Factors Affecting Exoplanet Habitability

  • Victoria S. Meadows
  • Rory K. Barnes
Living reference work entry


Habitability is a measure of an environment’s potential to support life, and for exoplanets this is tied to the presence of surface liquid water. Whether or not an exoplanet is able to maintain liquid water on its surface is due to a complex interplay of planetary, stellar, and planetary system characteristics over the planet’s lifetime. Although a planet’s habitability depends critically on the effect of stellar type and planetary semimajor axis on climate balance, many additional factors can also impact habitability. Processes which can modify a habitable planet’s environment include photochemistry; stellar effects on climate balance; atmospheric loss; gravitational interactions with the star, moons, other planets and minor bodies; and galactic phenomena. Here we briefly review characteristics and processes that can impact exoplanet habitability. Ultimately, understanding these processes will enable identification of those exoplanets that are most likely to be habitable and will illuminate global characteristics of habitable planets that may be observable.



This chapter benefited from discussions with Matt Tilley, Eric Agol, Lucianne Walkowicz, Andrew Lincowski, and the attendees of the NASA Astrobiology Institute “Revisiting the Habitable Zone” workshop. This work was supported by the NASA Astrobiology Institute Virtual Planetary Laboratory Lead Team, funded through the NASA Astrobiology Institute under solicitation NNH12ZDA002C and Cooperative Agreement Number NNA13AA93A.


  1. Abbott BP, Abbott R, Abbott TD et al (2017) GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys Rev Lett 119(16):161101Google Scholar
  2. Agol E, Fabrycky D (2017) Transit timing and duration variations for the discovery and characterization of exoplanets. arXiv preprint arXiv:170609849Google Scholar
  3. Agol E, Jansen T, Lacy B, Robinson TD, Meadows V (2015) The center of light: spectroastrometric detection of exomoons. Astrophys J 812(1):5ADSCrossRefGoogle Scholar
  4. Ahrens TJ (1993) Impact erosion of terrestrial planetary atmospheres. Annu Rev Earth Planet Sci 21(1):525–555ADSCrossRefGoogle Scholar
  5. Albarede F (2009) Volatile accretion history of the terrestrial planets and dynamic implications. Nature 461(7268):1227ADSCrossRefGoogle Scholar
  6. Armstrong J, Barnes R, Domagal-Goldman S et al (2014) Effects of extreme obliquity variations on the habitability of exoplanets. Astrobiology 14(4):277–291ADSCrossRefGoogle Scholar
  7. Arney G, Domagal-Goldman SD, Meadows VS et al (2016) The pale orange dot: the spectrum and habitability of hazy Archean Earth. Astrobiology 16(11):873–899ADSCrossRefGoogle Scholar
  8. Arney GN, Meadows VS, Domagal-Goldman SD et al (2017) Pale orange dots: the impact of organic haze on the habitability and detectability of earthlike exoplanets. Astrophys J 836(1):49ADSCrossRefGoogle Scholar
  9. Atri D, Melott AL, Karam A (2014) Biological radiation dose from secondary particles in a Milky Way gamma-ray burst. Int J Astrobiol 13:224–228ADSCrossRefGoogle Scholar
  10. Baraffe I, Homeier D, Allard F, Chabrier G (2015) New evolutionary models for pre-main sequence and main sequence low-mass stars down to the hydrogen-burning limit. Astron Astrophys 577:A42ADSCrossRefGoogle Scholar
  11. Barnes R (2017) Tidal locking of habitable exoplanets. Celest Mech Dyn Astron 129:509–536ADSMathSciNetCrossRefGoogle Scholar
  12. Barnes R, Raymond SN, Jackson B, Greenberg R (2008) Tides and the evolution of planetary habitability. Astrobiology 8(3):557–568ADSCrossRefGoogle Scholar
  13. Barnes R, Jackson B, Greenberg R, Raymond SN (2009) Tidal limits to planetary habitability. Astrophys J Lett 700(1):L30ADSCrossRefGoogle Scholar
  14. Barnes R, Raymond SN, Greenberg R, Jackson B, Kaib NA (2010) CoRoT-7b: super-Earth or super-Io? Astrophys J Lett 709(2):L95ADSCrossRefGoogle Scholar
  15. Barnes R, Mullins K, Goldblatt C et al (2013) Tidal Venuses: triggering a climate catastrophe via tidal heating. Astrobiology 13(3):225–250ADSCrossRefGoogle Scholar
  16. Barnes R, Deitrick R, Luger R et al (2018) The habitability of Proxima Centauri b I: evolutionary scenarios. Astrobiology ArXiv preprint: 1608.06919v2Google Scholar
  17. Batalha NM, Borucki WJ, Bryson ST et al (2011) Kepler’s first rocky planet: Kepler-10b. ApJ 729:27ADSCrossRefGoogle Scholar
  18. Batygin K, Bodenheimer P, Laughlin G (2009) Determination of the interior structure of transiting planets in multiple-planet systems. ApJ 704:L49–L53ADSCrossRefGoogle Scholar
  19. Becker JC, Batygin K (2013) Dynamical measurements of the interior structure of exoplanets. ApJ 778:100ADSCrossRefGoogle Scholar
  20. Benedict GF, McArthur BE, Gatewood G et al (2006) The extrasolar planet ε eridani b: orbit and mass. Astron J 132(5):2206ADSCrossRefGoogle Scholar
  21. Berger A, Loutre MF, Tricot C (1993) Insolation and Earth’s orbital periods. J Geophys Res Atmos 98(D6):10,341–10,362ADSCrossRefGoogle Scholar
  22. Borucki WJ, Koch D, Basri G et al (2010) Kepler planet-detection mission: introduction and first results. Science 327(5968):977–980Google Scholar
  23. Brasser R, Ida S, Kokubo E (2014) A dynamical study on the habitability of terrestrial exoplanets – II the super-Earth HD 40307 g. MNRAS 440:3685–3700ADSCrossRefGoogle Scholar
  24. Buhler PB, Knutson HA, Batygin K et al (2016) Dynamical constraints on the core mass of hot Jupiter HAT-P-13b. ApJ 821:26ADSCrossRefGoogle Scholar
  25. Chassefière E, Leblanc F, Langlais B (2007) The combined effects of escape and magnetic field histories at Mars. Planet Space Sci 55(3):343–357ADSCrossRefGoogle Scholar
  26. Cowan NB, Agol E, Meadows VS et al (2009) Alien maps of an ocean-bearing world. Astrophys J 700(2):915ADSCrossRefGoogle Scholar
  27. Deck KM, Agol E (2015) Measurement of planet masses with transit timing variations due to synodic “Chopping” effects. ApJ 802:116ADSCrossRefGoogle Scholar
  28. Deitrick R, Barnes R, Quinn TR et al (2018) Exo-Milankovitch cycles. I. Orbits and rotation states. AJ 155:60ADSCrossRefGoogle Scholar
  29. Demory BO, Gillon M, Barman T et al (2007) Characterization of the hot Neptune GJ 436 b with Spitzer and ground-based observations. Astron Astrophys 475(3):1125–1129ADSCrossRefGoogle Scholar
  30. Des Marais DJ, Harwit MO, Jucks KW et al (2002) Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets. Astrobiology 2(2):153–181ADSCrossRefGoogle Scholar
  31. Dole SH (1964) Habitable planets for man. Rand Corp., Santa MonicaGoogle Scholar
  32. Dorn C, Khan A, Heng K et al (2015) Can we constrain the interior structure of rocky exoplanets from mass and radius measurements? Astron Astrophys 577:A83ADSCrossRefGoogle Scholar
  33. Dressing CD, Spiegel DS, Scharf CA, Menou K, Raymond SN (2010) Habitable climates: the influence of eccentricity. Astrophys J 721(2):1295ADSCrossRefGoogle Scholar
  34. Driscoll P, Olson P (2011) Optimal dynamos in the cores of terrestrial exoplanets: magnetic field generation and detectability. Icarus 213:12–23ADSCrossRefGoogle Scholar
  35. Driscoll P, Bercovici D (2013) Divergent evolution of Earth and Venus: influence of degassing, tectonics, and magnetic fields. Icarus 226:1447–1464ADSCrossRefGoogle Scholar
  36. Driscoll P, Bercovici D (2014) On the thermal and magnetic histories of Earth and Venus: influences of melting, radioactivity, and conductivity. Phys Earth Planet Inter 236:36–51ADSCrossRefGoogle Scholar
  37. Driscoll PE, Barnes R (2015) Tidal heating of Earth-like exoplanets around M stars: thermal, magnetic, and orbital evolutions. Astrobiology 15:739–760ADSCrossRefGoogle Scholar
  38. Egbert GD, Ray RD (2000) Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature 405:775–778ADSCrossRefGoogle Scholar
  39. Ferraz-Mello S, Rodríguez A, Hussmann H (2008) Tidal friction in close-in satellites and exoplanets: the Darwin theory re-visited. Celest Mech Dyn Astron 101:171–201ADSMathSciNetzbMATHCrossRefGoogle Scholar
  40. Frank EA, Meyer BS, Mojzsis SJ (2014) A radiogenic heating evolution model for cosmochemically Earth-like exoplanets. Icarus 243:274–286ADSCrossRefGoogle Scholar
  41. Fujii Y, Angerhausen D, Deitrick R et al (2017a) Exoplanet biosignatures: observational prospects. arxiv preprint:170507098Google Scholar
  42. Fujii Y, Lustig-Yaeger J, Cowan NB (2017). Rotational Spectral Unmixing of Exoplanets: Degeneracies between Surface Colors and Geography. Astron J 154(5):189ADSCrossRefGoogle Scholar
  43. Fulton BJ, Petigura EA, Howard AW et al (2017) The California-Kepler survey. III. A gap in the radius distribution of small planets. ArXiv e-printsADSCrossRefGoogle Scholar
  44. Garcia-Sage K, Glocer A, Drake J, Gronoff G, Cohen O (2017) On the magnetic protection of the atmosphere of proxima centauri b. Astrophys J Lett 844(1):L13ADSCrossRefGoogle Scholar
  45. Gehrels N, Laird CM, Jackman CH et al (2003) Ozone depletion from nearby supernovae. ApJ 585:1169–1176ADSCrossRefGoogle Scholar
  46. Genda H, Abe Y (2005) Enhanced atmospheric loss on protoplanets at the giant impact phase in the presence of oceans. Nature 433(7028):842–844ADSCrossRefGoogle Scholar
  47. Gillon M, Triaud AH, Demory BO et al (2017) Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542(7642):456–460ADSCrossRefGoogle Scholar
  48. Gizis JE, Reid IN, Hawley SL (2002) The palomar/msu nearby star spectroscopic survey. III. Chromospheric activity, M dwarf ages, and the local star formation history. Astron J 123(6):3356ADSCrossRefGoogle Scholar
  49. Gold T, Soter S (1969) Atmospheric tides and the resonant rotation of Venus. Icarus 11:356–366ADSCrossRefGoogle Scholar
  50. Goldblatt C (2016) Comment on long-term climate forcing by atmospheric oxygen concentrations. Science 353:132ADSCrossRefGoogle Scholar
  51. Goldreich P (1966) Final spin states of planets and satellites. Astron J 71:1ADSCrossRefGoogle Scholar
  52. Gonzalez G, Brownlee D, Ward P (2001) The galactic habitable zone: galactic chemical evolution. Icarus 152:185–200ADSCrossRefGoogle Scholar
  53. Green J, Huber M, Waltham D, Buzan J, Wells M (2017) Explicitly modelled deep-time tidal dissipation and its implication for Lunar history. Earth Planet Sci Lett 461:46–53ADSCrossRefGoogle Scholar
  54. Grimm SL, Demory BO, Gillon M et al (2018) The nature of the trappist-1 exoplanets. arXiv preprint arXiv:180201377Google Scholar
  55. Güdel M (2004) X-ray astronomy of stellar coronae. Astron Astrophys Rev 12(2–3):71–237ADSGoogle Scholar
  56. Harman CE, Schwieterman EW, Schottelkotte JC, Kasting JF (2015) Abiotic O2 levels on planets around F, G, K, and M stars: possible false positives for life? Astrophys J 812(2):137ADSCrossRefGoogle Scholar
  57. Hart MH (1978) The evolution of the atmosphere of the Earth. Icarus 33(1):23–39ADSCrossRefGoogle Scholar
  58. Hart MH (1979) Habitable zones about main sequence stars. Icarus 37(1):351–357ADSCrossRefGoogle Scholar
  59. Hawley SL, Reid IN, Tourtellot J (2000) Properties of M dwarfs in clusters and the field. In: Rebolo R, Zapatero-Osorio MR (eds) Very low-mass stars and brown dwarfs, Cambridge University Press, p 109Google Scholar
  60. Heller R, Leconte J, Barnes R (2011) Tidal obliquity evolution of potentially habitable planets. A&A 528:A27ADSCrossRefGoogle Scholar
  61. Henning WG, Hurford T (2014) Tidal heating in multilayered terrestrial exoplanets. ApJ 789:30ADSCrossRefGoogle Scholar
  62. Hess S, Zarka P (2011) Modeling the radio signature of the orbital parameters, rotation, and magnetic field of exoplanets. Astron Astrophys 531:A29ADSCrossRefGoogle Scholar
  63. Hu Y, Yang J (2014) Role of ocean heat transport in climates of tidally locked exoplanets around M dwarf stars. Proc Natl Acad Sci USA 111(2):629–634ADSCrossRefGoogle Scholar
  64. Hunten DM (1973) The escape of light gases from planetary atmospheres. J Atmos Sci 30: 1481–1494ADSCrossRefGoogle Scholar
  65. Hunten D, Donahue TM (1976) Hydrogen loss from the terrestrial planets. Annu Rev Earth Planet Sci 4(1):265–292ADSCrossRefGoogle Scholar
  66. Hut P (1981) Tidal evolution in close binary systems. Astron Astrophys 99:126–140ADSzbMATHGoogle Scholar
  67. Jackson B, Barnes R, Greenberg R (2008) Tidal heating of terrestrial extrasolar planets and implications for their habitability. MNRAS 391:237–245ADSCrossRefGoogle Scholar
  68. Joshi M, Haberle R, Reynolds R (1997) Simulations of the atmospheres of synchronously rotating terrestrial planets orbiting M dwarfs: conditions for atmospheric collapse and the implications for habitability. Icarus 129(2):450–465ADSCrossRefGoogle Scholar
  69. Kaib NA, Quinn T et al (2011) Sedna and the Oort cloud around a migrating sun. Icarus 215(2):491–507ADSCrossRefGoogle Scholar
  70. Kaib NA, Raymond SN, Duncan M (2013) Planetary system disruption by galactic perturbations to wide binary stars. Nature 493(7432):381–384ADSCrossRefGoogle Scholar
  71. Kaltenegger L, Sasselov D (2009) Detecting planetary geochemical cycles on exoplanets: atmospheric signatures and the case of so2. Astrophys J 708(2):1162ADSCrossRefGoogle Scholar
  72. Kaltenegger L, Henning W, Sasselov D (2010) Detecting volcanism on extrasolar planets. Astron J 140(5):1370ADSCrossRefGoogle Scholar
  73. Kasting JF, Whitmire DP, Reynolds RT (1993) Habitable zones around main sequence stars. Icarus 101:108–128ADSCrossRefGoogle Scholar
  74. Katz RF, Spiegelman M, Langmuir CH (2003) A new parameterization of hydrous mantle melting. Geochem Geophys Geosyst 4:1073ADSCrossRefGoogle Scholar
  75. Kawahara H, Fujii Y (2010) Global mapping of Earth-like exoplanets from scattered light curves. Astrophys J 720(2):1333ADSCrossRefGoogle Scholar
  76. Kinoshita H (1977) Theory of the rotation of the rigid earth. Celest Mech 15:277–326ADSCrossRefGoogle Scholar
  77. Kipping DM (2011) Transit timing effects due to an exomoon. In: The transits of extrasolar planets with Moons. Springer, Berlin/Heidelberg, pp 127–164CrossRefGoogle Scholar
  78. Kitzmann D (2016) Revisiting the scattering greenhouse effect of Co2 ice clouds. Astrophys J Lett 817(2):L18ADSCrossRefGoogle Scholar
  79. Kivelson M, Khurana K, Coroniti F et al (1997) The magnetic field and magnetosphere of ganymede. Geophys Res Lett 24(17):2155–2158ADSCrossRefGoogle Scholar
  80. Kopparapu RK (2013) A revised estimate of the occurrence rate of terrestrial planets in the habitable zones around Kepler M-dwarfs. ApJ 767:L8ADSCrossRefGoogle Scholar
  81. Kopparapu RK, Ramirez R, Kasting JF et al (2013) Habitable zones around main-sequence stars: new estimates. Astrophys J 765:16CrossRefGoogle Scholar
  82. Kopparapu RK, Ramirez RM, SchottelKotte J et al (2014) Habitable zones around main-sequence stars: dependence on planetary mass. Astrophys J 787(2):L29ADSCrossRefGoogle Scholar
  83. Kopparapu RK, Wolf ET, Haqq-Misra J et al (2016) The inner edge of the habitable zone for synchronously rotating planets around low-mass stars using general circulation models. Astrophys J 819(1):84ADSCrossRefGoogle Scholar
  84. Kopparapu R, Wolf ET, Arney G, Batalha NE, Haqq-Misra J, Grimm SL, Heng K (2017) Habitable Moist Atmospheres on Terrestrial Planets near the Inner Edge of the Habitable Zone around M Dwarfs. Astrophys J 845(1):5ADSCrossRefGoogle Scholar
  85. Kraus S, Kreplin A, Fukugawa M et al (2017) Dust-trapping vortices and a potentially planet-triggered spiral wake in the pre-transitional disk of v1247 orionis. Astrophys J Lett 848(1):L11ADSCrossRefGoogle Scholar
  86. Lammer H (2012) Origin and evolution of planetary atmospheres: implications for habitability. Springer Science & Business Media, DordrechtGoogle Scholar
  87. Lammer H, Kasting JF, Chassefière E et al (2008) Atmospheric escape and evolution of terrestrial planets and satellites. Space Sci Rev 139(1–4):399–436ADSCrossRefGoogle Scholar
  88. Laskar J, Joutel F, Robutel P (1993) Stabilization of the Earth’s obliquity by the Moon. Nature 361:615–617ADSCrossRefGoogle Scholar
  89. Laughlin G, Adams FC (1998) The modification of planetary orbits in dense open clusters. ApJ 508:L171–L174ADSCrossRefGoogle Scholar
  90. Leconte J, Forget F, Charnay B, Wordsworth R, Pottier A (2013) Increased insolation threshold for runaway greenhouse processes on Earth-like planets. Nature 504(7479):268–271ADSCrossRefGoogle Scholar
  91. Lenardic A, Crowley JW (2012) On the notion of well-defined tectonic regimes for terrestrial planets in this solar system and others. Astrophys J 755(2):132ADSCrossRefGoogle Scholar
  92. Lenardic A, Jellinek A, Foley B, O’Neill C, Moore W (2016) Climate-tectonic coupling: variations in the mean, variations about the mean, and variations in mode. J Geophys Res Planets 121(10):1831–1864ADSCrossRefGoogle Scholar
  93. Luger R, Barnes R (2015) Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of M dwarfs. Astrobiology 15:119–143ADSCrossRefGoogle Scholar
  94. Luger R, Barnes R, Lopez E et al (2015) Habitable evaporated cores: transforming mini-Neptunes into super-Earths in the habitable zones of M dwarfs. Astrobiology 15(1):57ADSCrossRefGoogle Scholar
  95. Luger R, Lustig-Yaeger J, Fleming DP et al (2017a) The pale green dot: a method to characterize Proxima Centauri b using exo-aurorae. Astrophys J 837(1):63ADSCrossRefGoogle Scholar
  96. Luger R, Sestovic M, Kruse E et al (2017b) A seven-planet resonant chain in TRAPPIST-1. Nat Astron 1:0129CrossRefGoogle Scholar
  97. Lundin R, Lammer H, Ribas I (2007) Planetary magnetic fields and solar forcing: implications for atmospheric evolution. Space Sci Rev 129(1–3):245–278ADSCrossRefGoogle Scholar
  98. Lyons TW, Reinhard CT, Planavsky NJ (2014) The rise of oxygen in Earth/’s early ocean and atmosphere. Nature 506(7488):307–315ADSCrossRefGoogle Scholar
  99. Mardling RA (2010) The determination of planetary structure in tidally relaxed inclined systems. MNRAS 407:1048–1069ADSCrossRefGoogle Scholar
  100. Mayor M, Queloz D (2012) From 51 peg to Earth-type planets. New Astron Rev 56(1):19–24ADSCrossRefGoogle Scholar
  101. Meadows V, Seager S (2010) Terrestrial planet atmospheres and biosignatures. In: Seager S (ed) Exoplanets. University of Arizona Press, Tucson, pp 441–470Google Scholar
  102. Meadows VS, Arney GN, Schwieterman EW, Lustig-Yaeger J, Lincowski AP, Robinson T, Domagal-Goldman SD, Deitrick R, Barnes RK, Fleming DP, Luger R (2018) The Habitability of Proxima Centauri b: Environmental States and Observational Discriminants. Astrobiology 18(2):133–189ADSCrossRefGoogle Scholar
  103. Melott AL, Lieberman BS, Laird CM et al (2004) Did a gamma-ray burst initiate the late Ordovician mass extinction? Int J Astrobiol 3:55–61CrossRefGoogle Scholar
  104. Misra A, Meadows V, Claire M, Crisp D (2014) Using dimers to measure biosignatures and atmospheric pressure for terrestrial exoplanets. Astrobiology 14(2):67–86ADSCrossRefGoogle Scholar
  105. Misra A, Krissansen-Totton J, Koehler MC, Sholes S (2015) Transient sulfate aerosols as a signature of exoplanet volcanism. Astrobiology 15(6):462–77ADSCrossRefGoogle Scholar
  106. Moore WB, Webb AAG (2013) Heat-pipe Earth. Nature 501:501–505ADSCrossRefGoogle Scholar
  107. Moore WB, Simon JI, Webb AAG (2017) Heat-pipe planets. Earth Planet Sci Lett 474:13–19ADSCrossRefGoogle Scholar
  108. Ness NF (1978) Mercury: magnetic field and interior. Space Sci Rev 21(5):527–553ADSCrossRefGoogle Scholar
  109. Nimmo F (2002) Why does Venus lack a magnetic field? Geology 30(11):987–990ADSCrossRefGoogle Scholar
  110. Olson P, Christensen UR (2006) Dipole moment scaling for convection-driven planetary dynamos. Earth Planet Sci Lett 250:561–571ADSCrossRefGoogle Scholar
  111. Owen JE, Mohanty S (2016) Habitability of terrestrial-mass planets in the HZ of M dwarfs–i. H/He-dominated atmospheres. Mon Not R Astron Soc 459(4):4088–4108ADSCrossRefGoogle Scholar
  112. Pepin RO (2006) Atmospheres on the terrestrial planets: clues to origin and evolution. Earth Planet Sci Lett 252(1–2):1–14ADSCrossRefGoogle Scholar
  113. Pierrehumbert R, Gaidos E (2011) Hydrogen greenhouse planets beyond the habitable zone. Astrophys J Lett 734(1):L13ADSCrossRefGoogle Scholar
  114. Quintana EV, Barclay T, Borucki WJ, Rowe JF, Chambers JE (2016) The frequency of giant impacts on Earth-like worlds. Astrophys J 821(2):126ADSCrossRefGoogle Scholar
  115. Rasio FA, Tout CA, Lubow SH, Livio M (1996) Tidal decay of close planetary orbits. ApJ 470:1187ADSCrossRefGoogle Scholar
  116. Rauer H, Gebauer S, Paris PV et al (2011) Potential biosignatures in super-Earth atmospheres. I. Spectral appearance of super-Earths around M dwarfs. A&A 529:A8ADSCrossRefGoogle Scholar
  117. Raymond SN, Quinn T, Lunine JI (2004) Making other Earths: dynamical simulations of terrestrial planet formation and water delivery. Icarus 168(1):1–17ADSCrossRefGoogle Scholar
  118. Raymond SN, Scalo J, Meadows VS (2007) A decreased probability of habitable planet formation around low mass stars. Astrophys J 669(1):606–614ADSCrossRefGoogle Scholar
  119. Raymond SN, Barnes R, Mandell AM (2008) Observable consequences of planet formation models in systems with close-in terrestrial planets. Mon Not R Astron Soc 384(2):663–674ADSCrossRefGoogle Scholar
  120. Raymond SN, Armitage PJ, Moro-Martin A et al (2012) Debris disks as signposts of terrestrial planet formation II. Dependence of exoplanet architectures on giant planet and disk properties. Astron Astrophys 541:A11ADSCrossRefGoogle Scholar
  121. Ribas I, Bolmont E, Selsis F et al (2016) The habitability of Proxima Centauri b. I. Irradiation, rotation and volatile inventory from formation to the present. A&A 596:A111ADSCrossRefGoogle Scholar
  122. Robinson TD, Meadows VS, Crisp D (2010) Detecting oceans on extrasolar planets using the glint effect. Astrophys J 721(1):L67–L71ADSCrossRefGoogle Scholar
  123. Robinson TD, Ennico K, Meadows VS et al (2014) Detection of ocean glint and ozone absorption using LCROSS Earth observations. Astrophys J 787:171ADSCrossRefGoogle Scholar
  124. Rodríguez A, Callegari N, Michtchenko TA, Hussmann H (2012) Spin-orbit coupling for tidally evolving super-Earths. MNRAS 427:2239–2250ADSCrossRefGoogle Scholar
  125. Rogers LA (2015) Most 1.6 Earth-radius planets are not rocky. ApJ 801:41ADSCrossRefGoogle Scholar
  126. Roškar R, Debattista V, Loebman S, Ivezić Ž, Quinn T (2011) Implications of radial migration for stellar population studies. arXiv preprint arXiv:11011202Google Scholar
  127. Roškar R, Debattista VP, Quinn TR, Wadsley J (2012) Radial migration in disc Galaxiesi. Transient spiral structure and dynamics. Mon Not R Astron Soc 426(3):2089–2106ADSCrossRefGoogle Scholar
  128. Rugheimer S, Kaltenegger L, Segura A, Linsky J, Mohanty S (2015) Effect of UV radiation on the spectral fingerprints of Earth-like planets orbiting M stars. Astrophys J 809(1):57ADSCrossRefGoogle Scholar
  129. Sandu C, Lenardic A, McGovern P (2011) The effects of deep water cycling on planetary thermal evolution. J Geophys Res Solid Earth 116(B12):B12404ADSCrossRefGoogle Scholar
  130. Schaefer L, Wordsworth RD, Berta-Thompson Z, Sasselov D (2016) Predictions of the atmospheric composition of GJ 1132b. Astrophys J 829(2):63ADSCrossRefGoogle Scholar
  131. Schubert G, Soderlund K (2011) Planetary magnetic fields: observations and models. Phys Earth Planet Inter 187(3–4):92–108ADSCrossRefGoogle Scholar
  132. Schwieterman E, Binder B, Tremmel M et al (2015a) Promoting diversity in STEM through active recruiting and mentoring: the pre-major in astronomy program (Pre-MAP) at The University of Washington. In: AAS/division for planetary sciences meeting abstracts, vol 47, p 202.08Google Scholar
  133. Schwieterman EW, Robinson TD, Meadows VS, Misra A, Domagal-Goldman S (2015b) Detecting and constraining N2 abundances in planetary atmospheres using collisional pairs. Astrophys J 810(1):57ADSCrossRefGoogle Scholar
  134. Segura A, Krelove K, Kasting JF et al (2003) Ozone concentrations and ultraviolet fluxes on Earth-like planets around other stars. Astrobiology 3(4):689–708ADSCrossRefGoogle Scholar
  135. Segura A, Kasting JF, Meadows V et al (2005) Biosignatures from Earth-like planets around M dwarfs. Astrobiology 5(6):706–725ADSCrossRefGoogle Scholar
  136. Segura A, Walkowicz LM, Meadows V, Kasting J, Hawley S (2010) The effect of a strong stellar flare on the atmospheric chemistry of an Earth-like planet orbiting an M dwarf. Astrobiology 10:751–771ADSCrossRefGoogle Scholar
  137. Sellwood JA, Binney JJ (2002) Radial mixing in galactic discs. MNRAS 336:785–796ADSCrossRefGoogle Scholar
  138. Shields AL, Meadows VS, Bitz CM et al (2013) The effect of host star spectral energy distribution and ice-Albedo feedback on the climate of extrasolar planets. Astrobiology 13:715–739ADSCrossRefGoogle Scholar
  139. Shields AL, Barnes R, Agol E et al (2016) The effect of orbital configuration on the possible climates and habitability of Kepler-62f. Astrobiology 16(6):443–464ADSCrossRefGoogle Scholar
  140. Sleep NH, Bird DK, Pope E (2012) Paleontology of Earth’s mantle. Annu Rev Earth Planet Sci 40:277–300ADSCrossRefGoogle Scholar
  141. Snellen IA, De Kok RJ, De Mooij EJ, Albrecht S (2010) The orbital motion, absolute mass and high-altitude winds of exoplanet HD 209458b. Nature 465(7301):1049ADSCrossRefGoogle Scholar
  142. Solomatov VS, Moresi LN (2000) Scaling of time-dependent stagnant lid convection: application to small-scale convection on Earth and other terrestrial planets. J Geophys Res 105:21795–21818ADSCrossRefGoogle Scholar
  143. Spiegel DS, Menou K, Scharf CA (2009) Habitable climates: the influence of obliquity. Astrophys J 691(1):596ADSCrossRefGoogle Scholar
  144. Spiegel DS, Raymond SN, Dressing CD, Scharf CA, Mitchell JL (2010) Generalized milankovitch cycles and long-term climatic habitability. Astrophys J 721(2):1308ADSCrossRefGoogle Scholar
  145. Spurzem R, Giersz M, Heggie DC, Lin DNC (2009) Dynamics of planetary systems in star clusters. ApJ 697:458–482ADSCrossRefGoogle Scholar
  146. Stanley S, Glatzmaier GA (2010) Dynamo models for planets other than Earth. Space Sci Rev 152(1–4):617–649ADSCrossRefGoogle Scholar
  147. Stevenson DJ (2010) Planetary magnetic fields: achievements and prospects. Space Sci Rev 152(1–4):651–664ADSCrossRefGoogle Scholar
  148. Tinsley BM (1980) Evolution of the stars and gas in galaxies. Fundam Cosm Phys 5:287–388ADSGoogle Scholar
  149. Turbet M, Leconte J, Selsis F, Bolmont E, Forget F, Ribas I, Raymond SN, Anglada-Escudé G (2016) The habitability of Proxima Centauri b-II. Possible climates and observability. Astron Astrophys 596:A112ADSCrossRefGoogle Scholar
  150. Turbet M, Forget F, Head JW, Wordsworth R (2017) 3D modelling of the climatic impact of outflow channel formation events on early Mars. Icarus 288:10–36ADSCrossRefGoogle Scholar
  151. Turner G (1989) The outgassing history of the earths atmosphere. J Geol Soc 146(1):147–154CrossRefGoogle Scholar
  152. Turnpenney S, Nichols JD, Wynn GA, Burleigh MR (2018) Exoplanet-induced radio emission from M-dwarfs. arXiv preprint arXiv:180101324ADSCrossRefGoogle Scholar
  153. Unterborn CT, Dismukes EE, Panero WR (2016) Scaling the Earth: a sensitivity analysis of terrestrial exoplanetary interior models. Astrophys J 819(1):32ADSCrossRefGoogle Scholar
  154. Vidotto A, Jardine M, Helling C (2011) Transit variability in bow shock-hosting planets. Mon Not R Astron Soc 414(2):1573–1582ADSCrossRefGoogle Scholar
  155. Vidotto A, Jardine M, Morin J et al (2013) Effects of M dwarf magnetic fields on potentially habitable planets. Astron Astrophys 557:A67ADSCrossRefGoogle Scholar
  156. Walker JC, Hays P, Kasting JF (1981) A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J Geophys Res Oceans 86(C10):9776–9782CrossRefGoogle Scholar
  157. Watson AJ, Donahue TM, Walker JCG (1981) The dynamics of a rapidly escaping atmosphere – applications to the evolution of Earth and Venus. Icarus 48:150–166ADSCrossRefGoogle Scholar
  158. Weiss LM, Marcy GW (2014) The mass-radius relation for 65 exoplanets smaller than 4 Earth radii. ApJ 783:L6ADSCrossRefGoogle Scholar
  159. West AA, Basri G (2009) A first look at rotation in inactive late-type M dwarfs. Astrophys J 693(2):1283ADSCrossRefGoogle Scholar
  160. West AA, Hawley SL, Bochanski JJ et al (2008) Constraining the age-activity relation for cool stars: the sloan digital sky survey data release 5 low-mass star spectroscopic sample. Astron J 135(3):785ADSCrossRefGoogle Scholar
  161. White RJ, Gabor JM, Hillenbrand LA (2007) High-dispersion optical spectra of nearby stars younger than the sun. Astron J 133(6):2524ADSCrossRefGoogle Scholar
  162. Wielen R, Fuchs B, Dettbarn C (1996) On the birth-place of the Sun and the places of formation of other nearby stars. A&A 314:438ADSGoogle Scholar
  163. Williams DM, Pollard D (2002) Earth-like worlds on eccentric orbits: excursions beyond the habitable zone. Int J Astrobiol 1(1):61–69CrossRefGoogle Scholar
  164. Williams DM, Kasting JF, Wade RA (1997) Habitable Moons around extrasolar giant planets. Nature 385(6613):234ADSCrossRefGoogle Scholar
  165. Wolf ET, Toon OB (2015) The evolution of habitable climates under the brightening Sun. J Geophys Res (Atmospheres) 120:5775–5794ADSCrossRefGoogle Scholar
  166. Wordsworth R (2015) Atmospheric heat redistribution and collapse on tidally locked rocky planets. Astrophys J 806(2):180ADSCrossRefGoogle Scholar
  167. Wordsworth R, Pierrehumbert R (2014) Abiotic oxygen-dominated atmospheres on terrestrial habitable zone planets. Astrophys J 785(2):L20ADSCrossRefGoogle Scholar
  168. Yang J, Cowan NB, Abbot DS (2013) Stabilizing cloud feedback dramatically expands the habitable zone of tidally locked planets. ApJ 771:L45ADSCrossRefGoogle Scholar
  169. Young PA, Desch SJ, Anbar AD et al (2014) Astrobiological stoichiometry. Astrobiology 14:603–626ADSCrossRefGoogle Scholar
  170. Zahnle KJ, Catling DC (2017) The cosmic shoreline: the evidence that escape determines which planets have atmospheres, and what this may mean for Proxima Centauri b. arXiv preprint: 170203386Google Scholar
  171. Zarka P (2007) Plasma interactions of exoplanets with their parent star and associated radio emissions. Planet Space Sci 55(5):598–617ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Astronomy DepartmentUniversity of WashingtonSeattleUSA

Section editors and affiliations

  • Victoria Meadows
    • 1
  • Rory Barnes
    • 2
  1. 1.Astronomy DepartmentUniversity of WashingtonSeattleUSA
  2. 2.Astronomy DepartmentUniversity of WashingtonSeattleUSA

Personalised recommendations