Skip to main content

Biosignature False Positives

  • Living reference work entry
  • First Online:
Book cover Handbook of Exoplanets

Abstract

In our search for life – whether within the earliest part of Earth’s geologic record, on planets within our solar system such Mars, or especially for extrasolar planets – we must infer the presence of life from its impact on the local or global environment. These “biosignatures,” often identified from the known influence of terrestrial organisms on the Earth’s atmosphere and surface, could be misdiagnosed when we apply them to alien worlds. The so-called false positives may occur when another process or suite of processes masks or mimics a biosignature. Here, we examine several leading biosignatures, then introduce potential false positives for these signals, and finally discuss methods to discriminate between the two using current and future detection technologies. We conclude that it is the astrobiology community’s responsibility to thoroughly exhaust all possibilities before we resort to “life” as an explanation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abeysekara AU, Archambault S, Archer A, Benbow W, Bird R, Buchovecky M, Buckley JH, Byrum K, Cardenzana JV, Cerruti M, Chen X (2016) A search for brief optical flashes associated with the SETI target KIC 8462852. Astrophys J Lett 818(2):33

    Article  ADS  Google Scholar 

  • Agol E, Jansen T, Lacy B, Robinson TD, Meadows V (2015) The center of light: spectroastrometric detection of exomoons. Astrophys J 812(1):5

    Article  ADS  Google Scholar 

  • Airapetian VS, Glocer A, Gronoff G, Hébrard E, Danchi W (2016) Prebiotic chemistry and atmospheric warming of early Earth by an active young Sun. Nat Geosci 9(6):452–455

    Article  ADS  Google Scholar 

  • Anglada-Escudé G, Amado PJ, Barnes J, Berdiñas ZM, Butler RP, Coleman GA, de La Cueva I, Dreizler S, Endl M, Giesers B, Jeffers SV (2016) A terrestrial planet candidate in a temperate orbit around Proxima Centauri. Nature 536(7617):437–440

    Article  ADS  Google Scholar 

  • Apai D, Cowan N, Kopparapu R, Kasper M, Hu R, Morley C, Fujii Y, Kane S, Maley M, del Genio A, Karalidi T (2017) Exploring other worlds: science questions for future direct imaging missions (EXOPAG SAG15 report). arXiv preprint arXiv:1708.02821

    Google Scholar 

  • Arney G, Domagal-Goldman SD, Meadows VS, Wolf ET, Schwieterman E, Charnay B, Claire M, Hébrard E, Trainer MG (2016) The pale orange dot: the spectrum and habitability of hazy Archean Earth. Astrobiology 16(11):873–899

    Article  ADS  Google Scholar 

  • Baraffe I, Chabrier G, Allard F, Hauschildt P (1998) Evolutionary models for solar metallicity low-mass stars: mass-magnitude relationships and color-magnitude diagrams. Astron Astrophys 337:403–412

    Google Scholar 

  • Brandl BR, Feldt M, Glasse A, Guedel M, Heikamp S, Kenworthy M, Lenzen R, Meyer MR, Molster F, Paalvast S, Pantin EJ (2014) METIS: the mid-infrared E-ELT imager and spectrograph. In: Proceedings of the SPIE ground-based and airborne instrumentation for astronomy, vol 9147, p 914721

    Google Scholar 

  • Branduardi-Raymont G, Dunn WR, Sciortino S (2017) Future exoplanet research: XUV (EUV and X-ray) detection and characterization. In: Deeg H, Belmonte J (eds) Handbook of exoplanets. Springer, Cham

    Google Scholar 

  • Brasier MD, Green OR, Jephcoat AP, Kleppe AK, Van Kranendonk MJ, Lindsay JF, Steele A, Grassineau NV (2002) Questioning the evidence for Earth’s oldest fossils. Nature 416(6876):76–81

    Article  ADS  Google Scholar 

  • Brasier MD, Antcliffe J, Saunders M, Wacey D (2015) Changing the picture of Earth’s earliest fossils (3.5–1.9 Ga) with new approaches and new discoveries. Proc Natl Acad Sci 112(16):4859–4864

    Article  ADS  Google Scholar 

  • Broeg C, Fortier A, Ehrenreich D, Alibert Y, Baumjohann W, Benz W, Deleuil M, Gillon M, Ivanov A, Liseau R, Meyer M (2013) CHEOPS: a transit photometry mission for ESA’s small mission programme. In: Saglia R (ed) EPJ web of conferences, vol 47. Hot planets and cool stars, Garching. EDP Sciences. p 03005

    Article  Google Scholar 

  • Buick R (1984) Carbonaceous filaments from North Pole, Western Australia: are they fossil bacteria in Archaean stromatolites? Precambrian Res 24(2):157–172

    Article  ADS  Google Scholar 

  • Buick R (2007) Did the Proterozoic ‘Canfield Ocean’ cause a laughing gas greenhouse? Geobiology 5(2):97–100

    Article  ADS  Google Scholar 

  • Campbell B, Walker GA, Yang S (1988) A search for substellar companions to solar-type stars. Astrophys J 331:902–921

    Article  ADS  Google Scholar 

  • Cicerone RJ, Oremland RS (1988) Biogeochemical aspects of atmospheric methane. Glob Biogeochem Cycles 2(4):299–327

    Article  ADS  Google Scholar 

  • Cockell CS (2014) Habitable worlds with no signs of life. Phil Trans R Soc A 372(2014):20130082

    Article  ADS  Google Scholar 

  • Cooray AR, Origins Space Telescope Study Team (2017) Origins space telescope. In: American Astronomical Society meeting abstracts, vol 229

    Google Scholar 

  • Crooke JA, Roberge A, Domagal-Goldman SD, Mandell AM, Bolcar MR, Rioux NM, Perez MR Smith EC (2016) Status and path forward for the large ultraviolet/optical/infrared surveyor (LUVOIR) mission concept study. In: Proceedings of the SPIE space telescopes and instrumentation 2016: optical, infrared, and millimeter wave, vol 9904, p 99044R

    Google Scholar 

  • Deming D, Seager S, Winn J, Miller-Ricci E, Clampin M, Lindler D, Greene T, Charbonneau D, Laughlin G, Ricker G, Latham D (2009) Discovery and characterization of transiting super Earths using an all-sky transit survey and follow-up by the James Webb Space Telescope. Publ Astron Soc Pac 121(883):952

    Article  ADS  Google Scholar 

  • Des Marais DJ, Walter MR (1999) Astrobiology: exploring the origins, evolution, and distribution of life in the universe. Annu Rev Ecol Syst 30(1):397–420

    Article  Google Scholar 

  • Des Marais DJ, Harwit MO, Jucks KW, Kasting JF, Lin DN, Lunine JI, Schneider J, Seager S, Traub WA, Woolf NJ (2002) Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets. Astrobiology 2(2):153–181

    Article  ADS  Google Scholar 

  • Des Marais DJ, Nuth JA III, Allamandola LJ, Boss AP, Farmer JD, Hoehler TM, Jakosky BM, Meadows VS, Pohorille A, Runnegar B, Spormann AM (2008) The NASA astrobiology roadmap. Astrobiology 8(4):715–730

    Article  ADS  Google Scholar 

  • Dittmann JA, Irwin JM, Charbonneau D, Bonfils X, Astudillo-Defru N, Haywood RD, Berta-Thompson ZK, Newton ER, Rodriguez JE, Winters JG, Tan TG (2017) A temperate rocky super-Earth transiting a nearby cool star. Nature 544(7650):333

    Article  ADS  Google Scholar 

  • Domagal-Goldman SD, Kasting JF, Johnston DT, Farquhar J (2008) Organic haze, glaciations and multiple sulfur isotopes in the mid-Archean era. Earth Planet Sci Lett 269(1):29–40

    Article  ADS  Google Scholar 

  • Domagal-Goldman SD, Segura A, Claire MW, Robinson TD, Meadows VS (2014) Abiotic ozone and oxygen in atmospheres similar to prebiotic Earth. Astrophys J 792(2):90

    Article  ADS  Google Scholar 

  • Etiope G, Sherwood Lollar B (2013) Abiotic methane on Earth. Rev Geophys 51(2):276–299

    Article  ADS  Google Scholar 

  • Farquhar J, Zerkle AL, Bekker A (2011) Geological constraints on the origin of oxygenic photosynthesis. Photosynth Res 107(1):11–36

    Article  Google Scholar 

  • Forget F, Leconte J (2014) Possible climates on terrestrial exoplanets. Phil Trans R Soc A 372(2014):20130084

    Article  ADS  Google Scholar 

  • France K, Froning CS, Linsky JL, Roberge A, Stocke JT, Tian F, Bushinsky R, Désert JM, Mauas P, Vieytes M, Walkowicz LM (2013) The ultraviolet radiation environment around M dwarf exoplanet host stars. Astrophys J 763(2):149

    Article  ADS  Google Scholar 

  • France K, Shkolnik E, Linsky J, Roberge A, Ayres T, Barman T, Brown A, Davenport J, Desert JM, Domagal-Goldman S, Fleming B (2015) Characterizing the habitable zones of exoplanetary systems with a large ultraviolet/visible/near-IR space observatory. arXiv preprint arXiv:1505.01840

    Google Scholar 

  • France K, Loyd RP, Youngblood A, Brown A, Schneider PC, Hawley SL, Froning CS, Linsky JL, Roberge A, Buccino AP, Davenport JR (2016) The MUSCLES treasury survey. I. Motivation and overview. Astrophys J 820(2):89

    Article  ADS  Google Scholar 

  • France K, Fleming B, West G, McCandliss SR, Bolcar MR, Harris W, Moustakas L, O’Meara JM, Pascucci I, Rigby J, Schiminovich D (2017) The LUVOIR ultraviolet multi-object spectrograph (LUMOS): instrument definition and design. In: UV, X-ray, and gamma-ray space instrumentation for astronomy XX, vol 10397. International Society for Optics and Photonics, p 1039713

    Google Scholar 

  • Fujii Y, Angerhausen D, Deitrick R, Domagal-Goldman S, Grenfell JL, Hori Y, Palle E, Siegler N, Stapelfeldt K, Rauer H (2017) Exoplanet biosignatures: observational prospects. arXiv preprint arXiv:1705.07098

    Google Scholar 

  • Gao P, Hu R, Robinson TD, Li C, Yung YL (2015) Stability of CO2 atmospheres on desiccated M dwarf exoplanets. Astrophys J 806(2):249

    Article  ADS  Google Scholar 

  • Garcia-Sage K, Glocer A, Drake JJ, Gronoff G, Cohen O (2017) On the magnetic protection of the atmosphere of Proxima Centauri b. Astrophys J Lett 844(1):13

    Article  ADS  Google Scholar 

  • Gaskin JA, Allured R, Bandler SR, Basso S, Bautz MW, Baysinger MF, Biskach MP, Boswell TM, Capizzo PD, Chan K, Civitani MM, Cohen LM, Cotroneo V, Davis JM, DeRoo CT, DiPirro MJ, Dominguez A, Fabisinski LL, Falcone AD, Figueroa-Feliciano E, Garcia JC, Gelmis KE, Heilmann RK, Hopkins RC, Jackson T, Kilaru K, Kraft RP, Liu T, McClelland RS, McEntaffer RL, McCarley KS, Mulqueen JA, Özel F, Pareschi G, Reid PB, Riveros RE, Rodriguez MA, Rowe JW, Saha TT, Schattenburg ML, Schnell AR, Schwartz DA, Solly PM, Suggs RM, Sutherlin SG, Swartz DA, Trolier-McKinstry S, Tutt JH, Vikhlinin A, Walker J, Yoon W, Zhang WW (2017) Lynx Mission concept status. In: Proceedings of the SPIE 10397, UV, X-ray, and gamma-ray space instrumentation for astronomy XX, 103970S

    Google Scholar 

  • Gates DM, Keegan HJ, Schleter JC, Weidner VR (1965) Spectral properties of plants. Appl Opt 4(1):11–20

    Article  ADS  Google Scholar 

  • Gebauer S, Grenfell JL, Stock JW, Lehmann R, Godolt M, von Paris P, Rauer H (2017) Evolution of Earth-like extrasolar planetary atmospheres: assessing the atmospheres and biospheres of early Earth analog planets with a coupled atmosphere biogeochemical model. Astrobiology 17(1):27–54

    Article  ADS  Google Scholar 

  • Gillon M, Jehin E, Lederer SM, Delrez L, de Wit J, Burdanov A, Van Grootel V, Burgasser AJ, Triaud AH, Opitom C, Demory BO (2016) Temperate Earth-sized planets transiting a nearby ultracool dwarf star. Nature 533(7602):221–224

    Article  ADS  Google Scholar 

  • Golden DC, Ming DW, Schwandt CS, Lauer HV, Socki RA, Morris RV, Lofgren GE, McKay GA (2001) A simple inorganic process for formation of carbonates, magnetite, and sulfides in Martian meteorite ALH84001. Am Mineral 86(3):370–375

    Article  ADS  Google Scholar 

  • Golden DC, Ming DW, Morris RV, Brearley AJ, Lauer HV, Treiman AH, Zolensky ME, Schwandt CS, Lofgren GE, McKay GA (2004) Evidence for exclusively inorganic formation of magnetite in Martian meteorite ALH84001. Am Mineral 89(5–6):681–695

    Article  ADS  Google Scholar 

  • Guzmán-Marmolejo A, Segura A, Escobar-Briones E (2013) Abiotic production of methane in terrestrial planets. Astrobiology 13(6):550–559

    Article  ADS  Google Scholar 

  • Haqq-Misra JD, Domagal-Goldman SD, Kasting PJ, Kasting JF (2008) A revised, hazy methane greenhouse for the Archean Earth. Astrobiology 8(6):1127–1137

    Article  ADS  Google Scholar 

  • Harman CE, Kasting JF, Wolf ET (2013) Atmospheric production of glycolaldehyde under hazy prebiotic conditions. Orig Life Evol Biosph 43(2):77–98

    Article  ADS  Google Scholar 

  • Harman CE, Schwieterman EW, Schottelkotte JC, Kasting JF (2015) Abiotic O2 levels on planets around F, G, K, and M stars: possible false positives for life? Astrophys J 812(2):137

    Article  ADS  Google Scholar 

  • Hegde S, Paulino-Lima IG, Kent R, Kaltenegger L, Rothschild L (2015) Surface biosignatures of exo-Earths: remote detection of extraterrestrial life. Proc Natl Acad Sci 112(13):3886–3891

    Article  ADS  Google Scholar 

  • Hitchcock DR, Lovelock JE (1967) Life detection by atmospheric analysis. Icarus 7(1–3):149–159

    Article  ADS  Google Scholar 

  • Izon G, Zerkle AL, Williford KH, Farquhar J, Poulton SW, Claire MW (2017) Biological regulation of atmospheric chemistry en route to planetary oxygenation. Proc Natl Acad Sci 114(13):E2571–E2579

    Article  ADS  Google Scholar 

  • Kaltenegger L, Traub WA, Jucks KW (2007) Spectral evolution of an Earth-like planet. Astrophys J 658(1):598

    Article  ADS  Google Scholar 

  • Kasting JF (1995) O2 concentrations in dense primitive atmospheres: commentary. Planet Space Sci 43(1–2):11–13

    Article  ADS  Google Scholar 

  • Kasting JF (1997) Habitable zones around low mass stars and the search for extraterrestrial life. OLEB 27(1–3):291–307

    ADS  Google Scholar 

  • Kasting JF (2005) Methane and climate during the Precambrian era. Precambrian Res 137(3):119–129

    Article  ADS  Google Scholar 

  • Kasting JF (2010) How to find a habitable planet. Princeton University Press, Princeton

    Google Scholar 

  • Kasting JF, Canfield DE (2012) The global oxygen cycle. In: Knoll AH, Canfield DE, Konhauser KO (eds) Fundamentals of geobiology. Wiley, Chichester

    Google Scholar 

  • Kasting JF, Pollack JB, Crisp D (1984) Effects of high CO2 levels on surface temperature and atmospheric oxidation state of the early Earth. J Atmos Chem 1(4):403–428

    Article  Google Scholar 

  • Kasting JF, Whitmire DP, Reynolds RT (1993) Habitable zones around main sequence stars. Icarus 101(1):108–128

    Article  ADS  Google Scholar 

  • Kawahara H, Matsuo T, Takami M, Fujii Y, Kotani T, Murakami N, Tamura M, Guyon O (2012) Can ground-based telescopes detect the oxygen 1.27 μm absorption feature as a biomarker in exoplanets? Astrophys J 758(1):13

    Article  ADS  Google Scholar 

  • Kharecha P, Kasting J, Siefert J (2005) A coupled atmosphere–ecosystem model of the early Archean Earth. Geobiology 3(2):53–76

    Article  Google Scholar 

  • Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG, Dlugokencky EJ, Bergamaschi P, Bergmann D, Blake DR, Bruhwiler L, Cameron-Smith P (2013) Three decades of global methane sources and sinks. Nat Geosci 6(10):813–823

    Article  ADS  Google Scholar 

  • Kopparapu RK, Ramirez R, Kasting JF, Eymet V, Robinson TD, Mahadevan S, Terrien RC, Domagal-Goldman S, Meadows V, Deshpande R (2013) Habitable zones around main-sequence stars: new estimates. Astrophys J 765(2):131

    Article  ADS  Google Scholar 

  • Krissansen-Totton J, Bergsman DS, Catling DC (2016) On detecting biospheres from chemical thermodynamic disequilibrium in planetary atmospheres. Astrobiology 16(1):39–67

    Article  ADS  Google Scholar 

  • Kump LR (2008) The rise of atmospheric oxygen. Nature 451(7176):277

    Article  ADS  Google Scholar 

  • Lepland A, van Zuilen MA, Arrhenius G, Whitehouse MJ, Fedo CM (2005) Questioning the evidence for Earth’s earliest life – Akilia revisited. Geology 33(1):77–79

    Article  ADS  Google Scholar 

  • Levin GV, Straat PA (1977) Recent results from the Viking labeled release experiment on Mars. J Geophys Res 82(28):4663–4667

    Article  ADS  Google Scholar 

  • Levine JS, Schild RE (eds) (2010) The human mission to Mars: colonizing the red planet. Cosmology Science Publishers, Cambridge, MA

    Google Scholar 

  • Li T, Tian F, Wang Y, Wei W, Huang X (2016) Distinguishing a hypothetical abiotic planet-moon system from a single inhabited planet. Astrophys J Lett 817(2):L15

    Article  ADS  Google Scholar 

  • Lippincott ER, Eck RV, Dayhoff MO, Sagan C (1967) Thermodynamic equilibria in planetary atmospheres. Astrophys J 147:753

    Article  ADS  Google Scholar 

  • Lovelock JE, Kaplan IR (1975) Thermodynamics and the recognition of alien biospheres. Proc R Soc Lond B Biol Sci 189:167–181

    Article  ADS  Google Scholar 

  • Lovis C, Snellen I, Mouillet D, Pepe F, Wildi F, Astudillo-Defru N, Beuzit JL, Bonfils X, Cheetham A, Conod U, Delfosse X (2017) Atmospheric characterization of Proxima b by coupling the SPHERE high-contrast imager to the ESPRESSO spectrograph. Astron Astrophys 599:16

    Article  Google Scholar 

  • Luger R, Barnes R (2015) Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of M dwarfs. Astrobiology 15(2):119–143

    Article  ADS  Google Scholar 

  • Lyons TW, Reinhard CT, Planavsky NJ (2014) The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506(7488):307–315

    Article  ADS  Google Scholar 

  • Maiolino R, Haehnelt M, Murphy MT, Queloz D, Origlia L, Alcala J, Alibert Y, Amado PJ, Prieto CA, Eiff M, Asplund M (2013) A community science case for E-ELT HIRES. arXiv preprint arXiv:1310.3163

    Google Scholar 

  • Mayor M, Queloz D (1995) A Jupiter-mass companion to a solar-type star. Nature 378:355–359

    Article  ADS  Google Scholar 

  • McKay DS, Gibson EK Jr, Thomas-Keprta KL, Vali H (1996) Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science 273(5277):924

    Article  ADS  Google Scholar 

  • Meadows VS (2005) Modelling the diversity of extrasolar terrestrial planets. Proc Int Astron Union 1(C200):25–34

    Article  Google Scholar 

  • Meadows VS (2017) Reflections on O2 as a biosignature in exoplanetary atmospheres. Astrobiology 17(10):1022–1052

    Article  ADS  Google Scholar 

  • Meadows VS, Reinhard CT, Arney GN, Parenteau MN, Schwieterman EW, Domagal-Goldman SD, Lincowski AP, Stapelfeldt KR, Rauer H, DasSarma S, Hegde S (2017) Exoplanet biosignatures: understanding oxygen as a biosignature in the context of its environment. arXiv preprint arXiv:1705.07560

    Google Scholar 

  • Mennesson B, Mawet D (2016) The habitable exoplanet (HabEx) imaging mission: preliminary science drivers and technical requirements. Society of Photo-Optical Instrumentation Engineers (SPIE), Bellingham

    Google Scholar 

  • Mojzsis SJ, Arrhenius G, McKeegan KD, Harrison TM, Nutman AP, Friend CRL (1996) Evidence for life on Earth before 3,800 million years ago. Nature 384(6604):55

    Article  ADS  Google Scholar 

  • Morley CV, Kreidberg L, Rustamkulov Z, Robinson T Fortney JJ (2017) Observing the atmospheres of known temperate Earth-sized planets with JWST. Astrophys J 850(2):121

    Article  ADS  Google Scholar 

  • Navarro KF, Navarro-Gonzalez R, McKay CP (2014) Abiotic production of nitrous oxide by lightning. Implications for a false positive identification of life on Earth-like planets around quiescent M dwarfs. In: 40th COSPAR scientific assembly, vol 40

    Google Scholar 

  • National Research Council (1997) Mars sample return: issues and recommendations. The National Academies Press, Washington, DC. https://doi.org/10.17226/5563

  • Ohtomo Y, Kakegawa T, Ishida A, Nagase T, Rosing MT (2014) Evidence for biogenic graphite in early Archaean Isua metasedimentary rocks. Nat Geosci 7(1):25

    Article  ADS  Google Scholar 

  • Papineau D (2010) Mineral environments on the earliest Earth. Elements 6(1):25–30

    Article  Google Scholar 

  • Papineau D, De Gregorio BT, Cody GD, Fries MD, Mojzsis SJ, Steele A, Stroud RM, Fogel ML (2010) Ancient graphite in the Eoarchean quartz–pyroxene rocks from Akilia in southern West Greenland I: petrographic and spectroscopic characterization. Geochim Cosmochim Acta 74(20):5862–5883

    Article  ADS  Google Scholar 

  • Pavlov AA, Hurtgen MT, Kasting JF, Arthur MA (2003) Methane-rich Proterozoic atmosphere? Geology 31(1):87–90

    Article  ADS  Google Scholar 

  • Pilcher CB (2003) Biosignatures of early earths. Astrobiology 3(3):471–486

    Article  ADS  Google Scholar 

  • Planavsky NJ, Reinhard CT, Wang X, Thomson D, McGoldrick P, Rainbird RH, Johnson T, Fischer WW, Lyons TW (2014) Low mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science 346(6209):635–638

    Article  ADS  Google Scholar 

  • Quintana EV, Barclay T, Raymond SN, Rowe JF, Bolmont E, Caldwell DA, Howell SB, Kane SR, Huber D, Crepp JR, Lissauer JJ (2014) An Earth-sized planet in the habitable zone of a cool star. Science 344(6181):277–280

    Article  ADS  Google Scholar 

  • Rein H, Fujii Y, Spiegel DS (2014) Some inconvenient truths about biosignatures involving two chemical species on Earth-like exoplanets. Proc Natl Acad Sci 111(19):6871–6875

    Article  ADS  Google Scholar 

  • Reinhard CT, Olson SL, Schwieterman EW, Lyons TW (2017) False negatives for remote life detection on ocean-bearing planets: lessons from the early Earth. Astrobiology 17(4):287–297

    Article  ADS  Google Scholar 

  • Ricker GR, Vanderspek RK, Latham DW, Winn JN (2014) The transiting exoplanet survey satellite mission. In: American Astronomical Society meeting abstracts# 224, vol 224

    Google Scholar 

  • Roberson AL, Roadt J, Halevy I, Kasting JF (2011) Greenhouse warming by nitrous oxide and methane in the Proterozoic Eon. Geobiology 9(4):313–320

    Article  Google Scholar 

  • Robinson TD, Meadows VS, Crisp D, Deming D, A’Hearn MF, Charbonneau D, Livengood TA, Seager S, Barry RK, Hearty T, Hewagama T (2011) Earth as an extrasolar planet: Earth model validation using EPOXI Earth observations. Astrobiology 11(5):393–408

    Article  ADS  Google Scholar 

  • Rodler F, López-Morales M (2014) Feasibility studies for the detection of O2 in an Earth-like exoplanet. Astrophys J 781(1):54

    Article  ADS  Google Scholar 

  • Rosing MT (1999) 13C-depleted carbon microparticles in> 3700-Ma sea-floor sedimentary rocks from West Greenland. Science 283(5402):674–676

    Article  ADS  Google Scholar 

  • Rugheimer S, Kaltenegger L, Zsom A, Segura A, Sasselov D (2013) Spectral fingerprints of Earth-like planets around FGK stars. Astrobiology 13(3):251–269

    Article  ADS  Google Scholar 

  • Rugheimer S, Kaltenegger L, Segura A, Linsky J, Mohanty S (2015) Effect of UV radiation on the spectral fingerprints of Earth-like planets orbiting M stars. Astrophys J 809(1):57

    Article  ADS  Google Scholar 

  • Rye R, Holland HD (2000) Life associated with a 2.76 Ga ephemeral pond?: evidence from Mount Roe #2 paleosol. Geology 28(6):483–486

    Article  ADS  Google Scholar 

  • Sagan C, Thompson WR, Carlson R, Gurnett D, Hord C (1993) A search for life on Earth from the Galileo spacecraft. Nature 365(6448):715

    Article  ADS  Google Scholar 

  • Samarkin VA, Madigan MT, Bowles MW, Casciotti KL, Priscu JC, McKay CP, Joye SB (2010) Abiotic nitrous oxide emission from the hypersaline Don Juan Pond in Antarctica. Nat Geosci 3(5):341–344

    Article  ADS  Google Scholar 

  • Schindler TL, Kasting JF (2000) Synthetic spectra of simulated terrestrial atmospheres containing possible biomarker gases. Icarus 145(1):262–271

    Article  ADS  Google Scholar 

  • Schopf JW, Kudryavtsev AB (2012) Biogenicity of Earth’s earliest fossils: a resolution of the controversy. Gondwana Res 22(3):761–771

    Article  ADS  Google Scholar 

  • Schopf JW, Kudryavtsev AB, Agresti DG, Wdowiak TJ, Czaja AD (2002) Laser–Raman imagery of Earth’s earliest fossils. Nature 416(6876):73–76

    Article  ADS  Google Scholar 

  • Schumann U, Huntrieser H (2007) The global lightning-induced nitrogen oxides source. Atmos Chem Phys 7(14):3823–3907

    Article  ADS  Google Scholar 

  • Schwieterman EW, Cockell CS, Meadows VS (2015a) Nonphotosynthetic pigments as potential biosignatures. Astrobiology 15(5):341–361

    Article  ADS  Google Scholar 

  • Schwieterman EW, Robinson TD, Meadows VS, Misra A, Domagal-Goldman S (2015b) Detecting and constraining N2 abundances in planetary atmospheres using collisional pairs. Astrophys J 810(1):57

    Article  ADS  Google Scholar 

  • Schwieterman EW, Meadows VS, Domagal-Goldman SD, Deming D, Arney GN, Luger R, Harman CE, Misra A, Barnes R (2016) Identifying planetary biosignature impostors: spectral features of CO and O4 resulting from abiotic O2/O3 production. Astrophys J Lett 819(1):13

    Article  ADS  Google Scholar 

  • Schwieterman EW, Kiang NY, Parenteau MN, Harman CE, DasSarma S, Fisher TM, Arney GN, Hartnett HE, Reinhard CT, Olson SL, Meadows VS (2017) Exoplanet biosignatures: a review of remotely detectable signs of life. arXiv preprint arXiv:1705.05791

    Google Scholar 

  • Seager S, Turner EL, Schafer J, Ford EB (2005) Vegetation’s red edge: a possible spectroscopic biosignature of extraterrestrial plants. Astrobiology 5(3):372–390

    Article  ADS  Google Scholar 

  • Segura A, Krelove K, Kasting JF, Sommerlatt D, Meadows V, Crisp D, Cohen M, Mlawer E (2003) Ozone concentrations and ultraviolet fluxes on Earth-like planets around other stars. Astrobiology 3(4):689–708

    Article  ADS  Google Scholar 

  • Segura A, Kasting JF, Meadows V, Cohen M, Scalo J, Crisp D, Butler RA, Tinetti G (2005) Biosignatures from Earth-like planets around M dwarfs. Astrobiology 5(6):706–725

    Article  ADS  Google Scholar 

  • Segura A, Meadows VS, Kasting JF, Crisp D, Cohen M (2007) Abiotic formation of O2 and O3 in high-CO2 terrestrial atmospheres. Astron Astrophys 472(2):665–679

    Article  ADS  Google Scholar 

  • Shkolnik E (2016) HAZMAT: habitable zones and M dwarf activity across time. HST Proposal

    Google Scholar 

  • Shkolnik EL, Barman TS (2014) HAZMAT. I. The evolution of far-UV and near-UV emission from early M stars. Astron J 148(4):64

    Article  ADS  Google Scholar 

  • Shostak S, Oliver C (2000) Immediate reaction plan: a strategy for dealing with a SETI detection. In: Bioastronomy 99, vol 213

    Google Scholar 

  • Snellen IAG, de Kok RJ, Le Poole R, Brogi M, Birkby J (2013) Finding extraterrestrial life using ground-based high-dispersion spectroscopy. Astrophys J 764(2):182

    Article  ADS  Google Scholar 

  • Snellen I, de Kok R, Birkby JL, Brandl B, Brogi M, Keller C, Kenworthy M, Schwarz H, Stuik R (2015) Combining high-dispersion spectroscopy with high contrast imaging: probing rocky planets around our nearest neighbors. Astron Astrophys 576:A59

    Article  Google Scholar 

  • Snellen IAG, Désert JM, Waters LBFM, Robinson T, Meadows V, van Dishoeck EF, Brandl BR, Henning T, Bouwman J, Lahuis F, Min M (2017) Detecting Proxima b’s atmosphere with JWST targeting CO2 at 15 μm using a high-pass spectral filtering technique. Astron J 154(77):8

    Google Scholar 

  • Spergel D, Gehrels N, Baltay C, Bennett D, Breckinridge J, Donahue M, Dressler A, Gaudi BS, Greene T, Guyon O, Hirata C (2015) Wide-field infrared survey telescope-astrophysics focused telescope assets WFIRST-AFTA 2015 report. arXiv preprint arXiv:1503.03757

    Google Scholar 

  • Stapelfeldt KR, Dekens FG, Brenner MP, Warfield KR, Belikov R, Brugarolas PB, Bryden G, Cahoy KL, Chakrabarti S, Dubovitsky S Effinger RT (2015) Exo-C: a probe-scale space observatory for direct imaging and spectroscopy of extrasolar planetary systems. In: Proceedings of the SPIE, vol 9605. p 96050T

    Google Scholar 

  • Tarter J (2001) The search for extraterrestrial intelligence (SETI). Annu Rev Astron Astrophys 39(1):511–548

    Article  ADS  Google Scholar 

  • Tarter JC, Agrawal A, Ackermann R, Backus P, Blair SK, Bradford MT, Harp GR, Jordan J, Kilsdonk T, Smolek KE, Richards J (2010) SETI turns 50: five decades of progress in the search for extraterrestrial intelligence. Proc SPIE Instrum Methods Missions Astrobiol XIII 7819:781902–781901

    Article  Google Scholar 

  • Thomas-Keptra KL, Clemett SJ, Wentworth SJ, McKay DS Gibson Jr EK (2010) New insights into the origin of magnetite crystals in ALH84001 carbonate disks. In: Astrobiology science conference 2010, League City

    Google Scholar 

  • Tian F, France K, Linsky JL, Mauas PJ, Vieytes MC (2014) High stellar FUV/NUV ratio and oxygen contents in the atmospheres of potentially habitable planets. Earth Planet Sci Lett 385:22–27

    Article  ADS  Google Scholar 

  • Turnbull MC, Traub WA, Jucks KW, Woolf NJ, Meyer MR, Gorlova N, Skrutskie MF, Wilson JC (2006) Spectrum of a habitable world: earthshine in the near-infrared. Astrophys J 644(1):551

    Article  ADS  Google Scholar 

  • Twicken JD, Jenkins JM, Seader SE, Tenenbaum P, Smith JC, Brownston LS, Burke CJ, Catanzarite JH, Clarke BD, Cote MT, Girouard FR (2016) Detection of potential transit signals in 17 quarters of Kepler data: results of the final Kepler mission transiting planet search (DR25). Astron J 152(6):158

    Article  ADS  Google Scholar 

  • Wang Y, Tian F, Li T, Hu Y (2016) On the detection of carbon monoxide as an anti-biosignature in exoplanetary atmospheres. Icarus 266:15–23

    Article  ADS  Google Scholar 

  • Warner MJ, Bullister JL, Wisegarver DP, Sonnerup RE, Chang BX (2016) A Baseline for monitoring long-term changes in the global distribution of N2O in the ocean. In: AGU fall meeting abstracts

    Google Scholar 

  • Watanabe Y, Martini JE, Ohmoto H (2000) Geochemical evidence for terrestrial ecosystems 2.6 billion years ago. Nature 408(6812):574

    Article  ADS  Google Scholar 

  • Welch J, Backer D, Blitz L, Bock DCJ, Bower GC, Cheng C, Croft S, Dexter M, Engargiola G, Fields E, Forster J (2009) The Allen telescope array: the first widefield, panchromatic, snapshot radio camera for radio astronomy and SETI. Proc IEEE 97(8):1438–1447

    Article  ADS  Google Scholar 

  • Wolszczan A, Frail DA (1992) A planetary system around the millisecond pulsar PSR1257+12. Nature 355(6356):145

    Article  ADS  Google Scholar 

  • Wordsworth R, Pierrehumbert R (2014) Abiotic oxygen-dominated atmospheres on terrestrial habitable zone planets. Astrophys J Lett 785(2):20

    Article  ADS  Google Scholar 

  • Zerkle AL, Claire MW, Domagal-Goldman SD, Farquhar J, Poulton SW (2012) A bistable organic-rich atmosphere on the Neoarchaean Earth. Nat Geosci 5(5):359

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge research support from the “ROCKE-3D team” in the NASA’s Nexus for Exoplanet System Science (NExSS), via solicitation NNH13ZDA017C, from the Habitable Worlds program via solicitation NNH15ZDA001N-HW, and from the NASA Astrobiology Institute’s Virtual Planetary Laboratory via solicitation NNH12ZDA002C. This chapter also benefited from Victoria Meadows’ helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chester E. Harman .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Harman, C.E., Domagal-Goldman, S. (2018). Biosignature False Positives. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-30648-3_71-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30648-3_71-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30648-3

  • Online ISBN: 978-3-319-30648-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics