Skip to main content

Proxima b: The Detection of the Earth-Type Planet Candidate Orbiting Our Closest Neighbor

  • Living reference work entry
  • First Online:
Handbook of Exoplanets

Abstract

The detection of Proxima b took 16 years in the making. The planet candidate has a mass similar to our own planet, and it is orbiting Proxima Centauri, a red dwarf in the Alpha Centauri triple system which is also the closest system to the Sun. Proxima b was detected using the radial velocity technique (also known as the Doppler method). Although the technology has been available for almost two decades, improvements in calibration of the instruments and developments of the data-analysis techniques employed were necessary to achieve this goal. In this chapter we first review the basic properties of the star, and we put in context the discovery of the planet in terms of what is known about exoplanet populations around red dwarfs. We also give an overall description of the process and efforts that led to its detection in an historical context. While space-transit photometry has proven to be the most effective method to obtain large statistically significant samples of exoplanets, the requirement of almost perfect alignment of the orbit with the line of sight makes it unlikely that the nearest planets can be detected using this technique. As a result, the radial velocity technique remains the most sensitive one in terms of finding very nearby planets due to its lower sensitivity to the inclination of the orbit. The detection of very nearby planets enables new follow-up opportunities to characterize planetary systems and their environment, ranging from future attempts for direct imaging, characterization of their high-energy radiation environments, and the study of extended structures such as debris disks or asteroid belts. These very nearby planets promise the first chances of characterizing the atmospheres of planets similar to our own and should enable the search for evidence for life beyond the solar system within the next decade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alibert Y, Benz W (2017) Formation and composition of planets around very low mass stars. A&A 598:L5

    Google Scholar 

  • Anglada G, Amado PJ, Ortiz JL et al (2017) ALMA discovery of dust belts around Proxima Centauri. ApJL 850:L6

    Google Scholar 

  • Anglada-Escudé G, Butler RP (2012) The HARPS-TERRA Project. I. Description of the algorithms, performance, and new measurements on a few remarkable stars observed by HARPS. ApJS 200:15

    Google Scholar 

  • Anglada-Escudé G, Tuomi M (2012) A planetary system with gas giants and super-Earths around the nearby M dwarf GJ 676A. Optimizing data analysis techniques for the detection of multi-planetary systems. A&A 548:A58

    Article  ADS  Google Scholar 

  • Anglada-Escudé G, Tuomi M (2015) Comment on ‘Stellar activity masquerading as planets in the habitable zone of the M dwarf Gliese 581’. Science 347:1080

    Article  ADS  Google Scholar 

  • Anglada-Escudé G, Amado PJ, Barnes J et al (2016) A terrestrial planet candidate in a temperate orbit around Proxima Centauri. Nature 536:437–440

    Article  ADS  Google Scholar 

  • Baluev RV (2009) Accounting for velocity jitter in planet search surveys. MNRAS 393:969–978

    Article  ADS  Google Scholar 

  • Barnes R, Deitrick R, Luger R et al (2016) The habitability of Proxima Centauri b I: evolutionary scenarios. ArXiv e-prints, arXiv:1608.06919

    Google Scholar 

  • Benedict GF, McArthur B, Nelan E et al (1998) Proxima Centauri: time-resolved astrometry of a flare site using fnit HSTg fine guidance sensor 3. In: Donahue RA, Bookbinder JA (eds) Cool Stars, Stellar Systems, and the Sun. Astronomical society of the Pacific conference series, vol 154. Astronomical Society of the Pacific, San Francisco, pp 1212

    Google Scholar 

  • Berdiñas ZM, Amado PJ, Anglada-Escudé G, Rodríguez-López C, Barnes J (2016) High-cadence spectroscopy of M dwarfs - I. Analysis of systematic effects in HARPS-N line profile measurements on the bright binary GJ 725A+B. MNRAS 459:3551–3564

    Article  ADS  Google Scholar 

  • Berdiñas ZM, Rodríguez-López C, Amado PJ et al (2017) High-cadence spectroscopy of M-dwarfs - II. Searching for stellar pulsations with HARPS. MNRAS 469:4268–4282

    Google Scholar 

  • Bixel A, Apai D (2017) Probabilistic constraints on the mass and composition of Proxima b. ApJL 836:L31

    Article  ADS  Google Scholar 

  • Bonfils X, Mayor M, Delfosse X et al (2007) The HARPS search for southern extra-solar planets. X. A m sin i =  11 M planet around the nearby spotted M dwarf <ASTROBJ>GJ 674</ASTROBJ>. A&A 474:293–299

    Article  ADS  Google Scholar 

  • Bonfils X, Delfosse X, Udry S et al (2013) The HARPS search for southern extra-solar planets. XXXI. The M-dwarf sample. A&A 549:A109

    Google Scholar 

  • Bonfils X, Astudillo-Defru N, Díaz R et al (2017) A temperate exo-Earth around a quiet M dwarf at 3.4 parsecs. ArXiv e-prints, arXiv:1711.06177

    Google Scholar 

  • Borucki WJ, Koch D, Basri G et al (2010) Kepler planet-detection mission: introduction and first results. Science 327:977

    Article  ADS  Google Scholar 

  • Boutle IA, Mayne NJ, Drummond B et al (2017) Exploring the climate of Proxima B with the met office unified model. A&A 601:A120

    Article  ADS  Google Scholar 

  • Butler RP, Marcy GW, Williams E et al (1996) Attaining doppler precision of 3 M s-1. PASP 108:500

    Article  ADS  Google Scholar 

  • Cantrell JR, Henry TJ, White RJ (2013) The solar neighborhood XXIX: the habitable real estate of our nearest stellar neighbors. AJ 146:99

    Article  ADS  Google Scholar 

  • Coleman GAL, Nelson RP, Paardekooper SJ et al (2017) Photometry of Proxima Centauri and Barnard’s star using hubble space telescope fine guidance sensor 3: a search for periodic variations. MNRAS 467:996–1007

    Article  ADS  Google Scholar 

  • Damasso M, Del Sordo F (2017) Proxima Centauri reloaded: unravelling the stellar noise in radial velocities. A&A 599:A126

    Article  ADS  Google Scholar 

  • Davenport JRA, Kipping DM, Sasselov D, Matthews JM, Cameron C (2016) MOST observations of our nearest neighbor: flares on Proxima Centauri. ApJL 829:L31

    Article  ADS  Google Scholar 

  • Dawson RI, Fabrycky DC (2010) Radial velocity planets De-aliased: a new, short period for super-Earth 55 Cnc e. ApJ 722:937–953

    Article  ADS  Google Scholar 

  • de Meulenaer P, Carrier F, Miglio A et al (2010) Core properties of Centauri A using Asteroseismology. A&A 523:A54

    Article  ADS  Google Scholar 

  • de Wit J, Wakeford HR, Gillon M et al (2016) A combined transmission spectrum of the Earth-sized exoplanets TRAPPIST-1 b and c. Nature 537:69–72

    Article  ADS  Google Scholar 

  • Delfosse X, Forveille T, Ségransan D et al (2000) Accurate masses of very low mass stars. IV. Improved mass-luminosity relations. A&A 364:217–224

    Google Scholar 

  • Demory B-O, Ségransan D, Forveille T et al (2009) Mass-radius relation of low and very low-mass stars revisited with the VLTI. A&A 505:205–215

    Article  ADS  Google Scholar 

  • Dittmann JA, Irwin JM, Charbonneau D et al (2017) A temperate rocky super-Earth transiting a nearby cool star. Nature 544:333–336

    Article  ADS  Google Scholar 

  • Dressing CD, Charbonneau D (2015) The occurrence of potentially habitable planets orbiting M dwarfs estimated from the full Kepler dataset and an empirical measurement of the detection sensitivity. ApJ 807:45

    Article  ADS  Google Scholar 

  • Dressing CD, Charbonneau, D., Dumusque, X et al (2015) The mass of Kepler-93b and the composition of terrestrial planets. ApJ 800:135

    Article  ADS  Google Scholar 

  • Endl M, Kürster M (2008) Toward detection of terrestrial planets in the habitable zone of our closest neighbor: Proxima Centauri. A&A 488:1149–1153

    Article  ADS  Google Scholar 

  • Fabrycky DC, Lissauer JJ, Ragozzine D et al (2014) Architecture of Kepler’s multi-transiting systems. II. New investigations with twice as many candidates. ApJ 790:146

    Article  ADS  Google Scholar 

  • Garcia-Sage K, Glocer A, Drake JJ, Gronoff G, Cohen O (2017) On the magnetic protection of the atmosphere of Proxima Centauri b. ApJL 844:L13

    Article  ADS  Google Scholar 

  • Gillon M, Triaud AHMJ, Demory B-O et al (2017) Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542:456–460

    Article  ADS  Google Scholar 

  • Güdel M, Audard M, Kashyap VL, Drake JJ, Guinan EF (2003) Are Coronae of magnetically active stars heated by flares? II. Extreme ultraviolet and X-Ray flare statistics and the differential emission measure distribution. ApJ 582:423–442

    Google Scholar 

  • Heller R, Hippke M, Kervella P (2017) Optimized trajectories to the nearest stars using lightweight high-velocity photon sails. AJ 154:115

    Article  ADS  Google Scholar 

  • Howard AW, Marcy GW, Johnson JA et al (2010) The occurrence and mass distribution of close-in super-Earths, Neptunes, and Jupiters. Science 330:653

    Article  ADS  Google Scholar 

  • Kervella P, Thévenin F, Lovis C (2017) Proxima’s orbit around Centauri. A&A 598:L7

    Article  ADS  Google Scholar 

  • Kipping DM, Cameron C, Hartman JD et al (2017) No conclusive evidence for transits of Proxima b in MOST photometry. AJ 153:93

    Article  ADS  Google Scholar 

  • Kreidberg L, Loeb A (2016) Prospects for characterizing the atmosphere of Proxima Centauri b. ApJL 832:L12

    Article  ADS  Google Scholar 

  • Léger A, Rouan D, Schneider J et al (2009) Transiting exoplanets from the CoRoT space mission. VIII. CoRoT-7b: the first super-Earth with measured radius. A&A 506:287–302

    Article  ADS  Google Scholar 

  • Liu H-G, Jiang P, Huang X et al (2017) Searching for the transit of the Earth-mass exoplanet Proxima Centauri b in Antarctica: preliminary result. ArXiv e-prints, arXiv:1711.07018

    Google Scholar 

  • Lovis C, Mayor M, Pepe F et al (2006) An extrasolar planetary system with three Neptune-mass planets. Nature 441:305–309

    Article  ADS  Google Scholar 

  • Lovis C, Snellen I, Mouillet D et al (2017) Atmospheric characterization of Proxima b by coupling the SPHERE high-contrast imager to the ESPRESSO spectrograph. A&A 599:A16

    Article  ADS  Google Scholar 

  • Lubin P (2016) A roadmap to interstellar flight. ArXiv e-prints, arXiv:1604.01356

    Google Scholar 

  • Marcy GW, Isaacson H, Howard AW et al (2014) Masses, radii, and orbits of small Kepler planets: the transition from gaseous to Rocky Planets. ApJS 210:20

    Article  ADS  Google Scholar 

  • Mayor M, Bonfils X, Forveille T et al (2009) The HARPS search for Southern extra-solar planets. XVIII. An Earth-mass planet in the GJ 581 planetary system. A&A 507:487–494

    Article  ADS  Google Scholar 

  • Mayor M, Marmier M, Lovis C et al (2011) The HARPS search for Southern extra-solar planets XXXIV. Occurrence, mass distribution and orbital properties of super-Earths and Neptune-mass planets. arXiv:1109.2497

    Google Scholar 

  • Mesa D, Zurlo A, Milli J et al (2017) Upper limits for mass and radius of objects around Proxima Cen from SPHERE/VLT. MNRAS 466:L118–L122

    Article  ADS  Google Scholar 

  • Neves V, Bonfils X, Santos NC et al (2014) Metallicity of M dwarfs. IV. A high-precision [Fe/H] and Teff technique from high-resolution optical spectra for M dwarfs. A&A 568:A121

    Google Scholar 

  • Pojmanski G (2002) The all sky automated survey. Catalog of variable stars. I. 0 h - 6 hQuarter of the Southern hemisphere. AcA 52:397–427

    ADS  Google Scholar 

  • Reiners A, Basri G (2008) The moderate magnetic field of the flare star Proxima Centauri. A&A 489:L45–L48

    Article  ADS  Google Scholar 

  • Ribas I, Gregg MD, Boyajian TS, Bolmont E (2017) The full spectral radiative properties of Proxima Centauri. A&A 603:A58

    Article  ADS  Google Scholar 

  • Ribas I, Bolmont E, Selsis F et al (2016) The habitability of Proxima Centauri b. I. Irradiation, rotation and volatile inventory from formation to the present. A&A 596:A111

    Google Scholar 

  • Robertson P, Mahadevan S, Endl M, Roy A (2014) Stellar activity masquerading as planets in the habitable zone of the M dwarf Gliese 581. Science 345:440–444

    Article  ADS  Google Scholar 

  • Rodríguez E, Rodríguez-López C, López-González MJ et al (2016) Search for pulsations in M dwarfs in the Kepler short-cadence data base. MNRAS 457:1851–1863

    Article  ADS  Google Scholar 

  • Rogers LA (2015) Most 1.6 Earth-radius planets are not Rocky. ApJ 801:41

    Article  ADS  Google Scholar 

  • Salaris M, Girardi L (2005) Tip of the red giant branch distances to galaxies with composite stellar populations. MNRAS 357:669–678

    Article  ADS  Google Scholar 

  • Schroeder DJ, Golimowski DA, Brukardt RA et al (2000) A search for faint companions to nearby stars using the wide field planetary camera 2. AJ 119:906–922

    Article  ADS  Google Scholar 

  • Snellen I, de Kok R, Birkby JL et al (2015) Combining high-dispersion spectroscopy with high contrast imaging: probing rocky planets around our nearest neighbors. A&A 576:A59

    Article  ADS  Google Scholar 

  • Snellen IAG, Désert J-M, Waters LBFM et al (2017) Detecting Proxima b’s atmosphere with JWST targeting CO2 at 15 m using a high-pass spectral filtering technique. AJ 154:77

    Article  ADS  Google Scholar 

  • Thévenin F, Provost J, Morel P et al (2002) Asteroseismology and calibration of alpha Cen binary system. A&A 392:L9–L12

    Article  ADS  Google Scholar 

  • Tuomi M (2011) Bayesian re-analysis of the radial velocities of Gliese 581. Evidence in favour of only four planetary companions. A&A 528:L5

    Article  ADS  Google Scholar 

  • Tuomi M (2016) Phys Today. https://doi.org/10.1063/PT.5.2048

  • Tuomi M, Jones HRA, Barnes JR, Anglada-Escudé G, Jenkins JS (2014) Bayesian search for low-mass planets around nearby M dwarfs - estimates for occurrence rate based on global detectability statistics. MNRAS 441:1545–1569

    Article  ADS  Google Scholar 

  • Turbet M, Leconte J, Selsis F et al (2016) The habitability of Proxima Centauri b. II. Possible climates and observability. A&A 596:A112

    Google Scholar 

  • Zechmeister M, Kürster M, Endl M (2009) The M dwarf planet search programme at the ESO VLT + UVES. A search for terrestrial planets in the habitable zone of M dwarfs. A&A 505:859–871

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillem Anglada-Escudé .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Anglada-Escudé, G., Tuomi, M., Ribas, I., Reiners, A., Amado, P.J., Anglada, G. (2018). Proxima b: The Detection of the Earth-Type Planet Candidate Orbiting Our Closest Neighbor. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-30648-3_31-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30648-3_31-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30648-3

  • Online ISBN: 978-3-319-30648-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics