Skip to main content

Motor Patterns Recognition in Parkinson’s Disease

  • Living reference work entry
  • First Online:
Handbook of Human Motion

Abstract

Parkinson’s disease (PD) is characterized clinically by main motor symptoms such as tremor at rest, rigidity, and bradykinesia that affect movements, including gait and postural adjustments. The diagnosis is based on the clinical recognition of these symptoms with the consequent high interrater variability. In order to perform an objective and early diagnosis, approaches that overcome the limitations inherent to clinical examination are needed. In the present work, we will describe several classical technological approaches, such as 3D motion analysis, to achieve an objective evaluation of the cardinal motor symptoms in PD. Furthermore, we will take into account the attempts to identify pathological patterns of integrated, more complex functions such as gait and posture. Finally, as future directions, we will discuss the machine learning approaches in the individuation of specific gait patterns in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agosti V, Vitale C, Avella D et al (2016) Effects of Global Postural Reeducation on gait kinematics in parkinsonian patients: a pilot randomized three-dimensional motion analysis study. Neurol Sci 37:515–522. doi:10.1007/s10072-015-2433-5

    Article  Google Scholar 

  • Amboni M, Barone P, Iuppariello L et al (2012) Gait patterns in parkinsonian patients with or without mild cognitive impairment. Mov Disord 27:1536–1543. doi:10.1002/mds.25165

    Article  Google Scholar 

  • Ashburn A, Stack E, Pickering RM, Ward CD (2001) A community-dwelling sample of people with Parkinson’s disease: characteristics of fallers and non-fallers. Age Ageing 30:47–52. doi:10.1093/ageing/30.1.47

    Article  Google Scholar 

  • Bächlin M, Roggen D, Tröster G et al (2009) Potentials of enhanced context awareness in wearable assistants for Parkinson’s disease patients with the freezing of gait syndrome. In: Proceedings – international symposium on wearable computers, ISWC, IEEE, 4–7 Sep - Linz, Austria, pp 123–130

    Google Scholar 

  • Berardelli A, Rothwell JC, Thompson PD, Hallett M (2001) Pathophysiology of bradykinesia in Parkinson’s disease. Brain 124:2131–2146. doi:10.1093/brain/124.11.2131

    Article  Google Scholar 

  • Bloem BR, Hausdorff JM, Visser JE, Giladi N (2004) Falls and freezing of gait in Parkinson’s disease: a review of two interconnected, episodic phenomena. Mov Disord 19:871–884. doi:10.1002/mds.20115

    Article  Google Scholar 

  • Bloem BR, Marinus J, Almeida Q et al (2016) Measurement instruments to assess posture, gait, and balance in Parkinson’s disease: critique and recommendations. Mov Disord. doi:10.1002/mds.26572

    Google Scholar 

  • Bonora G, Carpinella I, Cattaneo D et al (2015) A new instrumented method for the evaluation of gait initiation and step climbing based on inertial sensors: a pilot application in Parkinson’s disease. J Neuroeng Rehabil 12:45. doi:10.1186/s12984-015-0038-0

    Article  Google Scholar 

  • Cappa P, Patanè F, Rossi S et al (2008) Effect of changing visual condition and frequency of horizontal oscillations on postural balance of standing healthy subjects. Gait Posture 28:615–626. doi:10.1016/j.gaitpost.2008.04.013

    Article  Google Scholar 

  • Catalá MM, Woitalla D, Arampatzis A (2016) Reactive but not predictive locomotor adaptability is impaired in young Parkinson’s disease patients. Gait Posture 48:177–182. doi:10.1016/j.gaitpost.2016.05.008

    Article  Google Scholar 

  • Cole BT, Roy SH, Nawab SH (2011) Detecting freezing-of-gait during unscripted and unconstrained activity. In: Proceedings of the annual international conference of the IEEE Engineering in Medicine and Biology Society, EMBS, IEEE, 30 Aug - 03 Sep - Boston, MA, USA, pp 5649–5652

    Google Scholar 

  • Daliri MR (2012) Automatic diagnosis of neuro-degenerative diseases using gait dynamics. Meas J Int Meas Confed 45:1729–1734. doi:10.1016/j.measurement.2012.04.013

    Article  Google Scholar 

  • Daliri MR (2013) Chi-square distance kernel of the gaits for the diagnosis of Parkinson’s disease. Biomed Signal Process Control 8:66–70. doi:10.1016/j.bspc.2012.04.007

    Article  Google Scholar 

  • Daroff RB, Jankovic J, Mazziotta JC et al (2016) Bradley’s neurology in clinical practice, vols 1–2, 7th edn. Elsevier, London

    Google Scholar 

  • de Lau LM, Breteler MM (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5:525–535. doi:10.1016/S1474-4422(06)70471-9

    Article  Google Scholar 

  • Dehaene S (2003) The neural basis of the c law: a logarithmic mental number line. Trends Cogn Sci 7:145–147. doi:10.1016/S1364-6613(03)00055-X

    Article  Google Scholar 

  • Djuric-Jovicic MD, Jovicic NS, Radovanovic SM et al (2014) Automatic identification and classification of freezing of gait episodes in Parkinson’s disease patients. IEEE Trans Neural Syst Rehabil Eng 22:685–694. doi:10.1109/TNSRE.2013.2287241

    Article  Google Scholar 

  • Doherty KM, van de Warrenburg BP, Peralta MC et al (2011) Postural deformities in Parkinson’s disease. Lancet Neurol 10:538–549

    Article  Google Scholar 

  • Doná F, Aquino CC, Gazzola JM et al (2015) Changes in postural control in patients with Parkinson’s disease: a posturographic study. Physiotherapy. doi:10.1016/j.physio.2015.08.009

    Google Scholar 

  • Ebersbach G, Moreau C, Gandor F et al (2013) Clinical syndromes: Parkinsonian gait. Mov Disord 28:1552–1559. doi:10.1002/mds.25675

    Article  Google Scholar 

  • Elble R, Deuschl G (2011) Milestones in tremor research. Mov Disord 26:1096–1105. doi:10.1002/mds.23579

    Article  Google Scholar 

  • Endo T, Okuno R, Yokoe M et al (2009) A novel method for systematic analysis of rigidity in Parkinson’s disease. Mov Disord 24:2218–2224. doi:10.1002/mds.22752

    Article  Google Scholar 

  • Enoka RM (2015) Neuromechanics of human movement. Human Kinetics, Champaign

    Google Scholar 

  • Gao JB (2004) Analysis of amplitude and frequency variations of essential and Parkinsonian tremors. Med Biol Eng Comput 42:345–349. doi:10.1007/BF02344710

    Article  Google Scholar 

  • Gelb DJ, Oliver E, Gilman S et al (1999) Diagnostic criteria for Parkinson disease. Arch Neurol 56:33. doi:10.1001/archneur.56.1.33

    Article  Google Scholar 

  • Geroin C, Smania N, Schena F et al (2015) Does the Pisa syndrome affect postural control, balance, and gait in patients with Parkinson’s disease? An observational cross-sectional study. Parkinsonism Relat Disord 21:736–741. doi:10.1016/j.parkreldis.2015.04.020

    Article  Google Scholar 

  • Giladi N, Nieuwboer A (2008) Understanding and treating freezing of gait in parkinsonism, proposed working definition, and setting the stage. Mov Disord 23:S423–S425. doi:10.1002/mds.21927

    Article  Google Scholar 

  • Grabli D, Karachi C, Welter M et al (2012) Normal and pathological gait: what we learn from Parkinson’s disease. J Neurol Neurosurg Psychiatry 83:979–985. doi:10.1136/jnnp-2012-302263

    Google Scholar 

  • Hoehn MM, Yahr MD (1967) Parkinsonism : onset, progression, and mortality. Neurology 17:427–442. doi:10.1212/WNL.17.5.427

    Article  Google Scholar 

  • Hubble RP, Naughton GA, Silburn PA, Cole MH (2015) Wearable sensor use for assessing standing balance and walking stability in people with Parkinson’s disease: a systematic review. PLoS One 10:1–22. doi:10.1371/journal.pone.0123705

    Google Scholar 

  • Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184. doi:10.1136/jnnp.55.3.181

    Article  Google Scholar 

  • Jacobs JV, Horak FB, Tran VK, Nutt JG (2006) Multiple balance tests improve the assessment of postural stability in subjects with Parkinson’s disease. J Neurol Neurosurg Psychiatry 77:322–326. doi:10.1136/jnnp.2005.068742

    Article  Google Scholar 

  • Jian Y, Winter D, Ishac M, Gilchrist L (1993) Trajectory of the body COG and COP during initiation and termination of gait. Gait Posture 1:9–22. doi:10.1016/0966-6362(93)90038-3

    Article  Google Scholar 

  • Kandori A, Yokoe M, Sakoda S et al (2004) Quantitative magnetic detection of finger movements in patients with Parkinson’s disease. Neurosci Res 49:253–260. doi:10.1016/j.neures.2004.03.004

    Article  Google Scholar 

  • Kelly VE, Johnson CO, McGough EL et al (2015) Association of cognitive domains with postural instability/gait disturbance in Parkinson’s disease. Parkinsonism Relat Disord 21:692–697. doi:10.1016/j.parkreldis.2015.04.002

    Article  Google Scholar 

  • Kim J-W, Kwon Y, Yun J-S et al (2015) Regression models for the quantification of Parkinsonian bradykinesia. Biomed Mater Eng 26(Suppl 1):S2249–S2258. doi:10.3233/BME-151531

    Google Scholar 

  • Lee S-H, Lim JS (2012) Parkinson’s disease classification using gait characteristics and wavelet-based feature extraction. Expert Syst Appl 39:7338–7344. doi:10.1016/j.eswa.2012.01.084

    Article  Google Scholar 

  • Levine D, Richards J, Whittle M, Whittle M (2012) Whittle’s gait analysis. Churchill Livingstone/Elsevier, Edinburgh

    Google Scholar 

  • Lin S-H, Chen S-W, Lo Y-C et al (2016) Quantitative measurement of Parkinsonian gait from walking in monocular image sequences using a centroid tracking algorithm. Med Biol Eng Comput 54:485–496. doi:10.1007/s11517-015-1335-2

    Article  Google Scholar 

  • Lord S, Rochester L, Baker K, Nieuwboer A (2008) Concurrent validity of accelerometry to measure gait in Parkinsons disease. Gait Posture 27:357–359. doi:10.1016/j.gaitpost.2007.04.001

    Article  Google Scholar 

  • Mancini M, Horak FB (2010) The relevance of clinical balance assessment tools to differentiate balance deficits. Eur J Phys Rehabil Med 46:239–248

    Google Scholar 

  • Martinez-Martin P, Gil-Nagel A, Gracia LM et al (1994) Unified Parkinson’s disease rating scale characteristics and structure. Mov Disord 9:76–83. doi:10.1002/mds.870090112

    Article  Google Scholar 

  • Massion J (1992) Movement, posture and equilibrium: interaction and coordination. Prog Neurobiol 38:35–56. doi:10.1016/0301-0082(92)90034-C

    Article  Google Scholar 

  • McDonough AL, Batavia M, Chen FC et al (2001) The validity and reliability of the GAITRite system’s measurements: a preliminary evaluation. Arch Phys Med Rehabil 82:419–425. doi:10.1053/apmr.2001.19778

    Article  Google Scholar 

  • Meigal AY, Rissanen SM, Tarvainen MP et al (2013) Non-linear EMG parameters for differential and early diagnostics of Parkinson’s disease. Front Neurol. doi:10.3389/fneur.2013.00135

    Google Scholar 

  • Mirelman A, Gurevich T, Giladi N et al (2011) Gait alterations in healthy carriers of the LRRK2 G2019S mutation. Ann Neurol 69:193–197. doi:10.1002/ana.22165

    Article  Google Scholar 

  • Morris ME, McGinley J, Huxham F et al (1999) Constraints on the kinetic, kinematic and spatiotemporal parameters of gait in Parkinson’s disease. Hum Mov Sci 18:461–483

    Article  Google Scholar 

  • Morris M, Iansek R, McGinley J et al (2005) Three-dimensional gait biomechanics in Parkinson’s disease: evidence for a centrally mediated amplitude regulation disorder. Mov Disord 20:40–50. doi:10.1002/mds.20278

    Article  Google Scholar 

  • Mortimer JA, Webster DD (1979) Evidence for a quantitative association between EMG stretch responses and Parkinsonian rigidity. Brain Res 162:169–173. doi:10.1016/0006-8993(79)90768-6

    Article  Google Scholar 

  • Nelson AJ, Zwick D, Brody S et al (2002) The validity of the GaitRite and the functional ambulation performance scoring system in the analysis of Parkinson gait. NeuroRehabilitation 17:255–262

    Google Scholar 

  • Nieder A, Miller EK (2003) Coding of cognitive magnitude: compressed scaling of numerical information in the primate prefrontal cortex. Neuron 37:149–157. doi:10.1016/S0896-6273(02)01144-3

    Article  Google Scholar 

  • Nieminen H, Takala EP (1996) Evidence of deterministic chaos in the myoelectric signal. Electromyogr Clin Neurophysiol 36:49–58

    Google Scholar 

  • Nutt JG, Bloem BR, Giladi N et al (2011) Freezing of gait: moving forward on a mysterious clinical phenomenon. Lancet Neurol 10:734–744. doi:10.1016/S1474-4422(11)70143-0

    Article  Google Scholar 

  • Obeso JA, Rodriguez-Oroz MC, Goetz CG (2010) Missing pieces in the Parkinson’s disease puzzle. Nat Med 16:653–661. doi:10.1038/nm.2165

    Article  Google Scholar 

  • Palmerini L, Mellone S, Avanzolini G et al (2013) Quantification of motor impairment in Parkinson’s disease using an instrumented timed up and go test. IEEE Trans Neural Syst Rehabil Eng 21:664–673. doi:10.1109/tnsre.2012.2236577

    Article  Google Scholar 

  • Park BK, Kwon Y, Kim JW et al (2011) Analysis of viscoelastic properties of wrist joint for quantification of parkinsonian rigidity. IEEE Trans Neural Syst Rehabil Eng 19:167–176. doi:10.1109/TNSRE.2010.2091149

    Article  MathSciNet  Google Scholar 

  • Perry J, Burnfield JM, Cabico LM (2010) Gait analysis: normal and pathological function. Second Edition. SLACK Incorporated. Thorofare, NJ, USA

    Google Scholar 

  • Rocchi L, Palmerini L, Weiss A et al (2013) Balance testing with inertial sensors in patients with Parkinson’s disease: assessment of motor subtypes. IEEE Trans Neural Syst Rehabil Eng 22:1064–1071. doi:10.1109/TNSRE.2013.2292496

    Article  Google Scholar 

  • Roiz RDM, Cacho EWA, Pazinatto MM et al (2010) Gait analysis comparing Parkinson’s disease with healthy elderly subjects. Arq Neuropsiquiatr 68:81–86. doi:10.1590/S0004-282X2010000100018

    Article  Google Scholar 

  • Salarian A, Russmann H, Wider C et al (2007) Quantification of tremor and bradykinesia in Parkinson’s disease using a novel ambulatory monitoring system. IEEE Trans Biomed Eng 54:313–322

    Article  Google Scholar 

  • Sale P, De Pandis MF, Vimercati SL et al (2013) The relation between Parkinson’s disease and ageing. Comparison of the gait patterns of young Parkinson’s disease subjects with healthy elderly subjects. Eur J Phys Rehabil Med 49:161–167

    Google Scholar 

  • Schrag A, Horsfall L, Walters K et al (2015) Prediagnostic presentations of Parkinson’s disease in primary care: a case–control study. Lancet Neurol 14:57–64. doi:10.1016/S1474-4422(14)70287-X

    Article  Google Scholar 

  • Scoppa F, Capra R, Gallamini M, Shiffer R (2013) Clinical stabilometry standardization. Basic definitions – acquisition interval – sampling frequency. Gait Posture 37:290–292. doi:10.1016/j.gaitpost.2012.07.009

    Article  Google Scholar 

  • Shima K, Tsuji T, Kan E et al (2008) Measurement and evaluation of finger tapping movements using magnetic sensors. Conf Proc IEEE Eng Med Biol Soc 1–8:5628–5631. doi:10.1109/IEMBS.2008.4650490

    Google Scholar 

  • Shulman LM, Armstrong M, Ellis T et al (2016) Disability rating scales in Parkinson’s disease: critique and recommendations. Mov Disord. doi:10.1002/mds.26649

    Google Scholar 

  • Sofuwa O, Nieuwboer A, Desloovere K et al (2005) Quantitative gait analysis in Parkinson’s disease: comparison with a healthy control group. Arch Phys Med Rehabil 86:1007–1013. doi:10.1016/j.apmr.2004.08.012

    Article  Google Scholar 

  • Sorrentino P, Barbato A, Del Gaudio L et al (2016) Impaired gait kinematics in type 1 Gaucher’s disease. J Parkinsons Dis 6:191–195. doi:10.3233/JPD-150660

    Article  Google Scholar 

  • Stamatakis J, Ambroise J, Crémers J et al (2013) Finger tapping clinimetric score prediction in Parkinson’ s disease using low-cost accelerometers. Comput Intell Neurosci. doi:10.1155/2013/717853

    Google Scholar 

  • Švehlík M, Zwick EB, Steinwender G et al (2009) Gait analysis in patients with Parkinson’s disease off dopaminergic therapy. Arch Phys Med Rehabil 90:1880–1886. doi:10.1016/j.apmr.2009.06.017

    Article  Google Scholar 

  • Swie YW, Sakamoto K, Shimizu Y (2005) Chaotic analysis of electromyography signal at low back and lower limb muscles during forward bending posture. Electromyogr Clin Neurophysiol 45:329–342

    Google Scholar 

  • Tahir NM, Manap HH (2012) Parkinson disease gait classification based on machine learning approach. J Appl Sci 12:180–185. doi:10.3923/jas.2012.180.185

    Article  Google Scholar 

  • Thanawattano C, Pongthornseri R, Anan C et al (2015) Temporal fluctuations of tremor signals from inertial sensor: a preliminary study in differentiating Parkinson’s disease from essential tremor. Biomed Eng Online 14:101. doi:10.1186/s12938-015-0098-1

    Article  Google Scholar 

  • Timmer J, Lauk M, Deuschl G (1996) Quantitative analysis of tremor time series. Electroencephalogr Clin Neurophysiol 101:461–468. doi:10.1016/0924-980X(96)94658-5

    Article  Google Scholar 

  • Tripoliti EE, Tzallas AT, Tsipouras MG et al (2013) Automatic detection of freezing of gait events in patients with Parkinson’s disease. Comput Methods Programs Biomed 110:12–26. doi:10.1016/j.cmpb.2012.10.016

    Article  Google Scholar 

  • Tzallas AT, Tsipouras MG, Rigas G et al (2014) PERFORM: a system for monitoring, assessment and management of patients with Parkinson’s disease. Sensors (Basel) 14:21329–21357. doi:10.3390/s141121329

    Article  Google Scholar 

  • Visser JE, Oude Nijhuis LB, Janssen L et al (2010) Dynamic posturography in Parkinson’s disease: diagnostic utility of the “first trial effect”. Neuroscience 168:387–394. doi:10.1016/j.neuroscience.2010.03.068

    Article  Google Scholar 

  • Vitale C, Agosti V, Avella D et al (2012) Effect of global postural rehabilitation program on spatiotemporal gait parameters of parkinsonian patients: a three-dimensional motion analysis study. Neurol Sci 33:1337–1343. doi:10.1007/s10072-012-1202-y

    Article  Google Scholar 

  • Wahid F, Begg RK, Hass CJ et al (2015) Classification of Parkinson’s disease gait using spatial-temporal gait features. IEEE J Biomed Health Inform 19:1794–1802. doi:10.1109/JBHI.2015.2450232

    Article  Google Scholar 

  • Walshe FMR, Dejerine J, Ferrier D et al (1961) Contributions of John Hughlings Jackson to neurology. Arch Neurol 5:119–131. doi:10.1001/archneur.1961.00450140001001

    Article  Google Scholar 

  • Xia R, Powell D, Zev Rymer W et al (2011) Differentiation between the contributions of shortening reaction and stretch-induced inhibition to rigidity in Parkinson’s disease. Exp Brain Res 209:609–618. doi:10.1007/s00221-011-2594-2

    Article  Google Scholar 

  • Yokoe M, Okuno R, Hamasaki T et al (2009) Opening velocity, a novel parameter, for finger tapping test in patients with Parkinson’s disease. Parkinsonism Relat Disord 15:440–444. doi:10.1016/j.parkreldis.2008.11.003

    Article  Google Scholar 

  • Yunfeng W, Krishnan S (2010) Statistical analysis of gait rhythm in patients with Parkinson’s disease. IEEE Trans Neural Syst Rehabil Eng 18:150–158. doi:10.1109/tnsre.2009.2033062

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Agosti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Sorrentino, P., Agosti, V., Sorrentino, G. (2016). Motor Patterns Recognition in Parkinson’s Disease. In: Müller, B., et al. Handbook of Human Motion. Springer, Cham. https://doi.org/10.1007/978-3-319-30808-1_64-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30808-1_64-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-30808-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics