Skip to main content

Surface Electromyography to Study Muscle Coordination

  • Living reference work entry
  • First Online:
Book cover Handbook of Human Motion

Abstract

Electromyography (EMG) records the electrical activity that is generated as action potentials propagate along the length of muscle fibers. As such surface EMG is the research tool that is used in a vast majority of the works that assess muscle coordination in health and disease. Although surface EMG recordings can provide valuable information regarding the neural activation of a muscle by the nervous system, there are multiple factors that need to be considered to ensure that the interpretation of the data is accurate. In this chapter, we have highlighted crosstalk, signal cancellation, normalization, computation signal, detection of the onset/offset times, and the misinterpretation of EMG to infer torque as six of the most significant factors that need to be considered when recording and then interpreting EMG data. These factors need to be considered before data is collected, to determine if EMG is the right tool and/or which processing methods may best provide insight into the research question.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Here we consider muscle coordination as the distribution of muscle activation or force among individual muscles to produce a given motor task.

References

  • Arsenault AB, Winter DA, Marteniuk RG, Hayes KC (1986) How many strides are required for the analysis of electromyographic data in gait? Scand J Rehabil Med 18:133–135

    Google Scholar 

  • Bareket L, Inzelberg L, Rand D, David-Pur M, Rabinovich D, Brandes B, Hanein Y (2016) Temporary-tattoo for long-term high fidelity biopotential recordings. Sci Rep 6:25727. doi:10.1038/srep25727

    Article  Google Scholar 

  • Becker R, Awiszus F (2001) Physiological alterations of maximal voluntary quadriceps activation by changes of knee joint angle. Muscle Nerve 24:667–672

    Article  Google Scholar 

  • Bernstein N (1967) Coordination and regulation of movements. Oxford, Pergamon

    Google Scholar 

  • Bouillard K, Nordez A, Hodges PW, Cornu C, Hug F (2012) Evidence of changes in load sharing during isometric elbow flexion with ramped torque. J Biomech 45:1424–1429. doi:10.1016/j.jbiomech.2012.02.020

    Article  Google Scholar 

  • Bruce EN, Goldman MD, Mead J (1977) A digital computer technique for analyzing respiratory muscle EMG’s. J Appl Physiol 43:551–556

    Google Scholar 

  • Burden A, Bartlett R (1999) Normalisation of EMG amplitude: an evaluation and comparison of old and new methods. Med Eng Phys 21:247–257

    Article  Google Scholar 

  • Campanini I, Merlo A, Degola P, Merletti R, Vezzosi G, Farina D (2007) Effect of electrode location on EMG signal envelope in leg muscles during gait. J Electromyogr Kinesiol 17(4):515–526

    Article  Google Scholar 

  • Chapman AR, Vicenzino B, Blanch P, Knox JJ, Hodges PW (2010) Intramuscular fine-wire electromyography during cycling: repeatability, normalisation and a comparison to surface electromyography. J Electromyogr Kinesiol 20:108–117. doi:10.1016/j.jelekin.2008.11.013

    Article  Google Scholar 

  • Chen HY, Chien CC, Wu SK, Liau JJ, Jan MH (2012) Electromechanical delay of the vastus medialis obliquus and vastus lateralis in individuals with patellofemoral pain syndrome. J Orthop Sports Phys Ther 42:791–796. doi:10.2519/jospt.2012.3973

    Article  Google Scholar 

  • Chiti L, Biondi G, Morelot-Panzini C, Raux M, Similowski T, Hug F (2008) Scalene muscle activity during progressive inspiratory loading under pressure support ventilation in normal humans. Respir Physiol Neurobiol 164:441–448. doi:10.1016/j.resp.2008.09.010

    Article  Google Scholar 

  • Cowan SM, Hodges PW, Bennell KL, Crossley KM (2002) Altered vastii recruitment when people with patellofemoral pain syndrome complete a postural task. Arch Phys Med Rehabil 83:989–995

    Article  Google Scholar 

  • Crossley K, Bennell K, Green S, Cowan S, McConnell J (2002) Physical therapy for patellofemoral pain: a randomized, double-blinded, placebo-controlled trial. Am J Sports Med 30:857–865

    Google Scholar 

  • Dankaerts W, O’Sullivan PB, Burnett AF, Straker LM, Danneels LA (2004) Reliability of EMG measurements for trunk muscles during maximal and sub-maximal voluntary isometric contractions in healthy controls and CLBP patients. J Electromyogr Kinesiol 14:333–342. doi:10.1016/j.jelekin.2003.07.001

    Article  Google Scholar 

  • De Luca CJ, Merletti R (1988) Surface myoelectric signal cross-talk among muscles of the leg. Electroencephalogr Clin Neurophysiol 69:568–575

    Article  Google Scholar 

  • De Luca CJ, Gilmore LD, Kuznetsov M, Roy SH (2010) Filtering the surface EMG signal: Movement artifact and baseline noise contamination. J Biomech 43:1573–1579. doi:10.1016/j.jbiomech.2010.01.027

    Article  Google Scholar 

  • De Troyer A, Kirkwood PA, Wilson TA (2005) Respiratory action of the intercostal muscles. Physiol Rev 85:717–756. doi:10.1152/physrev.00007.2004

    Article  Google Scholar 

  • Dorel S, Guilhem G, Couturier A, Hug F (2012) Adjustment of muscle coordination during an all-out sprint cycling task. Med Sci Sports Exerc 44:2154–2164. doi:10.1249/MSS.0b013e3182625423

    Article  Google Scholar 

  • Dubo HI, Peat M, Winter DA, Quanbury AO, Hobson DA, Steinke T, Reimer G (1976) Electromyographic temporal analysis of gait: normal human locomotion. Arch Phys Med Rehabil 57:415–420

    Google Scholar 

  • Edwards RG, Lippold OC (1956) The relation between force and integrated electrical activity in fatigued muscle. J Physiol 132:677–681

    Article  Google Scholar 

  • Erdemir A, McLean S, Herzog W, van den Bogert AJ (2007) Model-based estimation of muscle forces exerted during movements. Clin Biomech (Bristol, Avon) 22:131–154. doi:10.1016/j.clinbiomech.2006.09.005

    Article  Google Scholar 

  • Farina D, Merletti R, Enoka RM (2004) The extraction of neural strategies from the surface EMG. J Appl Physiol 96:1486–1495. doi:10.1152/japplphysiol.01070.20031985

    Article  Google Scholar 

  • Farina D, Merletti R, Enoka RM (2014) The extraction of neural strategies from the surface EMG: an update. J Appl Physiol 117:1215–1230. doi:10.1152/japplphysiol.00162.20141985

    Article  Google Scholar 

  • Frigon A, Carroll TJ, Jones KE, Zehr EP, Collins DF (2007) Ankle position and voluntary contraction alter maximal M waves in soleus and tibialis anterior. Muscle Nerve 35:756–766. doi:10.1002/mus.20747

    Article  Google Scholar 

  • Fuglevand AJ, Zackowski KM, Huey KA, Enoka RM (1993) Impairment of neuromuscular propagation during human fatiguing contractions at submaximal forces. J Physiol 460:549–572

    Article  Google Scholar 

  • Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81:1725–1789

    Google Scholar 

  • Guidetti L, Rivellini G, Figura F (1996) EMG patterns during running: intra- and inter-individual variability. J Electromyogr Kinesiol 6:37–48

    Article  Google Scholar 

  • Hautier CA, Arsac LM, Deghdegh K, Souquet J, Belli A, Lacour JR (2000) Influence of fatigue on EMG/force ratio and cocontraction in cycling. Med Sci Sports Exerc 32:839–843

    Article  Google Scholar 

  • Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G (2000) Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol 10:361–374

    Article  Google Scholar 

  • Hodges PW, Bui BH (1996) A comparison of computer-based methods for the determination of onset of muscle contraction using electromyography. Electroencephalogr Clin Neurophysiol 101:511–519

    Google Scholar 

  • Hodges PW, Tucker K (2011) Moving differently in pain: a new theory to explain the adaptation to pain. Pain 152:S90–S98 . doi:10.1016/j.pain.2010.32020S0304–3959(10)00647–0 [pii]

    Article  Google Scholar 

  • Hodges PW, Coppieters MW, Macdonald D, Cholewicki J (2013) New insight into motor adaptation to pain revealed by a combination of modelling and empirical approaches. Eur J Pain. doi:10.1002/j.1532-2149.2013.00286.x

    Google Scholar 

  • Hudson AL, Taylor JL, Gandevia SC, Butler JE (2009) Coupling between mechanical and neural behaviour in the human first dorsal interosseous muscle. J Physiol 587:917–925. doi:10.1113/jphysiol.2008.165043

    Article  Google Scholar 

  • Hug F (2011) Can muscle coordination be precisely studied by surface electromyography? J Electromyogr Kinesiol 21:1–12. doi:10.1016/j.jelekin.2010.08.009

    Article  Google Scholar 

  • Hug F, Dorel S (2009) Electromyographic analysis of pedaling: a review. J Electromyogr Kinesiol 19:182–198

    Article  Google Scholar 

  • Hug F, Drouet JM, Champoux Y, Couturier A, Dorel S (2008) Interindividual variability of electromyographic patterns and pedal force profiles in trained cyclists. Eur J Appl Physiol 104:667–678

    Article  Google Scholar 

  • Hug F, Turpin NA, Guevel A, Dorel S (2010) Is interindividual variability of EMG patterns in trained cyclists related to different muscle synergies? J Appl Physiol 108:1727–1736

    Article  Google Scholar 

  • Hug F, Lacourpaille L, Nordez A (2011) Electromechanical delay measured during a voluntary contraction should be interpreted with caution. Muscle Nerve 44:838–839. doi:10.1002/mus.22139

    Article  Google Scholar 

  • Hug F, Turpin NA, Dorel S, Guevel A (2012) Smoothing of electromyographic signals can influence the number of extracted muscle synergies. Clin Neurophysiol 123:1895–1896. doi:10.1016/j.clinph.2012.01.015

    Article  Google Scholar 

  • Hug F, Goupille C, Baum D, Raiteri BJ, Hodges PW, Tucker K (2015a) Nature of the coupling between neural drive and force-generating capacity in the human quadriceps muscle. Proc Biol Sci 282:1819. doi:10.1098/rspb.2015.1908

    Article  Google Scholar 

  • Hug F, Hodges PW, Tucker K (2015b) Muscle force cannot be directly inferred from muscle activation: illustrated by the proposed imbalance of force between the vastus medialis and vastus lateralis in people with patellofemoral pain. J Orthop Sports Phys Ther 45:360–365. doi:10.2519/jospt.2015.5905

    Article  Google Scholar 

  • Jobe FW, Moynes DR, Tibone JE, Perry J (1984) An EMG analysis of the shoulder in pitching. A second report. Am J Sports Med 12:218–220

    Article  Google Scholar 

  • Keenan KG, Farina D, Maluf KS, Merletti R, Enoka RM (2005) Influence of amplitude cancellation on the simulated surface electromyogram. J Appl Physiol 98:120–131. doi:10.1152/japplphysiol.00894.20041985

    Article  Google Scholar 

  • Kleissen RF (1990) Effects of electromyographic processing methods on computer-averaged surface electromyographic profiles for the gluteus medius muscle. Phys Ther 70:716–722

    Article  Google Scholar 

  • Lawrence JH, De Luca CJ (1983) Myoelectric signal versus force relationship in different human muscles. J Appl Physiol Respir Environ Exerc Physiol 54:1653–1659

    Google Scholar 

  • Leedham JS, Dowling JJ (1995) Force-length, torque-angle and EMG-joint angle relationships of the human in vivo biceps brachii. Eur J Appl Physiol Occup Physiol 70:421–426

    Article  Google Scholar 

  • Li X, Aruin A (2005) Muscle activity onset time detection using teager-kaiser energy operator. Conf Proc IEEE Eng Med Biol Soc 7:7549–7552. doi:10.1109/IEMBS.2005.1616259

    Google Scholar 

  • Linstrom L, Magnusson R, Petersen I (1970) Muscular fatigue and action potential conduction velocity changes studied with frequency analysis of EMG signals. Electromyography 4:341–356

    Google Scholar 

  • Lowery MM, Stoykov NS, Kuiken TA (2003) Independence of myoelectric control signals examined using a surface EMG model. IEEE Trans Biomed Eng 50:789–793

    Article  Google Scholar 

  • Merlo A, Farina D, Merletti R (2003) A fast and reliable technique for muscle activity detection from surface EMG signals. IEEE Trans Biomed Eng 50:316–323. doi:10.1109/TBME.2003.808829

    Article  Google Scholar 

  • Mesin L, Smith S, Hugo S, Viljoen S, Hanekom T (2009) Effect of spatial filtering on crosstalk reduction in surface EMG recordings. Med Eng Phys 31:374–383

    Article  Google Scholar 

  • Nordez A, Gallot T, Catheline S, Guevel A, Cornu C, Hug F (2009) Electromechanical delay revisited using very high frame rate ultrasound. J Appl Physiol 106:1970–1975. doi:10.1152/japplphysiol.00221.20091985

    Article  Google Scholar 

  • Pal S, Draper CE, Fredericson M, Gold GE, Delp SL, Beaupre GS, Besier TF (2011) Patellar maltracking correlates with vastus medialis activation delay in patellofemoral pain patients. Am J Sports Med 39:590–598. doi:10.1177/0363546510384233

    Article  Google Scholar 

  • Raiteri BJ, Cresswell AG, Lichtwark GA (2015) Ultrasound reveals negligible cocontraction during isometric plantar flexion and dorsiflexion despite the presence of antagonist electromyographic activity. J Appl Physiol 118:1193–1199. doi:10.1152/japplphysiol.00825.20141985

    Article  Google Scholar 

  • Raiteri BJ, Hug F, Cresswell AG, Lichtwark GA (2016) Quantification of muscle co-contraction using supersonic shear wave imaging. J Biomech 49:493–495. doi:10.1016/j.jbiomech.2015.12.039

    Article  Google Scholar 

  • Rouffet DM, Hautier CA (2007) EMG normalization to study muscle activation in cycling. J Electromyogr Kinesiol 18(5):866–878

    Article  Google Scholar 

  • Ryan MM, Gregor RJ (1992) EMG profiles of lower extremity muscles during cycling at constant workload and cadence. J Electromyogr Kinesiol 2:69–80

    Article  Google Scholar 

  • Salomoni S, Tucker K, Hug F, McPhee M, Hodges P (2016) Reduced maximal force during acute anterior knee pain is associated with deficits in voluntary muscle activation. PLoS One 11:e0161487. doi:10.1371/journal.pone.0161487

    Article  Google Scholar 

  • Shiavi R, Champion S, Freeman F, Griffin P (1981) Variability of electromyographic patterns for level-surface walking through a range of self-selected speeds. Bull Prosthet Res 10–35:5–14

    Google Scholar 

  • Shiavi R, Frigo C, Pedotti A (1998) Electromyographic signals during gait: criteria for envelope filtering and number of strides. Med Biol Eng Comput 36:171–178

    Article  Google Scholar 

  • Soderberg GL, Knutson LM (2000) A guide for use and interpretation of kinesiologic electromyographic data. Phys Ther 80:485–498

    Google Scholar 

  • Staude GH (2001) Precise onset detection of human motor responses using a whitening filter and the log-likelihood-ratio test. IEEE Trans Biomed Eng 48:1292–1305. doi:10.1109/10.959325

    Article  Google Scholar 

  • Staude G, Wolf W (1999) Objective motor response onset detection in surface myoelectric signals. Med Eng Phys 21:449–467

    Article  Google Scholar 

  • Valero-Cuevas FJ, Cohn BA, Yngvason HF, Lawrence EL (2015) Exploring the high-dimensional structure of muscle redundancy via subject-specific and generic musculoskeletal models. J Biomech 48:2887–2896. doi:10.1016/j.jbiomech.2015.04.026

    Article  Google Scholar 

  • van Vugt JP, van Dijk JG (2001) A convenient method to reduce crosstalk in surface EMG. Clin Neurophysiol 112:583–592

    Article  Google Scholar 

  • Winter EM, Brookes FB (1991) Electromechanical response times and muscle elasticity in men and women. Eur J Appl Physiol Occup Physiol 63:124–128

    Article  Google Scholar 

  • Winter DA, Yack HJ (1987) EMG profiles during normal human walking: stride-to-stride and inter-subject variability. Electroencephalogr Clin Neurophysiol 67:402–411

    Article  Google Scholar 

  • Winter DA, Fuglevand AJ, Archer SE (1994) Crosstalk in surface electromyography: theoretical and practical estimates. J Electromyogr Kinesiol 4:15–26

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Hug .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Hug, F., Tucker, K. (2016). Surface Electromyography to Study Muscle Coordination. In: Müller, B., et al. Handbook of Human Motion. Springer, Cham. https://doi.org/10.1007/978-3-319-30808-1_184-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30808-1_184-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30808-1

  • Online ISBN: 978-3-319-30808-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics