech 32:233–240

    Article  Google Scholar 

  • Johnson L, De Asha AR, Munjal R, Kulkarni J, Buckley JG (2014) Toe clearance when walking in people with unilateral transtibial amputation: effects of passive hydraulic ankle. J Rehabil Res Dev 51(3):429–438

    Article  Google Scholar 

  • Kabra SG (1990) Articulated cadaveric bones as a structural endoskeleton in an ankle-foot prosthesis: a preliminary report. J Rehabil Res Dev 27(1):43–52

    Article  Google Scholar 

  • Kabra SG, Narayanan R (1991) Ankle-foot prosthesis with articulated human bone endoskeleton: force-deflection and fatigue study. J Rehabil Res Dev 28(3):13–22

    Article  Google Scholar 

  • Kim M, Collins SH (2015) Once-per-step control of ankle-foot prosthesis push-off work reduces effort associated with balance during walking. J Neuroeng Rehabil 12(43):1–13

    Google Scholar 

  • Klodd E, Hansen A, Fatone S, Edwards M (2010a) Effects of prosthetic foot forefoot flexibility on gait of unilateral transtibial prosthesis users. J Rehabil Res Dev 47(9):899–910

    Article  Google Scholar 

  • Klodd E, Hansen A, Fatone S, Edwards M (2010b) Effects of prosthetic foot forefoot flexibility on oxygen cost and subjective preference rankings of unilateral transtibial prosthesis users. J Rehabil Res Dev 47(6):543–552

    Article  Google Scholar 

  • Klute GK, Kallfelz CF, Czerniecki JM (2001) Mechanical properties of prosthetic limbs: adapting to the patient. J Rehabil Res Dev 38(3):299–307

    Google Scholar 

  • Knox E (1996) The role of prosthetic feet in walking. PhD thesis, Department of Biomedical Engineering, Northwestern University, Evanston

    Google Scholar 

  • Lehmann JF, Price R, Boswell-Bessette S, Dralle A, Questad K (1993) Comprehensive analysis of dynamic elastic response feet: Seattle Ankle/Lite foot versus SACH foot. Arch Phys Med Rehabil 74:853–861

    Article  Google Scholar 

  • Major MJ, Twiste M, Kenney LPJ, Howard D (2011) Amputee independent prosthesis properties – a new model for description and measurement. J Biomech 44:2572–2575

    Article  Google Scholar 

  • Major MJ, Twiste M, Kenney LPH, Howard D (2014) The effects of prosthetic ankle stiffness on ankle and knee kinematics, prosthetic limb loading, and net metabolic cost of trans-tibial amputee gait. Clin Biomech 29:98–104

    Article  Google Scholar 

  • Miller WC, Deathe AB, Speechley M, Koval J (2001) The influence of falling, fear of falling, and balance confidence on prosthetic mobility and social activity among individuals with a lower extremity amputation. Arch Phys Med Rehabil 82(9):1238–1244

    Article  Google Scholar 

  • Morgenroth DC, Segal AD, Zelik KE, Czerniecki JM, Klute GK, Adamczyk PG, Orendurff MS, Hahn ME, Collins SH, Kuo AD (2011) The effect of prosthetic foot push-off on mechanical loading associated with knee osteoarthritis in lower extremity amputees. Gait Posture 34:502–507

    Article  Google Scholar 

  • Nickel E, Sensinger J, Hansen A (2014) Passive prosthetic ankle-foot mechanism for automatic adaptation to sloped surfaces. J Rehabil Res Dev 51(5):803–814

    Article  Google Scholar 

  • Pitkin MR (1995) Mechanical outcomes of a rolling-joint prosthetic foot and its performance in the dorsiflexion phase of transtibial amputee gait. J Prosthet Orthot 7(4):114–123

    Article  Google Scholar 

  • Postema K, Hermens HJ, de Vries J, Koopman HF, Eisma WH (1997) Energy storage and release of prosthetic feet. Part 1: biomechanical analysis related to user benefits. Prosthetics Orthot Int 21(1):17–27

    Google Scholar 

  • Raschke SU, Orendurff MS, Mattie JL, Kenyon DEA, Jones OY, Moe D, Winder L, Wong AS, Moreno-Hernandez A, Highsmith MJ, Sanderson DJ, Kobayashi T (2015) Biomechanical characteristics, patient preference and activity level with different prosthetic feet: a randomized double blind trial with laboratory and community testing. J Biomech 48:146–152

    Article  Google Scholar 

  • Rosenblatt NJ, Bauer A, Grabiner MD (2016) Relating minimum toe clearance to prospective, self-reported, trip-related stumbles in the community. Prosthetics Orthot Int Epub ahead of print. https://www.ncbi.nlm.nih.gov/pubmed/27280640

  • Rusaw D, Ramstrand N (2010) Sagittal plane position of the functional joint centre of prosthetic foot/ankle mechanisms. Clin Biomech 25:713–720

    Article  Google Scholar 

  • Russell Esposito E, Wilken JM (2014) Biomechanical risk factors for knee osteoarthritis when using passive and powered ankle-foot prostheses. Clin Biomech 29:1186–1192

    Article  Google Scholar 

  • Sawers A, Hahn ME (2011) Trajectory of the center of rotation in non-articulated energy storage and return prosthetic feet. J Biomech 44:1673–1677

    Article  Google Scholar 

  • Segal AD, Zelik KE, Klute GK, Morgenroth DC, Hahn ME, Orendurff MS, Adamczyk PG, Collins SH, Kuo AD, Czerniecki JM (2012) The effects of a controlled energy storage and return prototype prosthetic foot on transtibial amputee ambulation. Hum Mov Sci 31(4):918–931

    Article  Google Scholar 

  • Sensinger JW, Intawachirarat N, Gard SA (2013) Contribution of prosthetic knee and ankle mechanisms to swing-phase foot clearance. IEEE Trans Neural Syst Rehabil Eng 21(1):74–80

    Article  Google Scholar 

  • Su PF, Gard SA, Lipschutz RD, Kuiken TA (2010) The effects of increased prosthetic ankle motions on the gait of persons with bilateral transtibial amputations. Am J Phys Med Rehabil 89(1):34–47

    Article  Google Scholar 

  • Van Jaarsveld HWL, Grootenboer HJ, De Vries J, Koopman HFJM (1990) Stiffness and hysteresis properties of some prosthetic feet. Prosthetics Orthot Int 14:117–124

    Google Scholar 

  • Ventura JD, Klute GK, Neptune RR (2011) The effect of prosthetic ankle energy storage and return properties on muscle activity in below-knee amputee walking. Gait Posture 33:220–226

    Article  Google Scholar 

  • Williams RJ, Hansen AH, Gard SA (2009) Prosthetic ankle-foot mechanism capable of automatic adaptation to the walking surface. J Biomech Eng 131:034002-1-7

    Article  Google Scholar 

  • Zelik KE, Collins SH, Adamczyk PG, Segal AD, Klute GK, Morgenroth DC, Hahn ME, Orendurff MS, Czerniecki JM, Kuo AD (2011) Systematic variation of prosthetic foot spring affects center-of-mass mechanics and metabolic cost during walking. IEEE Trans Neural Syst Rehabil Eng 19(4):411–419

    Article  Google Scholar 

  • Zmitrewicz RJ, Neptune RR, Walden JG, Rogers WE, Bosker GW (2006) The effect of foot and ankle prosthetic components on braking and propulsive impulses during transtibial amputee gait. Arch Phys Med Rehabil 87:1334–1339

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Hansen .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG (outside the USA)

About this entry

Cite this entry

Hansen, A., Starker, F. (2016). Prosthetic Foot Principles and Their Influence on Gait. In: Müller, B., et al. Handbook of Human Motion. Springer, Cham. https://doi.org/10.1007/978-3-319-30808-1_74-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30808-1_74-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30808-1

  • Online ISBN: 978-3-319-30808-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics