Skip to main content

Fomalhaut’s Dusty Debris Belt and Eccentric Planet

  • Living reference work entry
  • First Online:
Handbook of Exoplanets
  • 322 Accesses

Abstract

Fomalhaut’s planetary system has been targeted by nearly every major observatory from the ground and from space, engaging the curiosity of observers and theorists alike. Here we briefly review Fomalhaut’s substantial role in the history of debris disk science that ultimately yielded the discovery of a low-mass common proper motion companion called Fomalhaut b (or Dagon). Fomalhaut b is comparable to other extrasolar planets known to have highly eccentric orbits, but it is currently unique among directly imaged planets in that it has only been detected in the optical and only with the Hubble Space Telescope. Its existence has been replicated by three independent studies of the same Hubble data, and its puzzling observational properties remain to be fully explained. The most plausible scenario is that 10–100 Myr-old exoplanets directly imaged many AU from their host star have very large Hill radii, which means that sub-Jupiter mass planets can be discovered via light scattering off sufficiently large and dusty rings and/or shrouds replenished by the collisional erosion of satellites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Acke B, Min M, Dominik C (2012) Herschel images of Fomalhaut. Astron Astrophys 540:A125

    Article  Google Scholar 

  • Aumann HH (1984) Discovery of a shell around Alpha Lyrae. Astrophys J 278:L23–L27

    Article  ADS  Google Scholar 

  • Backman D, Gillett G (1987) Exploiting the infrared: IRAS observations of the main sequence. Cool stars, stellar systems, and the sun: proceedings of the fifth Cambridge workshop on cool stars, stellar systems, and the sun held in Boulder, 7–11 July 1987. In: Linsky JL, Stencel RE (eds) Lecture notes in physics, vol 291. pp 340–350

    Google Scholar 

  • Backman D, Paresce F (1993) Main sequence stars with circumstellar solid material: the Vega phenomenon. In: Levy EH, Lunine JI (eds) Protostars and planets III. University of Arizona Press, Tucson, pp 1253–1304

    Google Scholar 

  • Boley AC, Payne MJ, Corder S, Dent WRF, Ford EB, Shabram M (2012) Constraining the planetary system of Fomalhaut using high-resolution ALMA observations. Astrophys J Lett 750:L21

    Article  ADS  Google Scholar 

  • Currie T, Debes J, Rodigas TJ et al (2012) Direct imaging confirmation and characterization of a dust-enshrouded candidate exoplanet orbiting Fomalhaut b. Astrophys J Lett 760:L32. (6pp)

    Article  ADS  Google Scholar 

  • Dent WRF, Walker HJ, Holland WS, Greaves JS (2000) Models of the dust structures around Vega-excess stars. Mon Not R Astron Soc 314:702–712

    Article  ADS  Google Scholar 

  • Di Folco E, Thevenin F, Kervella P et al (2004) VLTI near-IR interferometric observations of Vega-like stars. Radius and age of α PsA, β Leo, β Pic, ɛ Eri and τ Cet. Astron Astrophys 426:601

    Article  ADS  Google Scholar 

  • Faramaz V, Beust H, Augereau J-C et al (2015) Insights on the dynamical history of the Fomalhaut system: investigating the fom c hypothesis. Astron Astrophys 573:A87

    Article  ADS  Google Scholar 

  • Galicher R, Marois C, Zuckerman B, Macintosh B (2013) Fomalhaut b: independent analysis of the hubble space telescope public archive data. Astrophys J 769:42. (12pp)

    Article  ADS  Google Scholar 

  • Gillett FC (1987) IRAS observations of cool excess around main sequence stars. In: Light on dark matter; Proceedings of the first infra-red astronomical satellite conference, Noordwijk, 10–14 June 1985 (A87-11851 02-90). D. Reidel Publishing Company, Dordrecht, 1986, pp 61–69

    Google Scholar 

  • Greaves JS, Holland WS, Moriarty-Schieven G et al (1998) A dust ring around epsilon Eridani: analog to the young solar system. Astrophys J Lett 506:L133–L137

    Article  ADS  Google Scholar 

  • Holland WS, Greaves JS, Zuckerman B et al (1998) Submillimetre images of dusty debris around nearby stars. Nature 392:788–790

    Article  ADS  Google Scholar 

  • Janson M, Corson JC, Lafreniere D et al (2012) Infrared non-detection of Fomalhaut b: implications for the planet interpretation. ApJ 747:116(7 pp)

    Google Scholar 

  • Kalas P (1998) Links between dust disks and exoplanets. Earth Moon Planet 81:27–34

    Article  ADS  Google Scholar 

  • Kalas P, Graham JR, Clampin M (2005) A planetary system as the origin of structure in Fomalhaut’s dust belt. Nature 435:1067–1070

    Article  ADS  Google Scholar 

  • Kalas P, Graham JR, Chiang E et al (2008) Optical images of an exosolar planet 25 light-years from earth. Science 322:1345–1348

    Google Scholar 

  • Kalas P, Graham JR, Fitzgerald MP, Clampin M (2013) STIS coronagraphic imaging of Fomalhaut: main belt structure and the orbit of Fomalhaut b. Astrophys J 775:56. (31pp)

    Article  ADS  Google Scholar 

  • Kalas P, Rajan A, Wang JJ et al (2015) Direct imaging of an asymmetric debris disk in the HD 106906 planetary system. Astrophys J 814:32. (12pp)

    Article  ADS  Google Scholar 

  • Kennedy GM, Wyatt MC, Su KYL, Stansberry JA (2011) Searching for Saturn's dust swarm: limits on the size distribution of irregular satellites from km to micron sizes. MNRAS 417 2281–2287

    Google Scholar 

  • Kenyon SJ, Currie T, Bromley BC (2014) Fomalhaut b as a cloud of dust: testing aspects of planet formation theory. Astrophys J 785:70. (20pp)

    Article  ADS  Google Scholar 

  • Lawler SM, Greenstreet S, Gladman B (2015) Fomalhaut b as a dust cloud: frequent collisions within the Fomalhaut disk. Astrophys J Lett 802:L20. (5pp)

    Article  ADS  Google Scholar 

  • MacGregor MA, Matra L, Kalas P et al (2017) A complete ALMA map of the Fomalhaut debris disk. Astrophys J 842:9. (11pp)

    Article  ADS  Google Scholar 

  • Mamajek EE (2012) On the age and binarity of Fomalhaut. Astrophys J Lett 754:L20. (5pp)

    Article  ADS  Google Scholar 

  • Matra L, MacGregor MA, Kalas P et al (2017) Detection of exocometary CO within the 440 Myr old Fomalhaut Belt: a similar CO+CO2 ice abundance in exocomets and solar system comets. Astrophys J 842:9. (15pp)

    Article  ADS  Google Scholar 

  • Moro-Martin A, Malhotra R (2002) A study of the dynamics of dust from the Kuiper Belt: spatial distribution and spectral energy distribution. Astron J 124:2305–2321

    Article  ADS  Google Scholar 

  • Ozernoy LM, Gorkavyi NN, Mather JC, Taidakova TA (2000) Signatures of exosolar planets in dust debris disks. Astrophys J Lett 537:L147–L151

    Article  ADS  Google Scholar 

  • Pan M, Nesvold ER, Kuchner MJ (2016) Apocenter glow in eccentric debris disks: implications for Fomalhaut and epsilon Eridani. Astrophys J 832:81. (8pp)

    Article  ADS  Google Scholar 

  • Ricci L, Testi L, Maddison ST, Wilner DJ (2012) Fomalhaut debris disk emission at 7 millimeters: constraints on the collisional models of planetesimals. Astron Astrophys 539:L6

    Article  ADS  Google Scholar 

  • Roques F, Scholl H, Sicardy B, Smith BA (1994) Is there a planet around Beta Pictoris? Perturbations of a planet on a circumstellar disk. Icarus 108:37–58

    Article  ADS  Google Scholar 

  • Smith BA, Terrile RJ (1984) A circumstellar disk around Beta Pictoris. Science 226:1421–1424

    Article  ADS  Google Scholar 

  • Stapelfeldt KR, Holmes EK, Chen C et al (2004) First look at the Fomalhaut debris disk with the Spitzer Space Telescope. Astrophys J Suppl Ser 154:458–462

    Article  ADS  Google Scholar 

  • Su KYL, Rieke GH, Malhotra R (2013) Asteroid belts in the debris disk twins: Vega and Fomalhaut. Astrophys J 763:118. (14pp)

    Article  ADS  Google Scholar 

  • Tamayo D (2014) Consequences of an eccentric orbit for Fomalhaut b. Mon Not R Astron Soc 438:3577–3586

    Article  ADS  Google Scholar 

  • Verbiscer AJ, Skrutskie MF, Hamilton DP (2009) Saturn’s largest ring. Nature 461:1098–1111

    Article  ADS  Google Scholar 

  • White JA, Bokey AC, Dent WRF, Ford EB, Corda S (2017) 1.3 mm ALMA observations of the Fomalhaut debris system. MNRAS 466:4201–4210

    Google Scholar 

  • Wyatt MC (2003) Resonant trapping of planetesimals by planet migration: debris disk clumps and Vega’s similarity to the solar system. Astrophys J 598:1321–1340

    Article  ADS  Google Scholar 

  • Wyatt MC, Dent WRF (2002) Collisional processes in extrasolar planetesimals discs – dust clumps in Fomalhaut’s debris disc. Mon Not R Astron Soc 334:589–607

    Article  ADS  Google Scholar 

  • Wyatt MC et al (1999) How observations of circumstellar disk asymmetries can reveal hidden planets: pericenter glow and its application to the HR 4796 disk. Astrophys J 527:918–944

    Article  ADS  Google Scholar 

  • Zuckerman B, Becklin E (1993) Submillimeter studies of main-sequence stars. Astrophys J 414:793–802

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The author acknowledges support from NASA NNX15AC89G and NNX15AD95G/NEXSS, NSF AST-1518332, and HST-GO-13726. This work benefited from NASA’s Nexus for Exoplanet System Science (NExSS) research coordination network sponsored by NASA’s Science Mission Directorate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul G. Kalas .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Cite this entry

Kalas, P.G. (2018). Fomalhaut’s Dusty Debris Belt and Eccentric Planet. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-30648-3_38-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30648-3_38-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30648-3

  • Online ISBN: 978-3-319-30648-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics