Star-Planet Interactions and Habitability: Radiative Effects

Living reference work entry

Abstract

Our current vision of habitable planets depends not only on the intrinsic properties of the planet such as bulk terrestrial composition, but on the characteristics of its host star. In general terms, high stellar energy radiation (X rays and extreme ultraviolet) can erode the planetary atmosphere, far and near ultraviolet drive the atmospheric chemistry, and visible and infrared fluxes control the planetary climate. Some cross overs exist, for example, the haze formation is produced by ultraviolet light and impacts the atmospheric temperature profile of the planet. This chapter outlines how stellar radiation influences the habitability potential of exoplanets.

Keywords

Stellar radiation X rays Ultraviolet Visible Infrared Habitable exoplanets 

References

  1. Abe Y, Abe-Ouchi A, Sleep NH, Zahnle KJ (2011) Habitable zone limits for dry planets. Astrobiology 11:443–460. https://doi.org/10.1089/ast.2010.0545 ADSCrossRefGoogle Scholar
  2. Airapetian VS, Glocer A, Khazanov GV, Loyd ROP, France K, Sojka J, Danchi WC, Liemohn MW (2017) How hospitable are space weather affected habitable zones? The role of ion escape. Astrophys J Lett 836:L3. https://doi.org/10.3847/2041-8213/836/1/L3 ADSCrossRefGoogle Scholar
  3. Anglada-Escudé G, Amado PJ, Barnes J, Berdiñas ZM, Butler RP, Coleman GAL, de La Cueva I, Dreizler S, Endl M, Giesers B, Jeffers SV, Jenkins JS, Jones HRA, Kiraga M, Kürster M, López-González MJ, Marvin CJ, Morales N, Morin J, Nelson RP, Ortiz JL, Ofir A, Paardekooper S-J, Reiners A, Rodríguez E, Rodríguez-López C, Sarmiento LF, Strachan JP, Tsapras Y, Tuomi M, Zechmeister M (2016) A terrestrial planet candidate in a temperate orbit around Proxima Centauri. Nature 536:437–440. https://doi.org/10.1038/nature19106 ADSCrossRefGoogle Scholar
  4. Armstrong DJ, Pugh CE, Broomhall A-M, Brown DJA, Lund MN, Osborn HP, Pollacco DL (2016) The host stars of Kepler’s habitable exoplanets: superflares, rotation and activity. Mon Not R Astron Soc 455:3110–3125. https://doi.org/10.1093/mnras/stv2419 ADSCrossRefGoogle Scholar
  5. Arney G, Domagal-Goldman SD, Meadows VS, Wolf ET, Schwieterman E, Charnay B, Claire M, Hébrard E, Trainer MG (2016) The Pale Orange Dot: the spectrum and habitability of hazy Archean Earth. Astrobiology 16:873–899. https://doi.org/10.1089/ast.2015.1422 ADSCrossRefGoogle Scholar
  6. Arney GN, Meadows VS, Domagal-Goldman SD, Deming D, Robinson TD, Tovar G, Wolf ET, Schwieterman E (2017) Pale orange dots: the impact of organic haze on the habitability and detectability of Earthlike exoplanets. Astrophys J 836:49ADSCrossRefGoogle Scholar
  7. Barks HL, Buckley R, Grieves GA, Di Mauro E, Hud NV, Orlando TM (2010) Guanine, adenine, and hypoxanthine production in uv-irradiated formamide solutions: relaxation of the requirements for prebiotic purine nucleobase formation. ChemBioChem 11:1240–1243CrossRefGoogle Scholar
  8. Barman TS (2017) Planetary evaporation through evolution. In: Deeg DHJ, Belmonte DJA (eds) Handbook of exoplanets. Springer International Publishing, The Netherlands, pp 1–17Google Scholar
  9. Barnes R, Jackson B, Greenberg R, Raymond SN (2009) Tidal limits to planetary habitability. Astrophys J Lett 700:L30–L33. https://doi.org/10.1088/0004-637X/700/1/L30 ADSCrossRefGoogle Scholar
  10. Barnes R, Deitrick R, Luger R, Driscoll PE, Quinn TR, Fleming DP, Guyer B, McDonald DV, Meadows VS, Arney G (2016) The habitability of Proxima Centauri b I: evolutionary scenarios. ArXiv Prepr ArXiv160806919Google Scholar
  11. Beckstead AA, Zhang Y, de Vries MS, Kohler B (2016) Life in the light: nucleic acid photoproperties as a legacy of chemical evolution. Phys Chem Chem Phys 18:24228–24238. https://doi.org/10.1039/C6CP04230A CrossRefGoogle Scholar
  12. Bolmont E, Selsis F, Owen JE, Ribas I, Raymond SN, Leconte J, Gillon M (2016) Water loss from terrestrial planets orbiting ultracool dwarfs: implications for the planets of TRAPPIST-1. Mon Not R Astron Soc 464:3728–3741ADSCrossRefGoogle Scholar
  13. Bourrier V, de Wit J, Bolmont E, Stamenković V, Wheatley PJ, Burgasser AJ, Delrez L, Demory B-O, Ehrenreich D, Gillon M, Jehin E, Leconte J, Lederer SM, Lewis N, Triaud AHMJ, Van Grootel V (2017) Temporal evolution of the high-energy irradiation and water content of TRAPPIST-1 exoplanets. Astron J 154:121. https://doi.org/10.3847/1538-3881/aa859c ADSCrossRefGoogle Scholar
  14. Boutle IA, Mayne NJ, Drummond B, Manners J, Goyal J, Lambert FH, Acreman DM, Earnshaw PD (2017) Exploring the climate of Proxima B with the Met Office Unified Model. Astron Astrophys 601:A120. https://doi.org/10.1051/0004-6361/201630020 ADSCrossRefGoogle Scholar
  15. Branduardi-Raymont G, Dunn WR, Sciortino S (2017) Future exoplanet research: XUV (EUV and X-ray) detection and characterization. In: Deeg DHJ, Belmonte DJA (eds) Handbook of Exoplanets. Springer International Publishing, The Netherlands, pp 1–20Google Scholar
  16. Buccino AP, Lemarchand GA, Mauas PJD (2006) Ultraviolet radiation constraints around the circumstellar habitable zones. Icarus 183:491–503. https://doi.org/10.1016/j.icarus.2006.03.007 ADSCrossRefGoogle Scholar
  17. Buccino AP, Lemarchand GA, Mauas PJD (2007) UV habitable zones around M stars. Icarus 192:582–587. https://doi.org/10.1016/j.icarus.2007.08.012 ADSCrossRefGoogle Scholar
  18. Claire MW, Sheets J, Cohen M, Ribas I, Meadows VS, Catling DC (2012) The evolution of solar flux from 0.1 nm to 160 μm: quantitative estimates for planetary studies. Astrophys J 757:95ADSCrossRefGoogle Scholar
  19. Cnossen I, Sanz-Forcada J, Favata F, Witasse O, Zegers T, Arnold NF (2007) Habitat of early life: solar X-ray and UV radiation at Earth’s surface 4–3.5 billion years ago. J Geophys Res Planets 112:E02008. https://doi.org/10.1029/2006JE002784 ADSCrossRefGoogle Scholar
  20. Cockell CS (1998) Biological effects of high ultraviolet radiation on early Earth – a theoretical evaluation. J Theor Biol 193:717–729CrossRefGoogle Scholar
  21. Cockell CS (1999) Carbon biochemistry and the ultraviolet radiation environments of F, G, and K main sequence stars. Icarus 141:399–407. https://doi.org/10.1006/icar.1999.6167 ADSCrossRefGoogle Scholar
  22. Cockell CS, Catling DC, Davis WL, Snook K, Kepner RL, Lee P, McKay CP (2000) The ultraviolet environment of mars: biological implications past, present, and future. Icarus 146:343–359. https://doi.org/10.1006/icar.2000.6393 ADSCrossRefGoogle Scholar
  23. Davenport JR (2016) The Kepler catalog of Stellar Flares. Astrophys J 829:23ADSCrossRefGoogle Scholar
  24. Del Genio AD, Way MJ, Amundsen DS, Aleinov I, Kelley M, Kiang NY, Clune TL (2017) Habitable climate scenarios for Proxima Centauri b With a dynamic ocean. ArXiv170902051 Astro-PhGoogle Scholar
  25. Deming LD, Seager S (2017) Illusion and reality in the atmospheres of exoplanets. J Geophys Res Planets 122:2016JE005155. https://doi.org/10.1002/2016JE005155 CrossRefGoogle Scholar
  26. Edson A, Lee S, Bannon P, Kasting JF, Pollard D (2011) Atmospheric circulations of terrestrial planets orbiting low-mass stars. Icarus 212:1–13. https://doi.org/10.1016/j.icarus.2010.11.023 ADSCrossRefGoogle Scholar
  27. Forget F, Pierrehumbert RT (1997) Warming early Mars with carbon dioxide clouds that scatter infrared radiation. Science 278:1273–1276. https://doi.org/10.1126/science.278.5341.1273 ADSCrossRefGoogle Scholar
  28. France K, Froning CS, Linsky JL, Roberge A, Stocke JT, Tian F, Bushinsky R, Désert J-M, Mauas P, Vieytes M, Walkowicz LM (2013) The ultraviolet radiation environment around M dwarf exoplanet host stars. Astrophys J 763:149. https://doi.org/10.1088/0004-637X/763/2/149 ADSCrossRefGoogle Scholar
  29. France K, Loyd ROP, Youngblood A, Brown A, Schneider PC, Hawley SL, Froning CS, Linsky JL, Roberge A, Buccino AP, Davenport JRA, Fontenla JM, Kaltenegger L, Kowalski AF, Mauas PJD, Miguel Y, Redfield S, Rugheimer S, Tian F, Vieytes MC, Walkowicz LM, Weisenburger KL (2016) The MUSCLES Treasury Survey. I. Motivation and overview. Astrophys J 820:89. https://doi.org/10.3847/0004-637X/820/2/89 ADSCrossRefGoogle Scholar
  30. Franck S, Block A, von Bloh W, Bounama C, Schellnhuber H-J, Svirezhev Y (2000) Habitable zone for Earth-like planets in the solar system. Planet Space Sci 48:1099–1105. https://doi.org/10.1016/S0032-0633(00)00084-2 ADSCrossRefGoogle Scholar
  31. Gershberg RE (1972) Some results of the cooperative photometric observations of the UV Cet-type flare stars in the years 1967 71. Astrophys Space Sci 19:75–92. https://doi.org/10.1007/BF00643168 ADSCrossRefGoogle Scholar
  32. Gershberg RE (2005) Solar-type activity in main-sequence stars. Springer, Berlin/HeidelbergGoogle Scholar
  33. Gillon M, Triaud AHMJ, Demory B-O, Jehin E, Agol E, Deck KM, Lederer SM, de Wit J, Burdanov A, Ingalls JG, Bolmont E, Leconte J, Raymond SN, Selsis F, Turbet M, Barkaoui K, Burgasser A, Burleigh MR, Carey SJ, Chaushev A, Copperwheat CM, Delrez L, Fernandes CS, Holdsworth DL, Kotze EJ, Grootel VV, Almleaky Y, Benkhaldoun Z, Magain P, Queloz D (2017) Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542:456–460. https://doi.org/10.1038/nature21360 ADSCrossRefGoogle Scholar
  34. Goldblatt C (2015) Habitability of waterworlds: runaway greenhouses, atmospheric expansion, and multiple climate states of pure water atmospheres. Astrobiology 15:362–370ADSCrossRefGoogle Scholar
  35. Goldblatt C (2016) Tutorial models of the climate and habitability of Proxima Centauri b: a thin atmosphere is sufficient to distribute heat given low stellar flux. ArXiv160807263 Astro-Ph PhysicsphysicsGoogle Scholar
  36. Güdel M, Dvorak R, Erkaev N, Kasting J, Khodachenko M, Lammer H, Pilat-Lohinger E, Rauer H, Ribas I, Wood BE (2014) Astrophysical conditions for planetary habitability. Protostars Planets VI:883–906. https://doi.org/10.2458/azu_uapress_9780816531240-ch038 ADSGoogle Scholar
  37. Guinan EF, Engle SG (2007) Evolution over time of magentic dynamo driven UV & X-ray emissions of dG-M stars and effects on hosted planets. ArXiv07111530 Astro-PhGoogle Scholar
  38. Haqq-Misra JD, Domagal-Goldman SD, Kasting PJ, Kasting JF (2008) A revised, hazy methane greenhouse for the Archean Earth. Astrobiology 8:1127–1137ADSCrossRefGoogle Scholar
  39. Haqq-Misra J, Kopparapu RK, Batalha NE, Harman CE, Kasting JF (2016) Limit cycles can reduce the width of the habitable zone. Astrophys J 827:120ADSCrossRefGoogle Scholar
  40. Hawley SL, Pettersen BR (1991) The great flare of 1985 April 12 on AD Leonis. Astrophys J 378:725–741. https://doi.org/10.1086/170474 ADSCrossRefGoogle Scholar
  41. Hawley SL, Davenport JR, Kowalski AF, Wisniewski JP, Hebb L, Deitrick R, Hilton EJ (2014) Kepler flares. I. Active and inactive M dwarfs. Astrophys J 797:121ADSCrossRefGoogle Scholar
  42. Higgs PG, Lehman N (2015) The RNA World: molecular cooperation at the origins of life. Nat Rev Genet 16:7–17. https://doi.org/10.1038/nrg3841 CrossRefGoogle Scholar
  43. Hörst S (2016) Clouds and haze and dust, oh my! http://www.planetary.org/blogs/guest-blogs/2016/0324-clouds-and-haze-and-dust-oh-my.html. Accessed 30 Oct 2017
  44. Hörst SM (2017) Titan’s atmosphere and climate. J Geophys Res Planets 122:2016JE005240. https://doi.org/10.1002/2016JE005240 CrossRefGoogle Scholar
  45. Hunten DM (1973) The escape of light gases from planetary atmospheres. J Atmos Sci 30:1481–1494.  https://doi.org/10.1175/1520-0469(1973)030<1481:TEOLGF>2.0.CO;2 ADSCrossRefGoogle Scholar
  46. Kaltenegger L, Eiroa C, Fridlund CVM (2010) Target star catalogue for Darwin Nearby Stellar sample for a search for terrestrial planets. Astrophys Space Sci 326:233–247. https://doi.org/10.1007/s10509-009-0223-3 ADSCrossRefGoogle Scholar
  47. Kasting JF, Harman CE (2013) Extrasolar planets: inner edge of the habitable zone. Nature 504:221–223. https://doi.org/10.1038/504221a ADSCrossRefGoogle Scholar
  48. Kasting JF, Zahnle K, Pinto J, Young A (1989) Sulfur, ultraviolet radiation, and the early evolution of life. Orig Life Evol Biospheres 19:95–108ADSCrossRefGoogle Scholar
  49. Kasting JF, Whitmire DP, Reynolds RT (1993) Habitable zones around main sequence stars. Icarus 101:108–128. https://doi.org/10.1006/icar.1993.1010 ADSCrossRefGoogle Scholar
  50. Kasting JF, Kopparapu R, Ramirez RM, Harman CE (2014) Remote life-detection criteria, habitable zone boundaries, and the frequency of Earth-like planets around M and late K stars. Proc Natl Acad Sci 111:12641–12646. https://doi.org/10.1073/pnas.1309107110 ADSCrossRefGoogle Scholar
  51. Kiang NY, Segura A, Tinetti G, Govindjee BRE, Cohen M, Siefert J, Crisp D, Meadows VS (2007a) Spectral signatures of photosynthesis. II. Coevolution with other stars and the atmosphere on extrasolar worlds. Astrobiology 7:252–274. https://doi.org/10.1089/ast.2006.0108 ADSCrossRefGoogle Scholar
  52. Kiang NY, Siefert J, Blankenship RE (2007b) Spectral signatures of photosynthesis. I. Review of Earth organisms. Astrobiology 7:222–251ADSCrossRefGoogle Scholar
  53. Kitzmann D (2017) Clouds in the atmospheres of extrasolar planets – V. The impact of CO2 ice clouds on the outer boundary of the habitable zone. Astron Astrophys 600:A111. https://doi.org/10.1051/0004-6361/201630029 ADSCrossRefGoogle Scholar
  54. Kitzmann D, Patzer ABC, von Paris P, Godolt M, Stracke B, Gebauer S, Grenfell JL, Rauer H (2010) Clouds in the atmospheres of extrasolar planets. I. Climatic effects of multi-layered clouds for Earth-like planets and implications for habitable zones. Astron Astrophys 511:A66. https://doi.org/10.1051/0004-6361/200913491 CrossRefGoogle Scholar
  55. Kitzmann D, Patzer ABC, Rauer H (2013) Clouds in the atmospheres of extrasolar planets – IV. On the scattering greenhouse effect of CO2 ice particles: numerical radiative transfer studies. Astron Astrophys 557:A6. https://doi.org/10.1051/0004-6361/201220025 ADSCrossRefGoogle Scholar
  56. Kopparapu RK, Ramirez R, Kasting JF, Eymet V, Robinson TD, Mahadevan S, Terrien RC, Domagal-Goldman S, Meadows V, Deshpande R (2013) Habitable zones around main-sequence stars: new estimates. Astrophys J 765:131. https://doi.org/10.1088/0004-637X/765/2/131 ADSCrossRefGoogle Scholar
  57. Kopparapu RK, Wolf ET, Arney G, Batalha NE, Haqq-Misra J, Grimm SL, Heng K (2017) Habitable moist atmospheres on terrestrial planets near the inner edge of the habitable zone around M dwarfs. Astrophys J 845:5. https://doi.org/10.3847/1538-4357/aa7cf9 ADSCrossRefGoogle Scholar
  58. Leconte J, Forget F, Charnay B, Wordsworth R, Pottier A (2013a) Increased insolation threshold for runaway greenhouse processes on Earth-like planets. Nature 504:268–271. https://doi.org/10.1038/nature12827 ADSCrossRefGoogle Scholar
  59. Leconte J, Forget F, Charnay B, Wordsworth R, Selsis F, Millour E, Spiga A (2013b) 3D climate modeling of close-in land planets: circulation patterns, climate moist bistability, and habitability. Astron Astrophys 554:A69. https://doi.org/10.1051/0004-6361/201321042 ADSCrossRefGoogle Scholar
  60. Leshin LA, Mahaffy PR, Webster CR, Cabane M, Coll P, Conrad PG, Archer PD, Atreya SK, Brunner AE, Buch A (2013) Volatile, isotope, and organic analysis of martian fines with the Mars Curiosity rover. Science 341:1238937CrossRefGoogle Scholar
  61. Linsky JL, Fontenla J, France K (2014) The intrinsic extreme ultraviolet fluxes of F5 V TO M5 V stars. Astrophys J 780:61. https://doi.org/10.1088/0004-637X/780/1/61 ADSCrossRefGoogle Scholar
  62. Luger R, Barnes R (2015) Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of M dwarfs. Astrobiology 15:119–143. https://doi.org/10.1089/ast.2014.1231 ADSCrossRefGoogle Scholar
  63. Luger R, Barnes R, Lopez E, Fortney J, Jackson B, Meadows V (2015) Habitable evaporated cores: transforming mini-Neptunes into super-Earths in the habitable zones of M dwarfs. Astrobiology 15:57–88. https://doi.org/10.1089/ast.2014.1215 ADSCrossRefGoogle Scholar
  64. Madhusudhan N, Agúndez M, Moses JI, Hu Y (2016) Exoplanetary atmospheres – chemistry, formation conditions, and habitability. Space Sci Rev 205:285–348. https://doi.org/10.1007/s11214-016-0254-3 ADSCrossRefGoogle Scholar
  65. Mahaffy PR, Webster CR, Atreya SK, Franz H, Wong M, Conrad PG, Harpold D, Jones JJ, Leshin LA, Manning H (2013) Abundance and isotopic composition of gases in the Martian atmosphere from the Curiosity rover. Science 341:263–266ADSCrossRefGoogle Scholar
  66. Mahaffy PR, Webster CR, Stern JC, Brunner AE, Atreya SK, Conrad PG, Domagal-Goldman S, Eigenbrode JL, Flesch GJ, Christensen LE (2015) The imprint of atmospheric evolution in the D/H of Hesperian clay minerals on Mars. Science 347:412–414ADSCrossRefGoogle Scholar
  67. Margulis L, Walker JCG, Rambler M (1976) Reassessment of roles of oxygen and ultraviolet light in Precambrian evolution. Nature 264:620–624ADSCrossRefGoogle Scholar
  68. Marley MS, Ackerman AS, Cuzzi JN, Kitzmann D (2013) Clouds and hazes in exoplanet atmospheres. In: Mackwell SJ et al (eds) Comparative climatology of terrestrial planets. University of Arizona Press, Tucson, pp 367–391Google Scholar
  69. McKay C (2000) Thickness of tropical ice and photosynthesis on a snowball Earth. Geophys Res Lett 27:2153–2156ADSCrossRefGoogle Scholar
  70. Meadows VS, Arney GN, Schwieterman EW, Lustig-Yaeger J, Lincowski AP, Robinson T, Domagal-Goldman SD, Barnes RK, Fleming DP, Deitrick R, Luger R, Driscoll PE, Quinn TR, Crisp D (2016) The habitability of Proxima Centauri b: II: environmental states and observational discriminants. ArXiv160808620 Astro-PhGoogle Scholar
  71. Melosh HJ, Vickery AM (1989) Impact erosion of the primordial atmosphere of Mars. Nature 338:487–489ADSCrossRefGoogle Scholar
  72. Menou K (2015) Climate stability of habitable Earth-like planets. Earth Planet Sci Lett 429:20–24. https://doi.org/10.1016/j.epsl.2015.07.046 ADSCrossRefGoogle Scholar
  73. Micela G (2017) Stellar coronal activity and its impact on planets. In: Deeg DHJ, Belmonte DJA (eds) Handbook of exoplanets. Springer International Publishing, pp 1–14Google Scholar
  74. Middleton CT, de La Harpe K, Su C, Law YK, Crespo-Hernández CE, Kohler B (2009) DNA excited-state dynamics: from single bases to the double helix. Annu Rev Phys Chem 60:217–239. https://doi.org/10.1146/annurev.physchem.59.032607.093719 ADSCrossRefGoogle Scholar
  75. Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117:528–529. https://doi.org/10.1126/science.117.3046.528 ADSCrossRefGoogle Scholar
  76. Mischna MA, Kasting JF, Pavlov A, Freedman R (2000) Influence of carbon dioxide clouds on early martian climate. Icarus 145:546–554. https://doi.org/10.1006/icar.2000.6380 ADSCrossRefGoogle Scholar
  77. Moffett TJ (1974) UV Ceti flare stars – observational data. Astrophys J Suppl Ser 29:1–42. https://doi.org/10.1086/190330 ADSCrossRefGoogle Scholar
  78. Nienow JA, Friedmann EI (1993) Terrestrial lithophytic (rock) communities. Antarct Microbiol 343–412Google Scholar
  79. O’Malley-James JT, Kaltenegger L (2017) UV surface habitability of the TRAPPIST-1 system. Mon Not R Astron Soc Lett 469(1):L26–L30ADSCrossRefGoogle Scholar
  80. O’Malley-James JT, Raven JA, Cockell CS, Greaves JS (2012) Life and light: exotic photosynthesis in binary and multiple-star systems. Astrobiology 12:115–124. https://doi.org/10.1089/ast.2011.0678 ADSCrossRefGoogle Scholar
  81. Pavlov AA, Brown LL, Kasting JF (2001a) UV shielding of NH3 and O2 by organic hazes in the Archean atmosphere. J Geophys Res Planets 106:23267–23287CrossRefGoogle Scholar
  82. Pavlov AA, Kasting JF, Eigenbrode JL, Freeman KH (2001b) Organic haze in Earth’s early atmosphere: source of low-13C Late Archean kerogens? Geology 29:1003–1006ADSCrossRefGoogle Scholar
  83. Phoenix VR, Konhauser KO, Adams DG, Bottrell SH (2001) Role of biomineralization as an ultraviolet shield: implications for Archean life. Geology 29:823–826.  https://doi.org/10.1130/0091-7613(2001)029<0823:ROBAAU>2.0.CO;2 ADSCrossRefGoogle Scholar
  84. Pierrehumbert R, Gaidos E (2011) Hydrogen greenhouse planets beyond the habitable zone. Astrophys J Lett 734:L13. https://doi.org/10.1088/2041-8205/734/1/L13 ADSCrossRefGoogle Scholar
  85. Porto de Mello G, Fernandez del Peloso E, Ghezzi L (2006) Astrobiologically interesting stars within 10 Parsecs of the Sun. Astrobiology 6:308–331. https://doi.org/10.1089/ast.2006.6.308 ADSCrossRefGoogle Scholar
  86. Powner MW, Gerland B, Sutherland JD (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459:239–242ADSCrossRefGoogle Scholar
  87. Ramirez RM, Kaltenegger L (2014) The habitable zones of pre-main-sequence stars. Astrophys J Lett 797:L25ADSCrossRefGoogle Scholar
  88. Ramsay G, Doyle JG (2015) The view from K2: questioning the traditional view of flaring on early dM stars. Mon Not R Astron Soc 449:3015–3020ADSCrossRefGoogle Scholar
  89. Ranjan S, Sasselov DD (2016) Influence of the UV environment on the synthesis of prebiotic molecules. Astrobiology 16:68–88ADSCrossRefGoogle Scholar
  90. Ranjan S, Sasselov DD (2017) Constraints on the early terrestrial surface UV environment relevant to prebiotic chemistry. Astrobiology 17:169–204ADSCrossRefGoogle Scholar
  91. Ranjan S, Wordsworth R, Sasselov DD (2017) The surface UV environment on planets orbiting M dwarfs: implications for prebiotic chemistry and the need for experimental follow-up. Astrophys J 843:110. https://doi.org/10.3847/1538-4357/aa773e ADSCrossRefGoogle Scholar
  92. Rapf RJ, Vaida V (2016) Sunlight as an energetic driver in the synthesis of molecules necessary for life. Phys Chem Chem Phys 18:20067–20084. https://doi.org/10.1039/C6CP00980H CrossRefGoogle Scholar
  93. Ribas I, Guinan EF, Güdel M, Audard M (2005) Evolution of the solar activity over time and effects on planetary atmospheres. I. High-energy irradiances (1–1700 Å). Astrophys J 622:680. https://doi.org/10.1086/427977 ADSCrossRefGoogle Scholar
  94. Ribas I, Bolmont E, Selsis F, Reiners A, Leconte J, Raymond S, Engle S, Guinan E, Morin J, Turbet M, Forget F, Anglada-Escudé G (2016) The habitability of Proxima Centauri b. I. Irradiation, rotation and volatile inventory from formation to the present, Astron Astrophy, 596: A111 Google Scholar
  95. Ribas I, Gregg MD, Boyajian TS, Bolmont E (2017) The full spectral radiative properties of Proxima Centauri. Astron Astrophys 603:A58ADSCrossRefGoogle Scholar
  96. Roy S (2000) Strategies for the minimisation of UV-induced damage. In: De Mora S, Demers S, Vernet M (eds) The effects of UV radiation in the marine environment. Cambridge University Press, United Kingdom, pp 177–205Google Scholar
  97. Rueda A (1973) Thermodynamics of thermal radiation from stars photoautotrophs and biospheres. Space Life Sci 4:469–489. https://doi.org/10.1007/BF00930358 ADSGoogle Scholar
  98. Rugheimer S, Segura A, Kaltenegger L, Sasselov D (2015) UV surface environment of Earth-like planets orbiting FGKM stars through geological evolution. Astrophys J 806:137ADSCrossRefGoogle Scholar
  99. Sagan C (1973) Ultraviolet selection pressure on the earliest organisms. J Theor Biol 39:195–200CrossRefGoogle Scholar
  100. Sagan C, Chyba C (1997) The early faint sun paradox: organic shielding of ultraviolet-labile greenhouse gases. Science 276:1217–1221ADSCrossRefGoogle Scholar
  101. Sanz-Forcada J, Micela G, Ribas I, Pollock AMT, Eiroa C, Velasco A, Solano E, García-Álvarez D (2011) Estimation of the XUV radiation onto close planets and their evaporation. Astron Astrophys 532:A6. https://doi.org/10.1051/0004-6361/201116594 ADSCrossRefGoogle Scholar
  102. Scalo J, Kaltenegger L, Segura AG, Fridlund M, Ribas I, Kulikov YN, Grenfell JL, Rauer H, Odert P, Leitzinger M, Selsis F, Khodachenko ML, Eiroa C, Kasting J, Lammer H (2007) M stars as targets for terrestrial exoplanet searches and biosignature detection. Astrobiology 7:85–166. https://doi.org/10.1089/ast.2006.0125 ADSCrossRefGoogle Scholar
  103. Schaefer BE, King JR, Deliyannis CP (2000) Superflares on ordinary solar-type stars. Astrophys J 529:1026. https://doi.org/10.1086/308325 ADSCrossRefGoogle Scholar
  104. Seager S (2010) Exoplanet atmospheres: physical processes. Princeton University Press, United KingdomGoogle Scholar
  105. Seager S, Deming D (2010) Exoplanet atmospheres. Annu Rev Astron Astrophys 48:631–672. https://doi.org/10.1146/annurev-astro-081309-130837 ADSCrossRefGoogle Scholar
  106. Segura A, Krelove K, Kasting JF, Sommerlatt D, Meadows V, Crisp D, Cohen M, Mlawer E (2003) Ozone concentrations and ultraviolet fluxes on Earth-like planets around other stars. Astrobiology 3:689–708. https://doi.org/10.1089/153110703322736024 ADSCrossRefGoogle Scholar
  107. Segura A, Kasting JF, Meadows V, Cohen M, Scalo J, Crisp D, Butler RAH, Tinetti G (2005) Biosignatures from Earth-like planets around M dwarfs. Astrobiology 5:706–725. https://doi.org/10.1089/ast.2005.5.706 ADSCrossRefGoogle Scholar
  108. Segura A, Walkowicz LM, Meadows V, Kasting J, Hawley S (2010) The effect of a strong stellar flare on the atmospheric chemistry of an earth-like planet orbiting an M dwarf. Astrobiology 10:751–771. https://doi.org/10.1089/ast.2009.0376 ADSCrossRefGoogle Scholar
  109. Selsis F, Kasting JF, Levrard B, Paillet J, Ribas I, Delfosse X (2007) Habitable planets around the star Gliese 581? Astron Astrophys 476:1373–1387. https://doi.org/10.1051/0004-6361:20078091 ADSCrossRefGoogle Scholar
  110. Shapley H (1951) Proxima Centauri as a flare star. Proc Natl Acad Sci 37:15–18ADSCrossRefGoogle Scholar
  111. Shkolnik EL, Barman TS (2014) HAZMAT. I. The evolution of far-UV and near-UV emission from early M stars. Astron J 148:64. https://doi.org/10.1088/0004-6256/148/4/64 ADSCrossRefGoogle Scholar
  112. Sinha RP, Häder D-P (2002) UV-induced DNA damage and repair: a review. Photochem Photobiol Sci 1:225–236. https://doi.org/10.1039/B201230H CrossRefGoogle Scholar
  113. Sleep NH, Bird DK, Pope EC (2011) Serpentinite and the dawn of life. Philos Trans R Soc Lond B Biol Sci 366:2857–2869CrossRefGoogle Scholar
  114. Smith DS, Scalo J, Wheeler JC (2004a) Transport of ionizing radiation in terrestrial-like exoplanet atmospheres. Icarus 171:229–253. https://doi.org/10.1016/j.icarus.2004.04.009 ADSCrossRefGoogle Scholar
  115. Smith DS, Scalo J, Wheeler JC (2004b) Importance of biologically active aurora-like ultraviolet emission: stochastic irradiation of Earth and Mars by flares and explosions. Orig Life Evol Biosph 34:513–532. https://doi.org/10.1023/B:ORIG.0000043120.28077.c9 ADSCrossRefGoogle Scholar
  116. Tian F (2015) Atmospheric escape from solar system terrestrial planets and exoplanets. Annu Rev Earth Planet Sci 43:459–476. https://doi.org/10.1146/annurev-earth-060313-054834 ADSCrossRefGoogle Scholar
  117. Tian F, Chassefière E, Leblanc F, Brain D (2013) Atmospheric escape and climate evolution of terrestrial planets. In: Mackwell SJ et al (eds) Comparative climatology of terrestrial planets. University of Arizona Press, Tucson, pp 567–581Google Scholar
  118. Tilley MA, Segura A, Meadows VS, Hawley S, Davenport J (2017) Modeling repeated M-dwarf flaring at an Earth-like planet in the habitable zone: I. Atmospheric effects for an unmagnetized planet. ArXiv E-Prints 1711:arXiv:1711.08484Google Scholar
  119. Trainer M (2013) Atmospheric prebiotic chemistry and organic hazes. Curr Org Chem 17:1710–1723CrossRefGoogle Scholar
  120. Turbet M, Leconte J, Selsis F, Bolmont E, Forget F, Ribas I, Raymond S, Anglada-Escudé G (2016) The habitability of Proxima Centauri b II. Possible climates and observability. Astron Astrophys 596:A112 ADSCrossRefGoogle Scholar
  121. Turnbull MC, Tarter JC (2003) Target Selection for SETI. I. A catalog of nearby habitable stellar systems. Astrophys J Suppl Ser 145:181–198. https://doi.org/10.1086/345779 ADSCrossRefGoogle Scholar
  122. Van Baalen C, O’Donell R (1972) Action spectra for ultraviolet killing and photoreactivation in the blue-green alga Agmenellum quadruplicatum. Photochem Photobiol 15:269–274. https://doi.org/10.1111/j.1751-1097.1972.tb07331.x CrossRefGoogle Scholar
  123. Vidotto AA (2018) Stellar coronal and wind models: impact on exoplanets. In: Deeg DHJ, Belmonte DJA (eds) Handbook of exoplanets. Springer International Publishing, The Netherlands, pp 1–20Google Scholar
  124. Walkowicz LM, Basri G, Batalha N, Gilliland RL, Jenkins J, Borucki WJ, Koch D, Caldwell D, Dupree AK, Latham DW, Meibom S, Howell S, Brown TM, Bryson S (2011) White-light flares on cool stars in the Kepler Quarter 1 data. Astron J 141:50. https://doi.org/10.1088/0004-6256/141/2/50 ADSCrossRefGoogle Scholar
  125. Wargelin B, Saar S, Pojmański G, Drake J, Kashyap V (2016) Optical, UV, and X-ray evidence for a 7-yr stellar cycle in Proxima Centauri. Mon Not R Astron Soc 464:3281–3296ADSCrossRefGoogle Scholar
  126. Webster CR, Mahaffy PR, Flesch GJ, Niles PB, Jones JH, Leshin LA, Atreya SK, Stern JC, Christensen LE, Owen T (2013) Isotope ratios of H, C, and O in CO2 and H2O of the martian atmosphere. Science 341:260–263ADSCrossRefGoogle Scholar
  127. Wolstencroft R, Raven J (2000) Viability and detectability of photosynthesis on Earth-like planets in Lemarchand GA, Meech KJ, Bioastronomy ’99: a new era in Bioastronomy. Astronomical Society of the Pacific Series 213:343–348Google Scholar
  128. Wood BE, Redfield S, Linsky JL, Müller H-R, Zank GP (2005) Stellar Lyα emission lines in the Hubble Space Telescope archive: intrinsic line fluxes and absorption from the heliosphere and astrospheres. Astrophys J Suppl Ser 159:118. https://doi.org/10.1086/430523 ADSCrossRefGoogle Scholar
  129. Wordsworth R, Forget F, Eymet V (2010) Infrared collision-induced and far-line absorption in dense CO2 atmospheres. Icarus 210:992–997. https://doi.org/10.1016/j.icarus.2010.06.010 ADSCrossRefGoogle Scholar
  130. Wordsworth RD, Forget F, Selsis F, Millour E, Charnay B, Madeleine J-B (2011) Gliese 581d is the first discovered terrestrial-mass exoplanet in the habitable zone. \apjl 733:L48. https://doi.org/10.1088/2041-8205/733/2/L48 ADSGoogle Scholar
  131. Yang J, Cowan NB, Abbot DS (2013) Stabilizing cloud feedback dramatically expands the habitable zone of tidally locked planets. Astrophys J Lett 771:L45. https://doi.org/10.1088/2041-8205/771/2/L45 ADSCrossRefGoogle Scholar
  132. Yang J, Boué G, Fabrycky DC, Abbot DS (2014) Strong dependence of the inner edge of the habitable zone on planetary rotation rate. Astrophys J Lett 787:L2ADSCrossRefGoogle Scholar
  133. Yang J, Leconte J, Wolf ET, Goldblatt C, Feldl N, Merlis T, Wang Y, Koll DDB, Ding F, Forget F, Abbot DS (2016) Differences in water vapor radiative transfer among 1D models can significantly affect the inner edge of the habitable zone. Astrophys J 826:222. https://doi.org/10.3847/0004-637X/826/2/222 ADSCrossRefGoogle Scholar
  134. Youngblood A, France K, Loyd ROP, Brown A, Mason JP, Schneider PC, Tilley MA, Berta-Thompson ZK, Buccino A, Froning CS, Hawley SL, Linsky J, Mauas PJD, Redfield S, Kowalski A, Miguel Y, Newton ER, Rugheimer S, Segura A, Roberge A, Vieytes M (2017) The MUSCLES Treasury Survey. IV. Scaling relations for ultraviolet, Ca ii K, and energetic particle fluxes from M dwarfs. Astrophys J 843:31. https://doi.org/10.3847/1538-4357/aa76dd ADSCrossRefGoogle Scholar
  135. Zahnle KJ, Catling DC (2017) The cosmic shoreline: the evidence that escape determines which planets have atmospheres, and what this may mean for Proxima Centauri b. Astrophys J 843:122. https://doi.org/10.3847/1538-4357/aa7846 ADSCrossRefGoogle Scholar
  136. Zahnle K, Schaefer L, Fegley B (2010) Earth’s earliest atmospheres. Cold Spring Harb Perspect Biol 2:a004895. https://doi.org/10.1101/cshperspect.a004895 CrossRefGoogle Scholar
  137. Zsom A, Seager S, De Wit J, Stamenković V (2013) Toward the minimum inner edge distance of the habitable zone. Astrophys J 778:109ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Instituto de Ciencias NuclearesUniversidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad UniversitariaCiudad de MéxicoMéxico

Section editors and affiliations

  • Victoria Meadows
    • 1
  • Rory Barnes
    • 2
  1. 1.Astronomy DepartmentUniversity of WashingtonSeattleUSA
  2. 2.Astronomy DepartmentUniversity of WashingtonSeattleUSA

Personalised recommendations