Skip to main content

Factors Affecting Exoplanet Habitability

  • Living reference work entry
  • First Online:
Handbook of Exoplanets

Abstract

Habitability is a measure of an environment’s potential to support life, and for exoplanets this is tied to the presence of surface liquid water. Whether or not an exoplanet is able to maintain liquid water on its surface is due to a complex interplay of planetary, stellar, and planetary system characteristics over the planet’s lifetime. Although a planet’s habitability depends critically on the effect of stellar type and planetary semimajor axis on climate balance, many additional factors can also impact habitability. Processes which can modify a habitable planet’s environment include photochemistry; stellar effects on climate balance; atmospheric loss; gravitational interactions with the star, moons, other planets and minor bodies; and galactic phenomena. Here we briefly review characteristics and processes that can impact exoplanet habitability. Ultimately, understanding these processes will enable identification of those exoplanets that are most likely to be habitable and will illuminate global characteristics of habitable planets that may be observable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbott BP, Abbott R, Abbott TD et al (2017) GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys Rev Lett 119(16):161101

    Google Scholar 

  • Agol E, Fabrycky D (2017) Transit timing and duration variations for the discovery and characterization of exoplanets. arXiv preprint arXiv:170609849

    Google Scholar 

  • Agol E, Jansen T, Lacy B, Robinson TD, Meadows V (2015) The center of light: spectroastrometric detection of exomoons. Astrophys J 812(1):5

    Article  ADS  Google Scholar 

  • Ahrens TJ (1993) Impact erosion of terrestrial planetary atmospheres. Annu Rev Earth Planet Sci 21(1):525–555

    Article  ADS  Google Scholar 

  • Albarede F (2009) Volatile accretion history of the terrestrial planets and dynamic implications. Nature 461(7268):1227

    Article  ADS  Google Scholar 

  • Armstrong J, Barnes R, Domagal-Goldman S et al (2014) Effects of extreme obliquity variations on the habitability of exoplanets. Astrobiology 14(4):277–291

    Article  ADS  Google Scholar 

  • Arney G, Domagal-Goldman SD, Meadows VS et al (2016) The pale orange dot: the spectrum and habitability of hazy Archean Earth. Astrobiology 16(11):873–899

    Article  ADS  Google Scholar 

  • Arney GN, Meadows VS, Domagal-Goldman SD et al (2017) Pale orange dots: the impact of organic haze on the habitability and detectability of earthlike exoplanets. Astrophys J 836(1):49

    Article  ADS  Google Scholar 

  • Atri D, Melott AL, Karam A (2014) Biological radiation dose from secondary particles in a Milky Way gamma-ray burst. Int J Astrobiol 13:224–228

    Article  ADS  Google Scholar 

  • Baraffe I, Homeier D, Allard F, Chabrier G (2015) New evolutionary models for pre-main sequence and main sequence low-mass stars down to the hydrogen-burning limit. Astron Astrophys 577:A42

    Article  ADS  Google Scholar 

  • Barnes R (2017) Tidal locking of habitable exoplanets. Celest Mech Dyn Astron 129:509–536

    Article  ADS  MathSciNet  Google Scholar 

  • Barnes R, Raymond SN, Jackson B, Greenberg R (2008) Tides and the evolution of planetary habitability. Astrobiology 8(3):557–568

    Article  ADS  Google Scholar 

  • Barnes R, Jackson B, Greenberg R, Raymond SN (2009) Tidal limits to planetary habitability. Astrophys J Lett 700(1):L30

    Article  ADS  Google Scholar 

  • Barnes R, Raymond SN, Greenberg R, Jackson B, Kaib NA (2010) CoRoT-7b: super-Earth or super-Io? Astrophys J Lett 709(2):L95

    Article  ADS  Google Scholar 

  • Barnes R, Mullins K, Goldblatt C et al (2013) Tidal Venuses: triggering a climate catastrophe via tidal heating. Astrobiology 13(3):225–250

    Article  ADS  Google Scholar 

  • Barnes R, Deitrick R, Luger R et al (2018) The habitability of Proxima Centauri b I: evolutionary scenarios. Astrobiology ArXiv preprint: 1608.06919v2

    Google Scholar 

  • Batalha NM, Borucki WJ, Bryson ST et al (2011) Kepler’s first rocky planet: Kepler-10b. ApJ 729:27

    Article  ADS  Google Scholar 

  • Batygin K, Bodenheimer P, Laughlin G (2009) Determination of the interior structure of transiting planets in multiple-planet systems. ApJ 704:L49–L53

    Article  ADS  Google Scholar 

  • Becker JC, Batygin K (2013) Dynamical measurements of the interior structure of exoplanets. ApJ 778:100

    Article  ADS  Google Scholar 

  • Benedict GF, McArthur BE, Gatewood G et al (2006) The extrasolar planet ε eridani b: orbit and mass. Astron J 132(5):2206

    Article  ADS  Google Scholar 

  • Berger A, Loutre MF, Tricot C (1993) Insolation and Earth’s orbital periods. J Geophys Res Atmos 98(D6):10,341–10,362

    Article  ADS  Google Scholar 

  • Borucki WJ, Koch D, Basri G et al (2010) Kepler planet-detection mission: introduction and first results. Science 327(5968):977–980

    Google Scholar 

  • Brasser R, Ida S, Kokubo E (2014) A dynamical study on the habitability of terrestrial exoplanets – II the super-Earth HD 40307 g. MNRAS 440:3685–3700

    Article  ADS  Google Scholar 

  • Buhler PB, Knutson HA, Batygin K et al (2016) Dynamical constraints on the core mass of hot Jupiter HAT-P-13b. ApJ 821:26

    Article  ADS  Google Scholar 

  • Chassefière E, Leblanc F, Langlais B (2007) The combined effects of escape and magnetic field histories at Mars. Planet Space Sci 55(3):343–357

    Article  ADS  Google Scholar 

  • Cowan NB, Agol E, Meadows VS et al (2009) Alien maps of an ocean-bearing world. Astrophys J 700(2):915

    Article  ADS  Google Scholar 

  • Deck KM, Agol E (2015) Measurement of planet masses with transit timing variations due to synodic “Chopping” effects. ApJ 802:116

    Article  ADS  Google Scholar 

  • Deitrick R, Barnes R, Quinn TR et al (2018) Exo-Milankovitch cycles. I. Orbits and rotation states. AJ 155:60

    Article  ADS  Google Scholar 

  • Demory BO, Gillon M, Barman T et al (2007) Characterization of the hot Neptune GJ 436 b with Spitzer and ground-based observations. Astron Astrophys 475(3):1125–1129

    Article  ADS  Google Scholar 

  • Des Marais DJ, Harwit MO, Jucks KW et al (2002) Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets. Astrobiology 2(2):153–181

    Article  ADS  Google Scholar 

  • Dole SH (1964) Habitable planets for man. Rand Corp., Santa Monica

    Google Scholar 

  • Dorn C, Khan A, Heng K et al (2015) Can we constrain the interior structure of rocky exoplanets from mass and radius measurements? Astron Astrophys 577:A83

    Article  ADS  Google Scholar 

  • Dressing CD, Spiegel DS, Scharf CA, Menou K, Raymond SN (2010) Habitable climates: the influence of eccentricity. Astrophys J 721(2):1295

    Article  ADS  Google Scholar 

  • Driscoll P, Olson P (2011) Optimal dynamos in the cores of terrestrial exoplanets: magnetic field generation and detectability. Icarus 213:12–23

    Article  ADS  Google Scholar 

  • Driscoll P, Bercovici D (2013) Divergent evolution of Earth and Venus: influence of degassing, tectonics, and magnetic fields. Icarus 226:1447–1464

    Article  ADS  Google Scholar 

  • Driscoll P, Bercovici D (2014) On the thermal and magnetic histories of Earth and Venus: influences of melting, radioactivity, and conductivity. Phys Earth Planet Inter 236:36–51

    Article  ADS  Google Scholar 

  • Driscoll PE, Barnes R (2015) Tidal heating of Earth-like exoplanets around M stars: thermal, magnetic, and orbital evolutions. Astrobiology 15:739–760

    Article  ADS  Google Scholar 

  • Egbert GD, Ray RD (2000) Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature 405:775–778

    Article  ADS  Google Scholar 

  • Ferraz-Mello S, Rodríguez A, Hussmann H (2008) Tidal friction in close-in satellites and exoplanets: the Darwin theory re-visited. Celest Mech Dyn Astron 101:171–201

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Frank EA, Meyer BS, Mojzsis SJ (2014) A radiogenic heating evolution model for cosmochemically Earth-like exoplanets. Icarus 243:274–286

    Article  ADS  Google Scholar 

  • Fujii Y, Angerhausen D, Deitrick R et al (2017a) Exoplanet biosignatures: observational prospects. arxiv preprint:170507098

    Google Scholar 

  • Fujii Y, Lustig-Yaeger J, Cowan NB (2017). Rotational Spectral Unmixing of Exoplanets: Degeneracies between Surface Colors and Geography. Astron J 154(5):189

    Article  ADS  Google Scholar 

  • Fulton BJ, Petigura EA, Howard AW et al (2017) The California-Kepler survey. III. A gap in the radius distribution of small planets. ArXiv e-prints

    Article  ADS  Google Scholar 

  • Garcia-Sage K, Glocer A, Drake J, Gronoff G, Cohen O (2017) On the magnetic protection of the atmosphere of proxima centauri b. Astrophys J Lett 844(1):L13

    Article  ADS  Google Scholar 

  • Gehrels N, Laird CM, Jackman CH et al (2003) Ozone depletion from nearby supernovae. ApJ 585:1169–1176

    Article  ADS  Google Scholar 

  • Genda H, Abe Y (2005) Enhanced atmospheric loss on protoplanets at the giant impact phase in the presence of oceans. Nature 433(7028):842–844

    Article  ADS  Google Scholar 

  • Gillon M, Triaud AH, Demory BO et al (2017) Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542(7642):456–460

    Article  ADS  Google Scholar 

  • Gizis JE, Reid IN, Hawley SL (2002) The palomar/msu nearby star spectroscopic survey. III. Chromospheric activity, M dwarf ages, and the local star formation history. Astron J 123(6):3356

    Article  ADS  Google Scholar 

  • Gold T, Soter S (1969) Atmospheric tides and the resonant rotation of Venus. Icarus 11:356–366

    Article  ADS  Google Scholar 

  • Goldblatt C (2016) Comment on long-term climate forcing by atmospheric oxygen concentrations. Science 353:132

    Article  ADS  Google Scholar 

  • Goldreich P (1966) Final spin states of planets and satellites. Astron J 71:1

    Article  ADS  Google Scholar 

  • Gonzalez G, Brownlee D, Ward P (2001) The galactic habitable zone: galactic chemical evolution. Icarus 152:185–200

    Article  ADS  Google Scholar 

  • Green J, Huber M, Waltham D, Buzan J, Wells M (2017) Explicitly modelled deep-time tidal dissipation and its implication for Lunar history. Earth Planet Sci Lett 461:46–53

    Article  ADS  Google Scholar 

  • Grimm SL, Demory BO, Gillon M et al (2018) The nature of the trappist-1 exoplanets. arXiv preprint arXiv:180201377

    Google Scholar 

  • Güdel M (2004) X-ray astronomy of stellar coronae. Astron Astrophys Rev 12(2–3):71–237

    ADS  Google Scholar 

  • Harman CE, Schwieterman EW, Schottelkotte JC, Kasting JF (2015) Abiotic O2 levels on planets around F, G, K, and M stars: possible false positives for life? Astrophys J 812(2):137

    Article  ADS  Google Scholar 

  • Hart MH (1978) The evolution of the atmosphere of the Earth. Icarus 33(1):23–39

    Article  ADS  Google Scholar 

  • Hart MH (1979) Habitable zones about main sequence stars. Icarus 37(1):351–357

    Article  ADS  Google Scholar 

  • Hawley SL, Reid IN, Tourtellot J (2000) Properties of M dwarfs in clusters and the field. In: Rebolo R, Zapatero-Osorio MR (eds) Very low-mass stars and brown dwarfs, Cambridge University Press, p 109

    Google Scholar 

  • Heller R, Leconte J, Barnes R (2011) Tidal obliquity evolution of potentially habitable planets. A&A 528:A27

    Article  ADS  Google Scholar 

  • Henning WG, Hurford T (2014) Tidal heating in multilayered terrestrial exoplanets. ApJ 789:30

    Article  ADS  Google Scholar 

  • Hess S, Zarka P (2011) Modeling the radio signature of the orbital parameters, rotation, and magnetic field of exoplanets. Astron Astrophys 531:A29

    Article  ADS  Google Scholar 

  • Hu Y, Yang J (2014) Role of ocean heat transport in climates of tidally locked exoplanets around M dwarf stars. Proc Natl Acad Sci USA 111(2):629–634

    Article  ADS  Google Scholar 

  • Hunten DM (1973) The escape of light gases from planetary atmospheres. J Atmos Sci 30: 1481–1494

    Article  ADS  Google Scholar 

  • Hunten D, Donahue TM (1976) Hydrogen loss from the terrestrial planets. Annu Rev Earth Planet Sci 4(1):265–292

    Article  ADS  Google Scholar 

  • Hut P (1981) Tidal evolution in close binary systems. Astron Astrophys 99:126–140

    ADS  MATH  Google Scholar 

  • Jackson B, Barnes R, Greenberg R (2008) Tidal heating of terrestrial extrasolar planets and implications for their habitability. MNRAS 391:237–245

    Article  ADS  Google Scholar 

  • Joshi M, Haberle R, Reynolds R (1997) Simulations of the atmospheres of synchronously rotating terrestrial planets orbiting M dwarfs: conditions for atmospheric collapse and the implications for habitability. Icarus 129(2):450–465

    Article  ADS  Google Scholar 

  • Kaib NA, Quinn T et al (2011) Sedna and the Oort cloud around a migrating sun. Icarus 215(2):491–507

    Article  ADS  Google Scholar 

  • Kaib NA, Raymond SN, Duncan M (2013) Planetary system disruption by galactic perturbations to wide binary stars. Nature 493(7432):381–384

    Article  ADS  Google Scholar 

  • Kaltenegger L, Sasselov D (2009) Detecting planetary geochemical cycles on exoplanets: atmospheric signatures and the case of so2. Astrophys J 708(2):1162

    Article  ADS  Google Scholar 

  • Kaltenegger L, Henning W, Sasselov D (2010) Detecting volcanism on extrasolar planets. Astron J 140(5):1370

    Article  ADS  Google Scholar 

  • Kasting JF, Whitmire DP, Reynolds RT (1993) Habitable zones around main sequence stars. Icarus 101:108–128

    Article  ADS  Google Scholar 

  • Katz RF, Spiegelman M, Langmuir CH (2003) A new parameterization of hydrous mantle melting. Geochem Geophys Geosyst 4:1073

    Article  ADS  Google Scholar 

  • Kawahara H, Fujii Y (2010) Global mapping of Earth-like exoplanets from scattered light curves. Astrophys J 720(2):1333

    Article  ADS  Google Scholar 

  • Kinoshita H (1977) Theory of the rotation of the rigid earth. Celest Mech 15:277–326

    Article  ADS  Google Scholar 

  • Kipping DM (2011) Transit timing effects due to an exomoon. In: The transits of extrasolar planets with Moons. Springer, Berlin/Heidelberg, pp 127–164

    Chapter  Google Scholar 

  • Kitzmann D (2016) Revisiting the scattering greenhouse effect of Co2 ice clouds. Astrophys J Lett 817(2):L18

    Article  ADS  Google Scholar 

  • Kivelson M, Khurana K, Coroniti F et al (1997) The magnetic field and magnetosphere of ganymede. Geophys Res Lett 24(17):2155–2158

    Article  ADS  Google Scholar 

  • Kopparapu RK (2013) A revised estimate of the occurrence rate of terrestrial planets in the habitable zones around Kepler M-dwarfs. ApJ 767:L8

    Article  ADS  Google Scholar 

  • Kopparapu RK, Ramirez R, Kasting JF et al (2013) Habitable zones around main-sequence stars: new estimates. Astrophys J 765:16

    Article  Google Scholar 

  • Kopparapu RK, Ramirez RM, SchottelKotte J et al (2014) Habitable zones around main-sequence stars: dependence on planetary mass. Astrophys J 787(2):L29

    Article  ADS  Google Scholar 

  • Kopparapu RK, Wolf ET, Haqq-Misra J et al (2016) The inner edge of the habitable zone for synchronously rotating planets around low-mass stars using general circulation models. Astrophys J 819(1):84

    Article  ADS  Google Scholar 

  • Kopparapu R, Wolf ET, Arney G, Batalha NE, Haqq-Misra J, Grimm SL, Heng K (2017) Habitable Moist Atmospheres on Terrestrial Planets near the Inner Edge of the Habitable Zone around M Dwarfs. Astrophys J 845(1):5

    Article  ADS  Google Scholar 

  • Kraus S, Kreplin A, Fukugawa M et al (2017) Dust-trapping vortices and a potentially planet-triggered spiral wake in the pre-transitional disk of v1247 orionis. Astrophys J Lett 848(1):L11

    Article  ADS  Google Scholar 

  • Lammer H (2012) Origin and evolution of planetary atmospheres: implications for habitability. Springer Science & Business Media, Dordrecht

    Google Scholar 

  • Lammer H, Kasting JF, Chassefière E et al (2008) Atmospheric escape and evolution of terrestrial planets and satellites. Space Sci Rev 139(1–4):399–436

    Article  ADS  Google Scholar 

  • Laskar J, Joutel F, Robutel P (1993) Stabilization of the Earth’s obliquity by the Moon. Nature 361:615–617

    Article  ADS  Google Scholar 

  • Laughlin G, Adams FC (1998) The modification of planetary orbits in dense open clusters. ApJ 508:L171–L174

    Article  ADS  Google Scholar 

  • Leconte J, Forget F, Charnay B, Wordsworth R, Pottier A (2013) Increased insolation threshold for runaway greenhouse processes on Earth-like planets. Nature 504(7479):268–271

    Article  ADS  Google Scholar 

  • Lenardic A, Crowley JW (2012) On the notion of well-defined tectonic regimes for terrestrial planets in this solar system and others. Astrophys J 755(2):132

    Article  ADS  Google Scholar 

  • Lenardic A, Jellinek A, Foley B, O’Neill C, Moore W (2016) Climate-tectonic coupling: variations in the mean, variations about the mean, and variations in mode. J Geophys Res Planets 121(10):1831–1864

    Article  ADS  Google Scholar 

  • Luger R, Barnes R (2015) Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of M dwarfs. Astrobiology 15:119–143

    Article  ADS  Google Scholar 

  • Luger R, Barnes R, Lopez E et al (2015) Habitable evaporated cores: transforming mini-Neptunes into super-Earths in the habitable zones of M dwarfs. Astrobiology 15(1):57

    Article  ADS  Google Scholar 

  • Luger R, Lustig-Yaeger J, Fleming DP et al (2017a) The pale green dot: a method to characterize Proxima Centauri b using exo-aurorae. Astrophys J 837(1):63

    Article  ADS  Google Scholar 

  • Luger R, Sestovic M, Kruse E et al (2017b) A seven-planet resonant chain in TRAPPIST-1. Nat Astron 1:0129

    Article  Google Scholar 

  • Lundin R, Lammer H, Ribas I (2007) Planetary magnetic fields and solar forcing: implications for atmospheric evolution. Space Sci Rev 129(1–3):245–278

    Article  ADS  Google Scholar 

  • Lyons TW, Reinhard CT, Planavsky NJ (2014) The rise of oxygen in Earth/’s early ocean and atmosphere. Nature 506(7488):307–315

    Article  ADS  Google Scholar 

  • Mardling RA (2010) The determination of planetary structure in tidally relaxed inclined systems. MNRAS 407:1048–1069

    Article  ADS  Google Scholar 

  • Mayor M, Queloz D (2012) From 51 peg to Earth-type planets. New Astron Rev 56(1):19–24

    Article  ADS  Google Scholar 

  • Meadows V, Seager S (2010) Terrestrial planet atmospheres and biosignatures. In: Seager S (ed) Exoplanets. University of Arizona Press, Tucson, pp 441–470

    Google Scholar 

  • Meadows VS, Arney GN, Schwieterman EW, Lustig-Yaeger J, Lincowski AP, Robinson T, Domagal-Goldman SD, Deitrick R, Barnes RK, Fleming DP, Luger R (2018) The Habitability of Proxima Centauri b: Environmental States and Observational Discriminants. Astrobiology 18(2):133–189

    Article  ADS  Google Scholar 

  • Melott AL, Lieberman BS, Laird CM et al (2004) Did a gamma-ray burst initiate the late Ordovician mass extinction? Int J Astrobiol 3:55–61

    Article  Google Scholar 

  • Misra A, Meadows V, Claire M, Crisp D (2014) Using dimers to measure biosignatures and atmospheric pressure for terrestrial exoplanets. Astrobiology 14(2):67–86

    Article  ADS  Google Scholar 

  • Misra A, Krissansen-Totton J, Koehler MC, Sholes S (2015) Transient sulfate aerosols as a signature of exoplanet volcanism. Astrobiology 15(6):462–77

    Article  ADS  Google Scholar 

  • Moore WB, Webb AAG (2013) Heat-pipe Earth. Nature 501:501–505

    Article  ADS  Google Scholar 

  • Moore WB, Simon JI, Webb AAG (2017) Heat-pipe planets. Earth Planet Sci Lett 474:13–19

    Article  ADS  Google Scholar 

  • Ness NF (1978) Mercury: magnetic field and interior. Space Sci Rev 21(5):527–553

    Article  ADS  Google Scholar 

  • Nimmo F (2002) Why does Venus lack a magnetic field? Geology 30(11):987–990

    Article  ADS  Google Scholar 

  • Olson P, Christensen UR (2006) Dipole moment scaling for convection-driven planetary dynamos. Earth Planet Sci Lett 250:561–571

    Article  ADS  Google Scholar 

  • Owen JE, Mohanty S (2016) Habitability of terrestrial-mass planets in the HZ of M dwarfs–i. H/He-dominated atmospheres. Mon Not R Astron Soc 459(4):4088–4108

    Article  ADS  Google Scholar 

  • Pepin RO (2006) Atmospheres on the terrestrial planets: clues to origin and evolution. Earth Planet Sci Lett 252(1–2):1–14

    Article  ADS  Google Scholar 

  • Pierrehumbert R, Gaidos E (2011) Hydrogen greenhouse planets beyond the habitable zone. Astrophys J Lett 734(1):L13

    Article  ADS  Google Scholar 

  • Quintana EV, Barclay T, Borucki WJ, Rowe JF, Chambers JE (2016) The frequency of giant impacts on Earth-like worlds. Astrophys J 821(2):126

    Article  ADS  Google Scholar 

  • Rasio FA, Tout CA, Lubow SH, Livio M (1996) Tidal decay of close planetary orbits. ApJ 470:1187

    Article  ADS  Google Scholar 

  • Rauer H, Gebauer S, Paris PV et al (2011) Potential biosignatures in super-Earth atmospheres. I. Spectral appearance of super-Earths around M dwarfs. A&A 529:A8

    Article  ADS  Google Scholar 

  • Raymond SN, Quinn T, Lunine JI (2004) Making other Earths: dynamical simulations of terrestrial planet formation and water delivery. Icarus 168(1):1–17

    Article  ADS  Google Scholar 

  • Raymond SN, Scalo J, Meadows VS (2007) A decreased probability of habitable planet formation around low mass stars. Astrophys J 669(1):606–614

    Article  ADS  Google Scholar 

  • Raymond SN, Barnes R, Mandell AM (2008) Observable consequences of planet formation models in systems with close-in terrestrial planets. Mon Not R Astron Soc 384(2):663–674

    Article  ADS  Google Scholar 

  • Raymond SN, Armitage PJ, Moro-Martin A et al (2012) Debris disks as signposts of terrestrial planet formation II. Dependence of exoplanet architectures on giant planet and disk properties. Astron Astrophys 541:A11

    Article  ADS  Google Scholar 

  • Ribas I, Bolmont E, Selsis F et al (2016) The habitability of Proxima Centauri b. I. Irradiation, rotation and volatile inventory from formation to the present. A&A 596:A111

    Article  ADS  Google Scholar 

  • Robinson TD, Meadows VS, Crisp D (2010) Detecting oceans on extrasolar planets using the glint effect. Astrophys J 721(1):L67–L71

    Article  ADS  Google Scholar 

  • Robinson TD, Ennico K, Meadows VS et al (2014) Detection of ocean glint and ozone absorption using LCROSS Earth observations. Astrophys J 787:171

    Article  ADS  Google Scholar 

  • Rodríguez A, Callegari N, Michtchenko TA, Hussmann H (2012) Spin-orbit coupling for tidally evolving super-Earths. MNRAS 427:2239–2250

    Article  ADS  Google Scholar 

  • Rogers LA (2015) Most 1.6 Earth-radius planets are not rocky. ApJ 801:41

    Article  ADS  Google Scholar 

  • Roškar R, Debattista V, Loebman S, Ivezić Ž, Quinn T (2011) Implications of radial migration for stellar population studies. arXiv preprint arXiv:11011202

    Google Scholar 

  • Roškar R, Debattista VP, Quinn TR, Wadsley J (2012) Radial migration in disc Galaxiesi. Transient spiral structure and dynamics. Mon Not R Astron Soc 426(3):2089–2106

    Article  ADS  Google Scholar 

  • Rugheimer S, Kaltenegger L, Segura A, Linsky J, Mohanty S (2015) Effect of UV radiation on the spectral fingerprints of Earth-like planets orbiting M stars. Astrophys J 809(1):57

    Article  ADS  Google Scholar 

  • Sandu C, Lenardic A, McGovern P (2011) The effects of deep water cycling on planetary thermal evolution. J Geophys Res Solid Earth 116(B12):B12404

    Article  ADS  Google Scholar 

  • Schaefer L, Wordsworth RD, Berta-Thompson Z, Sasselov D (2016) Predictions of the atmospheric composition of GJ 1132b. Astrophys J 829(2):63

    Article  ADS  Google Scholar 

  • Schubert G, Soderlund K (2011) Planetary magnetic fields: observations and models. Phys Earth Planet Inter 187(3–4):92–108

    Article  ADS  Google Scholar 

  • Schwieterman E, Binder B, Tremmel M et al (2015a) Promoting diversity in STEM through active recruiting and mentoring: the pre-major in astronomy program (Pre-MAP) at The University of Washington. In: AAS/division for planetary sciences meeting abstracts, vol 47, p 202.08

    Google Scholar 

  • Schwieterman EW, Robinson TD, Meadows VS, Misra A, Domagal-Goldman S (2015b) Detecting and constraining N2 abundances in planetary atmospheres using collisional pairs. Astrophys J 810(1):57

    Article  ADS  Google Scholar 

  • Segura A, Krelove K, Kasting JF et al (2003) Ozone concentrations and ultraviolet fluxes on Earth-like planets around other stars. Astrobiology 3(4):689–708

    Article  ADS  Google Scholar 

  • Segura A, Kasting JF, Meadows V et al (2005) Biosignatures from Earth-like planets around M dwarfs. Astrobiology 5(6):706–725

    Article  ADS  Google Scholar 

  • Segura A, Walkowicz LM, Meadows V, Kasting J, Hawley S (2010) The effect of a strong stellar flare on the atmospheric chemistry of an Earth-like planet orbiting an M dwarf. Astrobiology 10:751–771

    Article  ADS  Google Scholar 

  • Sellwood JA, Binney JJ (2002) Radial mixing in galactic discs. MNRAS 336:785–796

    Article  ADS  Google Scholar 

  • Shields AL, Meadows VS, Bitz CM et al (2013) The effect of host star spectral energy distribution and ice-Albedo feedback on the climate of extrasolar planets. Astrobiology 13:715–739

    Article  ADS  Google Scholar 

  • Shields AL, Barnes R, Agol E et al (2016) The effect of orbital configuration on the possible climates and habitability of Kepler-62f. Astrobiology 16(6):443–464

    Article  ADS  Google Scholar 

  • Sleep NH, Bird DK, Pope E (2012) Paleontology of Earth’s mantle. Annu Rev Earth Planet Sci 40:277–300

    Article  ADS  Google Scholar 

  • Snellen IA, De Kok RJ, De Mooij EJ, Albrecht S (2010) The orbital motion, absolute mass and high-altitude winds of exoplanet HD 209458b. Nature 465(7301):1049

    Article  ADS  Google Scholar 

  • Solomatov VS, Moresi LN (2000) Scaling of time-dependent stagnant lid convection: application to small-scale convection on Earth and other terrestrial planets. J Geophys Res 105:21795–21818

    Article  ADS  Google Scholar 

  • Spiegel DS, Menou K, Scharf CA (2009) Habitable climates: the influence of obliquity. Astrophys J 691(1):596

    Article  ADS  Google Scholar 

  • Spiegel DS, Raymond SN, Dressing CD, Scharf CA, Mitchell JL (2010) Generalized milankovitch cycles and long-term climatic habitability. Astrophys J 721(2):1308

    Article  ADS  Google Scholar 

  • Spurzem R, Giersz M, Heggie DC, Lin DNC (2009) Dynamics of planetary systems in star clusters. ApJ 697:458–482

    Article  ADS  Google Scholar 

  • Stanley S, Glatzmaier GA (2010) Dynamo models for planets other than Earth. Space Sci Rev 152(1–4):617–649

    Article  ADS  Google Scholar 

  • Stevenson DJ (2010) Planetary magnetic fields: achievements and prospects. Space Sci Rev 152(1–4):651–664

    Article  ADS  Google Scholar 

  • Tinsley BM (1980) Evolution of the stars and gas in galaxies. Fundam Cosm Phys 5:287–388

    ADS  Google Scholar 

  • Turbet M, Leconte J, Selsis F, Bolmont E, Forget F, Ribas I, Raymond SN, Anglada-Escudé G (2016) The habitability of Proxima Centauri b-II. Possible climates and observability. Astron Astrophys 596:A112

    Article  ADS  Google Scholar 

  • Turbet M, Forget F, Head JW, Wordsworth R (2017) 3D modelling of the climatic impact of outflow channel formation events on early Mars. Icarus 288:10–36

    Article  ADS  Google Scholar 

  • Turner G (1989) The outgassing history of the earths atmosphere. J Geol Soc 146(1):147–154

    Article  Google Scholar 

  • Turnpenney S, Nichols JD, Wynn GA, Burleigh MR (2018) Exoplanet-induced radio emission from M-dwarfs. arXiv preprint arXiv:180101324

    Article  ADS  Google Scholar 

  • Unterborn CT, Dismukes EE, Panero WR (2016) Scaling the Earth: a sensitivity analysis of terrestrial exoplanetary interior models. Astrophys J 819(1):32

    Article  ADS  Google Scholar 

  • Vidotto A, Jardine M, Helling C (2011) Transit variability in bow shock-hosting planets. Mon Not R Astron Soc 414(2):1573–1582

    Article  ADS  Google Scholar 

  • Vidotto A, Jardine M, Morin J et al (2013) Effects of M dwarf magnetic fields on potentially habitable planets. Astron Astrophys 557:A67

    Article  ADS  Google Scholar 

  • Walker JC, Hays P, Kasting JF (1981) A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J Geophys Res Oceans 86(C10):9776–9782

    Article  Google Scholar 

  • Watson AJ, Donahue TM, Walker JCG (1981) The dynamics of a rapidly escaping atmosphere – applications to the evolution of Earth and Venus. Icarus 48:150–166

    Article  ADS  Google Scholar 

  • Weiss LM, Marcy GW (2014) The mass-radius relation for 65 exoplanets smaller than 4 Earth radii. ApJ 783:L6

    Article  ADS  Google Scholar 

  • West AA, Basri G (2009) A first look at rotation in inactive late-type M dwarfs. Astrophys J 693(2):1283

    Article  ADS  Google Scholar 

  • West AA, Hawley SL, Bochanski JJ et al (2008) Constraining the age-activity relation for cool stars: the sloan digital sky survey data release 5 low-mass star spectroscopic sample. Astron J 135(3):785

    Article  ADS  Google Scholar 

  • White RJ, Gabor JM, Hillenbrand LA (2007) High-dispersion optical spectra of nearby stars younger than the sun. Astron J 133(6):2524

    Article  ADS  Google Scholar 

  • Wielen R, Fuchs B, Dettbarn C (1996) On the birth-place of the Sun and the places of formation of other nearby stars. A&A 314:438

    ADS  Google Scholar 

  • Williams DM, Pollard D (2002) Earth-like worlds on eccentric orbits: excursions beyond the habitable zone. Int J Astrobiol 1(1):61–69

    Article  Google Scholar 

  • Williams DM, Kasting JF, Wade RA (1997) Habitable Moons around extrasolar giant planets. Nature 385(6613):234

    Article  ADS  Google Scholar 

  • Wolf ET, Toon OB (2015) The evolution of habitable climates under the brightening Sun. J Geophys Res (Atmospheres) 120:5775–5794

    Article  ADS  Google Scholar 

  • Wordsworth R (2015) Atmospheric heat redistribution and collapse on tidally locked rocky planets. Astrophys J 806(2):180

    Article  ADS  Google Scholar 

  • Wordsworth R, Pierrehumbert R (2014) Abiotic oxygen-dominated atmospheres on terrestrial habitable zone planets. Astrophys J 785(2):L20

    Article  ADS  Google Scholar 

  • Yang J, Cowan NB, Abbot DS (2013) Stabilizing cloud feedback dramatically expands the habitable zone of tidally locked planets. ApJ 771:L45

    Article  ADS  Google Scholar 

  • Young PA, Desch SJ, Anbar AD et al (2014) Astrobiological stoichiometry. Astrobiology 14:603–626

    Article  ADS  Google Scholar 

  • Zahnle KJ, Catling DC (2017) The cosmic shoreline: the evidence that escape determines which planets have atmospheres, and what this may mean for Proxima Centauri b. arXiv preprint: 170203386

    Google Scholar 

  • Zarka P (2007) Plasma interactions of exoplanets with their parent star and associated radio emissions. Planet Space Sci 55(5):598–617

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This chapter benefited from discussions with Matt Tilley, Eric Agol, Lucianne Walkowicz, Andrew Lincowski, and the attendees of the NASA Astrobiology Institute “Revisiting the Habitable Zone” workshop. This work was supported by the NASA Astrobiology Institute Virtual Planetary Laboratory Lead Team, funded through the NASA Astrobiology Institute under solicitation NNH12ZDA002C and Cooperative Agreement Number NNA13AA93A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria S. Meadows .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Meadows, V.S., Barnes, R.K. (2018). Factors Affecting Exoplanet Habitability. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-30648-3_57-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30648-3_57-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30648-3

  • Online ISBN: 978-3-319-30648-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics