Skip to main content

Measurement of 3D Dynamic Joint Motion Using Biplane Videoradiography

  • Living reference work entry
  • First Online:
Handbook of Human Motion
  • 169 Accesses

Abstract

Accurate measurement of in vivo joint kinematics is important for understanding normal and pathological human motion and for evaluating the outcome of surgical procedures. Biplane videoradiography is currently the most accurate method available for measuring in vivo joint kinematics noninvasively. The method uses two X-ray images obtained from different perspectives to deduce precise three-dimensional spatial information of the bones that meet at a joint. The abilities to collect high-quality X-ray images at high frame rates and to process these images in a time efficient manner are key factors determining the feasibility of using modern biplane videoradiography systems to measure human joint motion in vivo. The latest developments in this field include improvements in image quality, software for more efficient and accurate data processing, and the advent of mobile biplane videoradiography systems. Mobile systems enable data capture for a wider range of joints and activities by increasing the effective image capture volume, thereby addressing a major limitation of stationary systems.

This chapter summarizes the most recent advances in human motion measurement using biplane videoradiography (also commonly referred to as biplane X-ray fluoroscopy). We begin with some basic considerations related to hardware setup, data capture, and data processing and then describe methods commonly used to evaluate system accuracy. The chapter concludes with a discussion of the relative merits of mobile versus stationary systems as well as some thoughts on potential future applications of biplane videoradiography in human joint motion measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Anderst W, Zauel R, Bishop J, Demps E, Tashman S (2009) Validation of three-dimensional model-based tibio-femoral tracking during running. Med Eng Phys 31:10–16. doi:10.1016/j.medengphy.2008.03.003

    Article  Google Scholar 

  • Anderst WJ, Vaidya R, Tashman S (2008) A technique to measure three-dimensional in vivo rotation of fused and adjacent lumbar vertebrae. Spine J 8:991–997. doi:10.1016/j.spinee.2007.07.390

    Article  Google Scholar 

  • Banks SA, Hodge WA (1996) Accurate measurement of three dimensional knee replacement kinematics using single-plane fluoroscopy. IEEE Trans Biomed Eng 46:638–649

    Article  Google Scholar 

  • Bey MJ, Zauel R, Brock SK, Tashman S (2006) Validation of a new model-based tracking technique for measuring three-dimensional, in vivo glenohumeral joint kinematics. J Biomech Eng 128:604–609. doi:10.1115/1.2206199

    Article  Google Scholar 

  • Bingham J, Li G (2006) An optimized image matching method for determining in-vivo TKA kinematics with a dual-orthogonal fluoroscopic imaging system. J Biomech Eng 128:588–595. doi:10.1115/1.2205865

    Article  Google Scholar 

  • Brainerd EL, Baier DB, Gatesy SM, Hedrick TL, Metzger KA, Gilbert SL, Crisco JJ (2010) X-ray reconstruction of moving morphology (XROMM): precision, accuracy and applications in comparative biomechanics research. J Exp Zool A Ecol Genet Physiol 313:262–279. doi:10.1002/jez.589

    Google Scholar 

  • Davidson JM (1898) Roentgen rays and localisation: an apparatus for exact measurement and localisation by means of roentgen rays. Br Med J 1:10–13

    Article  Google Scholar 

  • Dennis DA, Mahfouz MR, Komistek RD, Hoff W (2005) In vivo determination of normal and anterior cruciate ligament-deficient knee kinematics. J Biomech 38:241–253. doi:10.1016/j.jbiomech.2004.02.042

    Article  Google Scholar 

  • Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller JV, Pieper S, Kikinis R (2016) 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30:1323–1341. doi:10.1016/j.mri.2012.05.001

    Article  Google Scholar 

  • Garling EH, Kaptein BL, Geleijns K, Nelissen RGHH, Valstar ER (2005) Marker configuration model-based roentgen fluoroscopic analysis. J Biomech 38:893–901. doi:10.1016/j.jbiomech.2004.04.026

    Article  Google Scholar 

  • Giphart JE, Zirker CA, Myers CA, Pennington WW, LaPrade RF (2012) Accuracy of a contour-based biplane fluoroscopy technique for tracking knee joint kinematics of different speeds. J Biomech 45:2935–2938. doi:10.1016/j.jbiomech.2012.08.045

    Article  Google Scholar 

  • Grood ES, Suntay WJ (1983) A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng 105:136–144

    Article  Google Scholar 

  • Guan S, Gray HA, Keynejad F, Pandy MG (2016) Mobile biplane X-ray imaging system for measuring 3D dynamic joint motion during overground gait. Med. Imaging IEEE Trans 35:326–336. doi:10.1109/TMI.2015.2473168

    Article  Google Scholar 

  • Ivester JC, Cyr AJ, Harris MD, Kulis MJ, Rullkoetter PJ, Shelburne KB (2015) A reconfigurable high-speed stereo-radiography system for sub-millimeter measurement of in vivo joint kinematics. J Med Device 9:41009. doi:10.1115/1.4030778

    Article  Google Scholar 

  • Kaptein BL, Shelburne KB, Torry MR, Giphart JE (2011) A comparison of calibration methods for stereo fluoroscopic imaging systems. J Biomech 44:2511–2515. doi:10.1016/j.jbiomech.2011.07.001

    Article  Google Scholar 

  • Kärrholm J, Selvik G, Elmqvist L-G, Hansson LI (1988) Active knee motion after cruciate ligament rupture. Acta Orthop Scand 59:158–164. doi:10.1080/17453678809169699

    Google Scholar 

  • Li G, Kozanek M, Hosseini A, Liu F, Van de Velde SK, Rubash HE (2009) New fluoroscopic imaging technique for investigation of 6DOF knee kinematics during treadmill gait. J Orthop Surg Res 4:6. doi:10.1186/1749-799X-4-6

    Article  Google Scholar 

  • List R, Foresti M, Gerber H, Goldhahn J, Rippstein P, Stussi E (2012) Three-dimensional kinematics of an unconstrained ankle arthroplasty: a preliminary in vivo videofluoroscopic feasibility study. Foot Ankle Int 33:883–892. doi:10.3113/FAI.2012.0883

    Article  Google Scholar 

  • Matteri RE, Pope MH, Frymoyer JW (1976) A biplane radiographic method of determining vertebral rotation in postmortem specimens. Clin Orthop Relat Res 116

    Google Scholar 

  • Myers C a, Torry MR, Shelburne KB, Giphart JE, LaPrade RF, Woo SL-Y, Steadman JR (2012) In vivo tibiofemoral kinematics during four functional tasks of increasing demand using biplane fluoroscopy. Am J Sports Med 40:170–178. doi:10.1177/0363546511423746

    Article  Google Scholar 

  • Ohnishi T, Suzuki M, Nawata A, Naomoto S, Iwasaki T, Haneishi H (2010) Three-dimensional motion study of femur, tibia, and patella at the knee joint from bi-plane fluoroscopy and CT images. Radiol Phys Technol 3:151–158. doi:10.1007/s12194-010-0090-1

    Article  Google Scholar 

  • Selvik G (1974) Roentgen stereophotogrammetry: a method for the study of the kinematics of the skeletal system. University of Lund, Lund. doi:10.3109/17453678909154184

  • Tashman S (2016) Comments on “validation of a non-invasive fluoroscopic imaging technique for the measurement of dynamic knee joint motion”. J Biomech 41:3290–3291. doi:10.1016/j.jbiomech.2008.07.038

    Article  Google Scholar 

  • Tashman S, Collon D, Anderson K, Kolowich P, Anderst W (2004) Abnormal rotational knee motion during running after anterior cruciate ligament reconstruction. Am J Sports Med 32:975–983. doi:10.1177/0363546503261709

    Article  Google Scholar 

  • Tashman S, Kolowich P, Collon D, Anderson K, Anderst W (2007) Dynamic function of the ACL-reconstructed knee during running. Clin Orthop Relat Res 454:66–73. doi:10.1097/BLO.0b013e31802bab3e

    Article  Google Scholar 

  • Uvehammer J, Karrholm J, Brandsson S, Herberts P et al (2000) In vivo kinematics of total knee arthroplasty: flat compared with concave tibial joint surface. J Orthop Res 18:856–864

    Article  Google Scholar 

  • van Dijk R, Huiskes R, Selvik G (1979) Roentgen stereophotogrammetric methods for the evaluation of the three dimensional kinematic behaviour and cruciate ligament length patterns of the human knee joint. J Biomech 12:727–731. doi:10.1016/0021-9290(79)90021-6

    Article  Google Scholar 

  • You BM, Siy P, Anderst W, Tashman S (2001) In vivo measurement of 3D skeletal kinematics from sequences of biplane radiographs: application to knee kinematics. IEEE Trans Med Imaging 20:514–525. doi:10.1109/42.929617

    Article  Google Scholar 

  • Zhu Z, Li G (2011) An automatic 2D–3D image matching method for reproducing spatial knee joint positions using single or dual fluoroscopic images. Comput Methods Biomech Biomed Engin:1–12. doi:10.1080/10255842.2011.597387

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Gray .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Gray, H., Guan, S., Loan, P., Pandy, M. (2016). Measurement of 3D Dynamic Joint Motion Using Biplane Videoradiography. In: Müller, B., et al. Handbook of Human Motion. Springer, Cham. https://doi.org/10.1007/978-3-319-30808-1_154-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30808-1_154-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30808-1

  • Online ISBN: 978-3-319-30808-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics