Skip to main content

Characterizing Exoplanet Habitability

  • Living reference work entry
  • First Online:
Handbook of Exoplanets

Abstract

A habitable exoplanet is a world that can maintain stable liquid water on its surface. Techniques and approaches to characterizing such worlds are essential, as performing a census of Earthlike planets that may or may not have life will inform our understanding of how frequently life originates and is sustained on worlds other than our own. Observational techniques like high-contrast imaging and transit spectroscopy can reveal key indicators of habitability for exoplanets. Both polarization measurements and specular reflectance from oceans (also known as “glint”) can provide direct evidence for surface liquid water, while constraining surface pressure and temperature (from moderate resolution spectra) can indicate liquid water stability. Indirect evidence for habitability can come from a variety of sources, including observations of variability due to weather, surface mapping studies, and/or measurements of water vapor or cloud profiles that indicate condensation near a surface. Approaches to making the types of measurements that indicate habitability are diverse and have different considerations for the required wavelength range, spectral resolution, maximum noise levels, stellar host temperature, and observing geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abe Y, Matsui T (1988) Evolution of an impact-generated H2O-CO2 atmosphere and formation of a hot Proto-Ocean on earth. J Atmos Sci 45:3081–3101

    Article  ADS  Google Scholar 

  • Abe Y, Abe-Ouchi A, Sleep NH, Zahnle KJ (2011) Habitable zone limits for dry planets. Astrobiology 11:443–460

    Article  ADS  Google Scholar 

  • Abel M, Frommhold L, Li X, Hunt KLC (2011) Collision-induced absorption by H2 Pairs: from hundreds to thousands of kelvin. J Phys Chem A 115:6805–6812

    Article  Google Scholar 

  • Arney G, Domagal-Goldman SD, Meadows VS et al (2016) The pale orange dot: the spectrum and habitability of Hazy Archean earth. Astrobiology 16:873–899

    Article  ADS  Google Scholar 

  • Bailey J (2007) Rainbows, polarization, and the search for habitable planets. Astrobiology 7: 320–332

    Article  ADS  Google Scholar 

  • Baranov YI, Lafferty WJ, Fraser GT (2004) Infrared spectrum of the continuum and dimer absorption in the vicinity of the O2 vibrational fundamental in O2/CO2 mixtures. J Mol Spectrosc 228:432–440

    Article  ADS  Google Scholar 

  • Batalha NE, Kempton EMR, Mbarek R (2017) Challenges to constraining exoplanet masses via transmission spectroscopy. ArXiv e-prints 1701.00012

    Google Scholar 

  • Beichman CA, Woolf NJ, Lindensmith CA (eds) (1999) The terrestrial planet finder: a NASA origins program to search for habitable planets. NASA Jet Propulsion Laboratory, Washington, DC

    Google Scholar 

  • Benneke B, Seager S (2012) Atmospheric retrieval for super-earths: uniquely constraining the atmospheric composition with transmission spectroscopy. Astrophys J 753(2):100

    Article  ADS  Google Scholar 

  • Bétrémieux Y, Kaltenegger L (2014) Impact of atmospheric refraction: how deeply can we probe exo-earth’s atmospheres during primary eclipse observations? ApJ 791:7

    Article  ADS  Google Scholar 

  • Borucki WJ, Koch D, Basri G et al (2010) Kepler planet-detection mission: introduction and first results. Science 327:977

    Article  ADS  Google Scholar 

  • Brack A (1993) Liquid water and the origin of life. Orig Life Evol Biosph 23:3–10

    Article  ADS  Google Scholar 

  • Brown TM (2001) Transmission spectra as diagnostics of extrasolar giant planet atmospheres. Astrophys J 553(2):1006

    Article  ADS  Google Scholar 

  • Cash W, Schindhelm E, Arenberg J et al (2007) External occulters for direct observation of exoplanets: an overview. In: UV/Optical/IR space telescopes: innovative technologies and concepts III. Proceeding of SPIE, vol 6687, p 668712

    Google Scholar 

  • Chyba CF, Phillips CB (2001) Special feature: possible ecosystems and the search for life on Europa. Proc Natl Acad Sci 98:801–804

    Article  ADS  Google Scholar 

  • Coffeen DL (1979) Polarization and scattering characteristics in the atmospheres of Earth, Venus, and Jupiter. J Opt Soc Am (1917–1983) 69:1051–1064

    Article  ADS  Google Scholar 

  • Cowan NB, Strait TE (2013) Determining reflectance spectra of surfaces and clouds on exoplanets. ApJ 765:L17

    Article  ADS  Google Scholar 

  • Cowan NB, Agol E, Meadows VS et al (2009) Alien maps of an ocean-bearing world. ApJ 700:915–923

    Article  ADS  Google Scholar 

  • Cowan NB, Robinson T, Livengood TA et al (2011) Rotational variability of Earth’s polar regions: implications for detecting snowball planets. ApJ 731:76–+

    Google Scholar 

  • Cowan NB, Abbot DS, Voigt A (2012a) A false positive for ocean glint on exoplanets: the latitude-albedo effect. ApJ 752:L3

    Article  ADS  Google Scholar 

  • Cowan NB, Voigt A, Abbot DS (2012b) Thermal phases of earth-like planets: estimating thermal inertia from eccentricity, obliquity, and diurnal forcing. ApJ 757:80. https://doi.org/10.1088/0004-637X/757/1/80, 1205.5034

  • Cowan NB, Greene T, Angerhausen D et al (2015) Characterizing transiting planet atmospheres through 2025. PASP 127:311–327

    Article  ADS  Google Scholar 

  • de Wit J, Seager S (2013) Constraining exoplanet mass from transmission spectroscopy. Science 342(6165):1473–1477

    Article  ADS  Google Scholar 

  • Dole SH (1964) Habitable planets for man. Blaisdell, New York

    Google Scholar 

  • Drossart P, Rosenqvist J, Encrenaz T et al (1993) Earth global mosaic observations with NIMS-Galileo. Planet Space Sci 41:551–561

    ADS  Google Scholar 

  • Ford EB, Seager S, Turner EL (2001) Characterization of extrasolar terrestrial planets from diurnal photometric variability. Nature 412:885–887

    Article  ADS  Google Scholar 

  • Forget F, Pierrehumbert RT (1997) Warming early Mars with carbon dioxide clouds that scatter infrared radiation. Science 278:1273

    Article  ADS  Google Scholar 

  • Fortney JJ (2005) The effect of condensates on the characterization of transiting planet atmospheres with transmission spectroscopy. Mon Not R Astron Soc 364(2):649–653

    Article  ADS  Google Scholar 

  • Frommhold L, Abel M, Wang F et al (2010) Infrared atmospheric emission and absorption by simple molecular complexes, from first principles. Mol Phys 108:2265–2272

    Article  ADS  Google Scholar 

  • Fujii Y, Kawahara H, Suto Y et al (2011) Colors of a second earth. II. Effects of clouds on photometric characterization of earth-like exoplanets. ApJ 738:184

    Google Scholar 

  • Fujii Y, Turner EL, Suto Y (2013) Variability of water and oxygen absorption bands in the disk-integrated spectra of earth. ApJ 765:76

    Article  ADS  Google Scholar 

  • Galilei G (1632) Dialogue concerning the two chief worlds systems. Giovanni Battista Landini

    Google Scholar 

  • Gamache RR, Lynch R, Plateaux JJ, Barbe A (1997) Halfwidths and line shifts of water vapor broadened by CO2: measurements and complex Robert-Bonamy formalism calculations. J Quant Spectrosc Radiat Transf 57:485–496

    Article  ADS  Google Scholar 

  • Goldblatt C, Robinson TD, Zahnle KJ, Crisp D (2013) Low simulated radiation limit for runaway greenhouse climates. Nat Geosci 6:661–667

    Article  ADS  Google Scholar 

  • Gómez-Leal I, Pallé E, Selsis F (2012) Photometric variability of the disk-integrated thermal emission of the earth. ApJ 752:28. https://doi.org/10.1088/0004-637X/752/1/28, 1205.5010

  • Greene TP, Line MR, Montero C et al (2016) Characterizing transiting exoplanet atmospheres with JWST. ApJ 817(1):17

    Article  ADS  Google Scholar 

  • Griffiths DJ (1999) Introduction to electrodynamics, 3rd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Guyon O, Pluzhnik EA, Kuchner MJ, Collins B, Ridgway ST (2006) Theoretical limits on extrasolar terrestrial planet detection with coronagraphs. ApJS 167:81–99

    Article  ADS  Google Scholar 

  • Haqq-Misra JD, Domagal-Goldman SD, Kasting PJ, Kasting JF (2008) A revised, hazy methane greenhouse for the Archean Earth. Astrobiology 8:1127–1137

    Article  ADS  Google Scholar 

  • Hart MH (1978) The evolution of the atmosphere of the earth. Icarus 33:23–39

    Article  ADS  Google Scholar 

  • Hart MH (1979) Habitable zones about main sequence stars. Icarus 37:351–357

    Article  ADS  Google Scholar 

  • Hearty T, Song I, Kim S, Tinetti G (2009) Mid-infrared properties of disk averaged observations of earth with AIRS. ApJ 693:1763–1774. https://doi.org/10.1088/0004-637X/693/2/1763, 0810.2957

  • Hedges C, Madhusudhan N (2016) Effect of pressure broadening on molecular absorption cross sections in exoplanetary atmospheres. MNRAS 458:1427–1449

    Article  ADS  Google Scholar 

  • Huang SS (1959) Occurrence of life in the universe. Am Sci 47(3):397–402

    ADS  Google Scholar 

  • Hubbard W, Fortney J, Lunine J et al (2001) Theory of extrasolar giant planet transits. Astrophys J 560(1):413

    Article  ADS  Google Scholar 

  • Joshi MM, Haberle RM, Reynolds RT (1997) Simulations of the atmospheres of synchronously rotating terrestrial planets orbiting M dwarfs: conditions for atmospheric collapse and the implications for habitability. Icarus 129:450–465

    Article  ADS  Google Scholar 

  • Kaltenegger L, Traub W (2009) Transits of earth-like planets. Astrophys J 698:519

    Article  ADS  Google Scholar 

  • Kaltenegger L, Selsis F, Fridlund M et al (2010) Deciphering spectral fingerprints of habitable exoplanets. Astrobiology 10:89–102

    Article  ADS  Google Scholar 

  • Kasting JF, Whitmire DP, Reynolds RT (1993) Habitable zones around main sequence stars. Icarus 101:108–128

    Article  ADS  Google Scholar 

  • Knutson HA, Benneke B, Deming D, Homeier D (2014) A featureless transmission spectrum for the Neptune-Mass exoplanet GJ 436b. Nature 505:66–68

    Article  ADS  Google Scholar 

  • Kopparapu RK, Ramirez R, Kasting JF et al (2013) Habitable zones around main-sequence stars: new estimates. ApJ 765:131

    Article  ADS  Google Scholar 

  • Kreidberg L, Bean JL, Désert JM et al (2014) Clouds in the atmosphere of the super-earth exoplanet gj 1214b. Nature 505(7481):69–72

    Article  ADS  Google Scholar 

  • Lecavelier Des Etangs A, Pont F, Vidal-Madjar A, Sing D (2008) Rayleigh scattering in the transit spectrum of hd 189733b. Astron Astrophys 481:L83–L86

    Article  ADS  Google Scholar 

  • Leconte J, Forget F, Charnay B et al (2013) 3D climate modeling of close-in land planets: circulation patterns, climate moist bi-stability, and habitability. A&A 554:A69

    Article  ADS  Google Scholar 

  • Livengood TA, Deming LD, A’Hearn MF et al (2011) Properties of an earth-like planet orbiting a sun-like star: earth observed by the EPOXI mission. Astrobiology 11:907–930

    Article  ADS  Google Scholar 

  • Lovis C, Fischer D (2010) Radial velocity techniques for exoplanets. In: Seager S (ed) Exoplanets. University of Arizona Press, Tucson, pp 27–53

    Google Scholar 

  • Luger R, Barnes R (2015) Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of M dwarfs. Astrobiology 15:119–143

    Article  ADS  Google Scholar 

  • Lupu RE, Marley MS, Lewis N et al (2016) Developing atmospheric retrieval methods for direct imaging spectroscopy of gas giants in reflected light. I. Methane abundances and basic cloud properties. AJ 152:217

    Google Scholar 

  • Matsui T, Abe Y (1986) Impact-induced atmospheres and oceans on earth and Venus. Nature 322:526–528

    Article  ADS  Google Scholar 

  • Mawet D, Pueyo L, Lawson P et al (2012) Review of small-angle coronagraphic techniques in the wake of ground-based second-generation adaptive optics systems. In: Space telescopes and instrumentation 2012: optical, infrared, and millimeter wave. Proceeding of SPIE, vol 8442, p 844204

    Google Scholar 

  • Mawet D, Milli J, Wahhaj Z et al (2014) Fundamental limitations of high contrast imaging set by small sample statistics. ApJ 792:97

    Article  ADS  Google Scholar 

  • Meadows VS (2010) Planetary environmental signatures for habitability and life. In: Mason J (ed) Exoplanets: detection, formation, properties, habitability. Springer, Berlin, pp 259–284

    Google Scholar 

  • Misra A, Meadows V, Claire M, Crisp D (2014a) Using dimers to measure biosignatures and atmospheric pressure for terrestrial exoplanets. Astrobiology 14:67–86

    Article  ADS  Google Scholar 

  • Misra A, Meadows V, Crisp D (2014b) The effects of refraction on transit transmission spectroscopy: application to earth-like exoplanets. ApJ 792:61

    Article  ADS  Google Scholar 

  • Nayak M, Lupu R, Marley M et al (2016) Atmospheric retrieval for direct imaging spectroscopy of gas giants in reflected light II: orbital phase and planetary radius. ArXiv e-prints 1612.00342

    Google Scholar 

  • Oakley PHH, Cash W (2009) Construction of an earth model: analysis of exoplanet light curves and mapping the next earth with the new worlds observer. ApJ 700:1428

    Article  ADS  Google Scholar 

  • Oklopčić A, Hirata CM, Heng K (2016) Raman scattering by molecular hydrogen and nitrogen in exoplanetary atmospheres. ApJ 832:30. https://doi.org/10.3847/0004-637X/832/1/30, 1605.07185

  • Pallé E, Goode PR, Yurchyshyn V et al (2003) Earthshine and the Earth’s Albedo: 2. Observations and simulations over three years. J Geophys Res (Atmos) 108:4710

    Google Scholar 

  • Pallé E, Osorio MRZ, Barrena R, Montañés-Rodríguez P, Martín EL (2009) Earth’s transmission spectrum from lunar eclipse observations. Nature 459(7248):814–816

    Article  ADS  Google Scholar 

  • Pappalardo RT, Belton MJS, Breneman HH et al (1999) Does Europa have a subsurface ocean? Evaluation of the geological evidence. J Geophys Res 104:24015–24056

    Article  ADS  Google Scholar 

  • Pierrehumbert R, Gaidos E (2011) Hydrogen greenhouse planets beyond the habitable zone. ApJ 734:L13

    Article  ADS  Google Scholar 

  • Pohorille A, Pratt LR (2012) Is water the universal solvent for life? Orig Life Evol Biosph 42:405

    Article  ADS  Google Scholar 

  • Qiu J, Goode P, Pallé E et al (2003) Earthshine and the earth’s albedo: 1. Earthshine observations and measurements of the lunar phase function for accurate measurements of the earth’s bond albedo. J Geophys Res 108(4709):1999–2007

    Google Scholar 

  • Ramirez RM, Kaltenegger L (2014) The habitable zones of pre-main-sequence stars. ApJ 797:L25

    Article  ADS  Google Scholar 

  • Rasool SI, de Bergh C (1970) The runaway greenhouse and the accumulation of CO2 in the Venus atmosphere. Nature 226:1037–1039

    Article  ADS  Google Scholar 

  • Robinson TD (2011) Modeling the infrared spectrum of the Earth-Moon system: implications for the detection and characterization of earthlike extrasolar planets and their moonlike companions. ApJ 741:51. https://doi.org/10.1088/0004-637X/741/1/51, 1110.3744

  • Robinson TD (2012) Simulating and characterizing the pale blue dot. PhD thesis, University of Washington

    Google Scholar 

  • Robinson TD (2017, submitted) A theory of exoplanet transits with light scattering. ApJ

    Google Scholar 

  • Robinson TD, Marley MS (2016) Constraining planetary habitability: a LUVOIR science draft case. Technical report, NASA Goddard Space Flight Center

    Google Scholar 

  • Robinson TD, Meadows VS, Crisp D (2010) Detecting oceans on extrasolar planets using the glint effect. ApJ 721:L67–L71

    Article  ADS  Google Scholar 

  • Robinson TD, Meadows VS, Crisp D et al (2011) Earth as an extrasolar planet: earth model validation using EPOXI earth observations. Astrobiology 11:393–408

    Article  ADS  Google Scholar 

  • Robinson TD, Ennico K, Meadows VS et al (2014a) Detection of ocean glint and ozone absorption using LCROSS earth observations. ApJ 787:171

    Article  ADS  Google Scholar 

  • Robinson TD, Maltagliati L, Marley MS, Fortney JJ (2014b) Titan solar occultation observations reveal transit spectra of a hazy world. Proc Natl Acad Sci 111(25):9042–9047

    Article  ADS  Google Scholar 

  • Robinson TD, Stapelfeldt KR, Marley MS (2016) Characterizing rocky and gaseous exoplanets with 2 m class space-based coronagraphs. PASP 128(2):025003

    Article  ADS  Google Scholar 

  • Rugheimer S, Kaltenegger L, Zsom A, Segura A, Sasselov D (2013) Spectral fingerprints of Earth-like planets around FGK stars. Astrobiology 13:251–269

    Article  ADS  Google Scholar 

  • Sagan C, Thompson WR, Carlson R, Gurnett D, Hord C (1993) A search for life on Earth from the Galileo spacecraft. Nature 365:715–721

    Article  ADS  Google Scholar 

  • Schwieterman EW, Robinson TD, Meadows VS, Misra A, Domagal-Goldman S (2015) Detecting and constraining N2 abundances in planetary atmospheres using collisional Pairs. ApJ 810:57

    Article  ADS  Google Scholar 

  • Seager S, Sasselov D (2000) Theoretical transmission spectra during extrasolar giant planet transits. Astrophys J 537(2):916

    Article  ADS  Google Scholar 

  • Selsis F, Kasting JF, Levrard B et al (2007) Habitable planets around the star Gliese 581? A&A 476:1373–1387

    Article  ADS  Google Scholar 

  • Shaklan SB, Noecker MC, Glassman T et al (2010) Error budgeting and tolerancing of starshades for exoplanet detection. In: Space telescopes and instrumentation 2010: optical, infrared, and millimeter wave. Proceeding of SPIE, vol 7731, p 77312G

    Google Scholar 

  • Shields AL, Meadows VS, Bitz CM et al (2013) The effect of host star spectral energy distribution and ice-albedo feedback on the climate of extrasolar planets. Astrobiology 13:715–739

    Article  ADS  Google Scholar 

  • Stam DM (2008) Spectropolarimetric signatures of Earth-like extrasolar planets. A&A 482: 989–1007

    Article  ADS  Google Scholar 

  • Stephan K, Jaumann R, Brown RH et al (2010) Specular reflection on titan: liquids in kraken mare. Geophys Res Lett 37:L07104

    Article  ADS  Google Scholar 

  • Stevenson DJ (1999) Life-sustaining planets in interstellar space? Nature 400:32

    Article  ADS  Google Scholar 

  • Stubenrauch CJ, Rossow WB, Kinne S et al (2013) Assessment of global cloud datasets from satellites: project and database initiated by the GEWEX radiation panel. Bull Am Meteorol Soc 94:1031–1049

    Article  Google Scholar 

  • Traub WA, Oppenheimer BR (2010) Direct imaging of exoplanets. In: Seager S (ed) Exoplanets. University of Arizona Press, Tucson, pp 111–156

    Google Scholar 

  • von Paris P, Gebauer S, Godolt M et al (2010) The extrasolar planet Gliese 581d: a potentially habitable planet? A&A 522:A23

    Article  ADS  Google Scholar 

  • von Paris P, Hedelt P, Selsis F, Schreier F, Trautmann T (2013) Characterization of potentially habitable planets: retrieval of atmospheric and planetary properties from emission spectra. A&A 551:A120

    Article  ADS  Google Scholar 

  • Way MJ, Del Genio AD, Kiang NY et al (2016) Was venus the first habitable world of our solar system? Geophys Res Lett 43(16):8376–8383

    Article  ADS  Google Scholar 

  • Whitmire DP, Reynolds RT, Kasting JF (1991) Habitable zones for Earth-like planets around main sequence stars. In: Heidmann J, Klein MJ (eds) Bioastronomy: the search for extraterrestial life—the exploration broadens. Lecture notes in physics, vol 390. Springer, Berlin, pp 173–178

    Chapter  Google Scholar 

  • Williams DM, Gaidos E (2008) Detecting the glint of starlight on the oceans of distant planets. Icarus 195:927–937

    Article  ADS  Google Scholar 

  • Winn JN (2010) Exoplanet transits and occultations. In: Seager S (ed) Exoplanets. University of Arizona Press, Tucson, pp 55–77

    Google Scholar 

  • Wolf ET, Toon OB (2013) Hospitable Archean climates simulated by a general circulation model. Astrobiology 13:656–673

    Article  ADS  Google Scholar 

  • Wordsworth R, Pierrehumbert R (2013) Hydrogen-nitrogen greenhouse warming in Earth’s early atmosphere. Science 339:64

    Article  ADS  Google Scholar 

  • Yang J, Cowan NB, Abbot DS (2013) Stabilizing cloud feedback dramatically expands the habitable zone of tidally locked planets. ApJ 771:L45

    Article  ADS  Google Scholar 

  • Zsom A, Seager S, de Wit J, Stamenković V (2013) Toward the minimum inner edge distance of the habitable zone. ApJ 778:109

    Article  ADS  Google Scholar 

  • Zugger ME, Kasting JF, Williams DM, Kane TJ, Philbrick CR (2010) Light scattering from exoplanet oceans and atmospheres. ApJ 723:1168

    Article  ADS  Google Scholar 

  • Zugger ME, Kasting JF, Williams DM, Kane TJ, Philbrick CR (2011) Searching for water earths in the near-infrared. ApJ 739:12

    Article  ADS  Google Scholar 

Download references

Acknowledgements

TR gratefully acknowledges support from NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute. The results reported herein benefitted from collaborations and/or information exchange within NASA’s Nexus for Exoplanet System Science (NExSS) research coordination network sponsored by NASA’s Science Mission Directorate. Certain essential tools used in this work were developed by the NASA Astrobiology Institute’s Virtual Planetary Laboratory, supported by NASA under Cooperative Agreement No. NNA13AA93A. TR thanks J Fortney, N Cowan, V Meadows, and J Lustig-Yaeger for constructive critiques of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tyler D. Robinson .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Robinson, T.D. (2018). Characterizing Exoplanet Habitability. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-30648-3_67-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30648-3_67-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30648-3

  • Online ISBN: 978-3-319-30648-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics