Advertisement

Characterizing Host Stars using Asteroseismology

  • Mia Sloth Lundkvist
  • Daniel Huber
  • Victor Silva Aguirre
  • William J. Chaplin
Living reference work entry

Abstract

The last decade has seen a revolution in the field of asteroseismology – the study of stellar pulsations. It has become a powerful method to precisely characterize exoplanet host stars and as a consequence also the exoplanets themselves. This synergy between asteroseismology and exoplanet science has flourished in large part due to space missions such as Kepler, which have provided high-quality data that can be used for both types of studies. Perhaps the primary contribution from asteroseismology to the research on transiting exoplanets is the determination of very precise stellar radii that translate into precise planetary radii, but asteroseismology has also proven useful in constraining eccentricities of exoplanets as well as the dynamical architecture of planetary systems. In this chapter, we introduce some basic principles of asteroseismology and review current synergies between the two fields.

Notes

Acknowledgements

The authors would like to thank Vincent Van Eylen, Carolina von Essen, and Mikkel S. Lund for providing figures for this manuscript. Funding for the Stellar Astrophysics Centre is provided by the Danish National Research Foundation (Grant DNRF106). M.S.L. is supported by the Independent Research Fund Denmark’s Sapere Aude program (Grant agreement no.: DFF5051-00130). D.H. acknowledges support by the National Aeronautics and Space Administration under Grant NNX14AB92G issued through the Kepler Participating Scientist Program. V.S.A. acknowledges support from the Villum Foundation (Research grant 10118). W.J.C. acknowledges support from the UK Science, Technology and Facilities Council (STFC).

References

  1. Aerts C, Christensen-Dalsgaard J, Kurtz DW (2010) Asteroseismology, SpringerGoogle Scholar
  2. Albrecht S, Winn JN, Johnson JA et al (2012) Obliquities of hot Jupiter host stars: evidence for tidal interactions and primordial misalignments. ApJ 757:18ADSCrossRefGoogle Scholar
  3. Albrecht S, Winn JN, Marcy GW et al (2013) Low stellar obliquities in compact multiplanet systems. ApJ 771:11ADSCrossRefGoogle Scholar
  4. Ball WH, Gizon L (2014) A new correction of stellar oscillation frequencies for near-surface effects. A&A 568:A123ADSCrossRefGoogle Scholar
  5. Ballard S, Chaplin WJ, Charbonneau D et al (2014) Kepler-93b: a terrestrial world measured to within 120 km, and a test case for a new spitzer observing mode. ApJ 790:12ADSCrossRefGoogle Scholar
  6. Barclay T, Huber D, Rowe JF et al (2012) Photometrically derived masses and radii of the planet and star in the TrES-2 system. ApJ 761:53ADSCrossRefGoogle Scholar
  7. Batalha NM, Rowe JF, Bryson ST et al (2013) Planetary candidates observed by Kepler. III. Analysis of the first 16 months of data. ApJS 204:24Google Scholar
  8. Bedding TR (2014) Solar-like oscillations: an observational perspective, In: Pallé PL, Esteban C (eds) Asteroseismology, Cambridge University Press p 60Google Scholar
  9. Bedding TR, Kjeldsen H (2010) Scaled oscillation frequencies and échelle diagrams as a tool for comparative asteroseismology. Commun Asteroseismol 161:3–15ADSCrossRefGoogle Scholar
  10. Bedding TR, Kjeldsen H, Butler RP et al (2004) Oscillation frequencies and mode lifetimes in α centauri A. ApJ 614:380–385ADSCrossRefGoogle Scholar
  11. Belkacem K, Goupil MJ, Dupret MA et al (2011) The underlying physical meaning of the ν maxν c relation. A&A 530:A142ADSCrossRefGoogle Scholar
  12. Benomar O, Masuda K, Shibahashi H, Suto Y (2014) Determination of three-dimensional spin-orbit angle with joint analysis of asteroseismology, transit lightcurve, and the Rossiter-McLaughlin effect: cases of HAT-P-7 and Kepler-25. PASJ 66:94ADSCrossRefGoogle Scholar
  13. Borucki WJ, Koch DG, Basri G et al (2011) Characteristics of planetary candidates observed by Kepler. II. Analysis of the first four months of data. ApJ 736:19Google Scholar
  14. Bouchy F, Carrier F (2001) P-mode observations on α Cen A. A&A 374:L5–L8ADSCrossRefGoogle Scholar
  15. Boué G, Fabrycky DC (2014) Compact planetary systems perturbed by an inclined companion. II. Stellar spin-orbit evolution. ApJ 789:111ADSCrossRefGoogle Scholar
  16. Brogaard K, VandenBerg DA, Bruntt H et al (2012) Age and helium content of the open cluster NGC 6791 from multiple eclipsing binary members. II. Age dependencies and new insights. A&A 543:A106ADSCrossRefGoogle Scholar
  17. Brown TM, Gilliland RL, Noyes RW, Ramsey LW (1991) Detection of possible p-mode oscillations on Procyon. ApJ 368:599–609ADSCrossRefGoogle Scholar
  18. Campante TL, Barclay T, Swift JJ et al (2015) An ancient extrasolar system with five sub-Earth-size planets. ApJ 799:170ADSCrossRefGoogle Scholar
  19. Campante TL, Lund MN, Kuszlewicz JS et al (2016) Spin-orbit alignment of exoplanet systems: ensemble analysis using asteroseismology. ApJ 819:85ADSCrossRefGoogle Scholar
  20. Chaplin WJ, Miglio A (2013) Asteroseismology of solar-type and red-giant stars. ARA&A 51:353–392ADSCrossRefGoogle Scholar
  21. Chaplin WJ, Sanchis-Ojeda R, Campante TL et al (2013) Asteroseismic determination of obliquities of the exoplanet systems Kepler-50 and Kepler-65. ApJ 766:101ADSCrossRefGoogle Scholar
  22. Chaplin WJ, Basu S, Huber D et al (2014) Asteroseismic fundamental properties of solar-type stars observed by the NASA Kepler mission. ApJS 210:1ADSCrossRefGoogle Scholar
  23. Christensen-Dalsgaard J, Kjeldsen H, Brown TM et al (2010) Asteroseismic investigation of known planet hosts in the Kepler field. ApJ 713:L164–L168ADSCrossRefGoogle Scholar
  24. Davies GR, Chaplin WJ, Farr WM et al (2015) Asteroseismic inference on rotation, gyrochronology and planetary system dynamics of 16 Cygni. MNRAS 446:2959–2966ADSCrossRefGoogle Scholar
  25. Dupuy TJ, Kratter KM, Kraus AL et al (2016) Orbital architectures of planet-hosting binaries. I. Forming five small planets in the truncated disk of Kepler-444A. ApJ 817:80ADSCrossRefGoogle Scholar
  26. Epstein CR, Elsworth YP, Johnson JA et al (2014) Testing the asteroseismic mass scale using metal-poor stars characterized with APOGEE and Kepler. ApJ 785:L28ADSCrossRefGoogle Scholar
  27. Fabrycky DC, Winn JN (2009) Exoplanetary spin-orbit alignment: results from the ensemble of Rossiter-McLaughlin observations. ApJ 696:1230–1240ADSCrossRefGoogle Scholar
  28. Fogtmann-Schulz A, Hinrup B, Van Eylen V et al (2014) Accurate parameters of the oldest known rocky-exoplanet hosting system: Kepler-10 revisited. ApJ 781:67ADSCrossRefGoogle Scholar
  29. Frandsen S, Lehmann H, Hekker S et al (2013) KIC 8410637: a 408-day period eclipsing binary containing a pulsating giant star. A&A 556:A138ADSCrossRefGoogle Scholar
  30. Fulton BJ, Petigura EA, Howard AW et al (2017) The California-Kepler survey. III. A gap in the radius distribution of small planets. AJ 154:109ADSCrossRefGoogle Scholar
  31. Gaudi BS, Stassun KG, Collins KA et al (2017) A giant planet undergoing extreme-ultraviolet irradiation by its hot massive-star host. Nature 546:514–518ADSGoogle Scholar
  32. Gaulme P, McKeever J, Jackiewicz J et al (2016) Testing the asteroseismic scaling relations for red giants with eclipsing binaries observed by Kepler. ApJ 832:121ADSCrossRefGoogle Scholar
  33. Gilliland RL, McCullough PR, Nelan EP et al (2011) Asteroseismology of the transiting exoplanet host HD 17156 with hubble space telescope fine guidance sensor. ApJ 726:2ADSCrossRefGoogle Scholar
  34. Gizon L, Solanki SK (2003) Determining the inclination of the rotation axis of a Sun-like star. ApJ 589:1009–1019ADSCrossRefGoogle Scholar
  35. Grec G, Fossat E, Pomerantz MA (1983) Full-disk observations of solar oscillations from the geographic South pole – latest results. Sol Phys 82:55–66ADSCrossRefGoogle Scholar
  36. Guggenberger E, Hekker S, Basu S, Bellinger E (2016) Significantly improving stellar mass and radius estimates: a new reference function for the Δν scaling relation. MNRAS 460:4277–4281ADSCrossRefGoogle Scholar
  37. Hadden S, Lithwick Y (2014) Densities and eccentricities of 139 Kepler planets from transit time variations. ApJ 787:80ADSCrossRefGoogle Scholar
  38. Hadden S, Lithwick Y (2017) Kepler planet masses and eccentricities from TTV analysis. AJ 154:5ADSCrossRefGoogle Scholar
  39. Handler G (2013) Asteroseismology. Springer, Dordrecht, p 207Google Scholar
  40. Huber D (2015) Asteroseismology of eclipsing binary stars. In: Ake TB, Griffin E (eds) Giants of eclipse: the zeta Aurigae stars and other binary systems, astrophysics and space science library, vol 408, p 169. https://doi.org/10.1007/978-3-319-09198-3_7 Google Scholar
  41. Huber D (2018) Synergies between asteroseismology and exoplanetary science. Asteroseismol Exoplanets Listening Stars Searching New Worlds 49:119ADSCrossRefGoogle Scholar
  42. Huber D, Ireland MJ, Bedding TR et al (2012a) Fundamental properties of stars using asteroseismology from Kepler and CoRoT and interferometry from the CHARA array. ApJ 760:32ADSCrossRefGoogle Scholar
  43. Huber D, Ireland MJ, Bedding TR et al (2012b) Validation of the exoplanet Kepler-21b using PAVO/CHARA long-baseline interferometry. MNRAS 423:L16–L20ADSCrossRefGoogle Scholar
  44. Huber D, Carter JA, Barbieri M et al (2013a) Stellar spin-orbit misalignment in a multiplanet system. Science 342:331–334ADSCrossRefGoogle Scholar
  45. Huber D, Chaplin WJ, Christensen-Dalsgaard J et al (2013b) Fundamental properties of Kepler planet-candidate host stars using asteroseismology. ApJ 767:127ADSCrossRefGoogle Scholar
  46. Huber D, Bryson ST, Haas MR et al (2017) The K2 ecliptic plane input catalog (EPIC) and stellar classifications of 138,600 targets in campaigns 1-8. ApJ 224:2CrossRefGoogle Scholar
  47. Jenkins JM, Twicken JD, Batalha NM et al (2015) Discovery and validation of Kepler-452b: a 1.6 R super Earth exoplanet in the habitable zone of a G2 star. AJ 150:56ADSCrossRefGoogle Scholar
  48. Johnson JA, Huber D, Boyajian T et al (2014) The physical parameters of the retired a star HD 185351. ApJ 794:15ADSCrossRefGoogle Scholar
  49. Kipping DM (2010) Investigations of approximate expressions for the transit duration. MNRAS 407:301–313ADSCrossRefGoogle Scholar
  50. Kjeldsen H, Bedding TR (1995) Amplitudes of stellar oscillations: the implications for asteroseismology. A&A 293:87–106ADSGoogle Scholar
  51. Kjeldsen H, Bedding TR, Christensen-Dalsgaard J (2008) Correcting stellar oscillation frequencies for near-surface effects. ApJ 683:L175ADSCrossRefGoogle Scholar
  52. Latham DW, Rowe JF, Quinn SN et al (2011) A first comparison of Kepler planet candidates in single and multiple systems. ApJ 732:L24ADSCrossRefGoogle Scholar
  53. Li G, Naoz S, Valsecchi F, Johnson JA, Rasio FA (2014) The dynamics of the multi-planet system orbiting Kepler-56. ApJ 794:131ADSCrossRefGoogle Scholar
  54. Lissauer JJ, Marcy GW, Rowe JF et al (2012) Almost all of Kepler’s multiple-planet candidates are planets. ApJ 750:112ADSCrossRefGoogle Scholar
  55. Lopez ED (2017) Born dry in the photoevaporation desert: Kepler’s ultra-short-period planets formed water-poor. MNRAS 472:245–253ADSCrossRefGoogle Scholar
  56. Lopez ED, Fortney JJ (2013) The role of core mass in controlling evaporation: the Kepler radius distribution and the Kepler-36 density dichotomy. ApJ 776:2ADSCrossRefGoogle Scholar
  57. Lopez ED, Rice K (2016) Predictions for the period dependence of the transition between rocky super-Earths and gaseous sub-Neptunes and implications for η_⊕. ArXiv e-prints: 1610.09390Google Scholar
  58. Lund MN, Lundkvist M, Silva Aguirre V et al (2014) Asteroseismic inference on the spin-orbit misalignment and stellar parameters of HAT-P-7. A&A 570:A54ADSCrossRefGoogle Scholar
  59. Lundkvist MS (2015) Asteroseismology of solar-like stars – exoplanet hosts in the Kepler era. PhD thesis, Stellar Astrophysics Centre, Aarhus UniversityGoogle Scholar
  60. Lundkvist MS, Kjeldsen H, Albrecht S et al (2016) Hot super-Earths stripped by their host stars. Nat Commun 7:11201ADSCrossRefGoogle Scholar
  61. Marcy GW, Isaacson H, Howard AW et al (2014) Masses, radii, and orbits of small Kepler planets: the transition from gaseous to rocky planets. ApJS 210:20ADSCrossRefGoogle Scholar
  62. Marois C, Zuckerman B, Konopacky QM, Macintosh B, Barman T (2010) Images of a fourth planet orbiting HR 8799. Nature 468:1080–1083ADSCrossRefGoogle Scholar
  63. Mazumdar A, Monteiro MJPFG, Ballot J et al (2014) Measurement of acoustic glitches in solar-type stars from oscillation frequencies observed by Kepler. ApJ 782(1):18ADSCrossRefGoogle Scholar
  64. Metcalfe TS, Creevey OL, Doğan G et al (2014) Properties of 42 solar-type Kepler targets from the Asteroseismic modeling portal. ApJS 214:27ADSCrossRefGoogle Scholar
  65. Miglio A (2012) Asteroseismology of red giants as a tool for studying stellar populations: first steps. In: Miglio A, Montalbán J, Noels A (eds) Red giants as probes of the structure and evolution of the Milky Way. ApSS proceedings. Springer, BerlinCrossRefGoogle Scholar
  66. Miglio A, Chaplin WJ, Brogaard K et al (2016) Detection of solar-like oscillations in relics of the Milky Way: asteroseismology of K giants in M4 using data from the NASA K2 mission. MNRAS 461:760–765ADSCrossRefGoogle Scholar
  67. Mosser B, Michel E, Belkacem K et al (2013) Asymptotic and measured large frequency separations. A&A 550:A126ADSCrossRefGoogle Scholar
  68. Murphy SJ, Bedding TR, Shibahashi H (2016) A planet in an 840 day orbit around a Kepler main-sequence a star found from phase modulation of its pulsations. ApJ 827:L17ADSCrossRefGoogle Scholar
  69. Murphy SJ, Moe M, Kurtz DW et al (2017) Finding binaries from phase modulation of pulsating stars with Kepler: V. Orbital parameters, with eccentricity and mass-ratio distributions of 341 new binaries. MNRAS 474:4322–4346ADSCrossRefGoogle Scholar
  70. Narita N, Sato B, Hirano T, Tamura M (2009) First evidence of a retrograde orbit of a transiting exoplanet HAT-P-7b. PASJ 61:L35–L40ADSCrossRefGoogle Scholar
  71. Nutzman P, Gilliland RL, McCullough PR et al (2011) Precise estimates of the physical parameters for the exoplanet system HD 17156 enabled by hubble space telescope fine guidance sensor transit and asteroseismic observations. ApJ 726:3ADSCrossRefGoogle Scholar
  72. Otor OJ, Montet BT, Johnson JA et al (2016) The orbit and mass of the third planet in the Kepler-56 system. AJ 152:165ADSCrossRefGoogle Scholar
  73. Owen JE, Wu Y (2013) Kepler planets: a tale of evaporation. ApJ 775:105ADSCrossRefGoogle Scholar
  74. Pamyatnykh AA (2000) Pulsational instability domain of δ scuti variables. In: Breger M, Montgomery M (eds) Delta scuti and related stars, astronomical society of the Pacific conference series, vol 210, p 215Google Scholar
  75. Petigura EA, Howard AW, Marcy GW et al (2017) The California-Kepler survey. I. High-resolution spectroscopy of 1305 stars hosting Kepler transiting planets. AJ 154:107ADSCrossRefGoogle Scholar
  76. Pietrinferni A, Cassisi S, Salaris M, Castelli F (2004) A large stellar evolution database for population synthesis studies. I. Scaled solar models and isochrones. ApJ 612:168–190Google Scholar
  77. Quinn SN, White TR, Latham DW et al (2015) Kepler-432: a red giant interacting with one of its two long-period giant planets. ApJ 803:49ADSCrossRefGoogle Scholar
  78. Rogers LA (2015) Most 1.6 Earth-radius planets are not rocky. ApJ 801:41ADSCrossRefGoogle Scholar
  79. Roxburgh IW, Vorontsov SV (2003) The ratio of small to large separations of acoustic oscillations as a diagnostic of the interior of solar-like stars. A&A 411:215–220ADSCrossRefGoogle Scholar
  80. Sandford E, Kipping D (2017) Know the planet, know the star: precise stellar densities from Kepler transit light curves. AJ 154:228ADSCrossRefGoogle Scholar
  81. Seager S, Mallén-Ornelas G (2003) A unique solution of planet and star parameters from an extrasolar planet transit light curve. ApJ 585:1038–1055ADSCrossRefGoogle Scholar
  82. Sharma S, Stello D, Bland-Hawthorn J, Huber D, Bedding TR (2016) Stellar population synthesis based modeling of the milky way using asteroseismology of 13,000 Kepler red giants. ApJ 822:15ADSCrossRefGoogle Scholar
  83. Silva Aguirre V, Ballot J, Serenelli AM, Weiss A (2011) Constraining mixing processes in stellar cores using asteroseismology. Impact of semiconvection in low-mass stars. A&A 529:63ADSCrossRefGoogle Scholar
  84. Silva Aguirre V, Casagrande L, Basu S et al (2012) Verifying asteroseismically determined parameters of Kepler stars using Hipparcos parallaxes: self-consistent stellar properties and distances. ApJ 757:99ADSCrossRefGoogle Scholar
  85. Silva Aguirre V, Davies GR, Basu S et al (2015) Ages and fundamental properties of Kepler exoplanet host stars from asteroseismology. MNRAS 452:2127–2148ADSCrossRefGoogle Scholar
  86. Silva Aguirre V, Lund MN, Antia HM et al (2017) Standing on the shoulders of dwarfs: the Kepler asteroseismic LEGACY sample. II. Radii, masses, and ages. ApJ 835:173Google Scholar
  87. Sliski DH, Kipping DM (2014) A high false positive rate for Kepler planetary candidates of giant stars using asterodensity profiling. ApJ 788:148ADSCrossRefGoogle Scholar
  88. Sonoi T, Samadi R, Belkacem K et al (2015) Surface-effect corrections for solar-like oscillations using 3D hydrodynamical simulations. I. Adiabatic oscillations. A&A 583:A112Google Scholar
  89. Southworth J (2011) Homogeneous studies of transiting extrasolar planets – IV. Thirty systems with space-based light curves. MNRAS 417:2166–2196Google Scholar
  90. Southworth J (2012) Homogeneous studies of transiting extrasolar planets – V. New results for 38 planets. MNRAS 426:1291–1323ADSCrossRefGoogle Scholar
  91. Stello D, Chaplin WJ, Basu S, Elsworth Y, Bedding TR (2009) The relation between Δν and ν max for solar-like oscillations. MNRAS 400:L80–L84ADSCrossRefGoogle Scholar
  92. Tassoul M (1980) Asymptotic approximations for stellar nonradial pulsations. ApJS 43:469–490ADSCrossRefGoogle Scholar
  93. Ulrich RK (1986) Determination of stellar ages from asteroseismology. ApJ 306:L37–L40ADSCrossRefGoogle Scholar
  94. Van Eylen V, Albrecht S (2015) Eccentricity from transit photometry: small planets in Kepler multi-planet systems have low eccentricities. ApJ 808:126ADSCrossRefGoogle Scholar
  95. Van Eylen V, Lund MN, Silva Aguirre V et al (2014) What asteroseismology can do for exoplanets: Kepler-410A b is a small Neptune around a bright star, in an eccentric orbit consistent with low obliquity. ApJ 782:14ADSCrossRefGoogle Scholar
  96. Van Eylen V, Agentoft C, Lundkvist MS et al (2017) An asteroseismic view of the radius valley: stripped cores, not born rocky. ArXiv e-prints: 1710.05398Google Scholar
  97. Verma K, Faria JP, Antia HM et al (2014) Asteroseismic estimate of helium abundance of a solar analog binary system. Astrophys J 790(2):138ADSCrossRefGoogle Scholar
  98. von Essen C, Mallonn M, Albrecht S et al (2015) A temperature inversion in WASP-33b? Large binocular telescope occultation data confirm significant thermal flux at short wavelengths. A&A 584:A75ADSCrossRefGoogle Scholar
  99. Weiss LM, Marcy GW (2014) The mass-radius relation for 65 exoplanets smaller than 4 Earth radii. ApJ 783:L6ADSCrossRefGoogle Scholar
  100. White TR, Bedding TR, Stello D et al (2011) Calculating asteroseismic diagrams for solar-like oscillations. ApJ 743:161ADSCrossRefGoogle Scholar
  101. White TR, Huber D, Maestro V et al (2013) Interferometric radii of bright Kepler stars with the CHARA array: theta Cygni and 16 Cygni A and B. MNRAS 433:1262–1270ADSCrossRefGoogle Scholar
  102. Winn JN, Johnson JA, Albrecht S et al (2009) HAT-P-7: a retrograde or polar orbit, and a third body. ApJ 703:L99–L103ADSCrossRefGoogle Scholar
  103. Winn JN, Fabrycky D, Albrecht S, Johnson JA (2010) Hot stars with hot Jupiters have high obliquities. ApJ 718:L145–L149ADSCrossRefGoogle Scholar
  104. Xie JW, Dong S, Zhu Z et al (2016) Exoplanet orbital eccentricities derived from LAMOST-Kepler analysis. Proc Natl Acad Sci 113:11431–11435ADSCrossRefGoogle Scholar
  105. Zerbi FM, Rodríguez E, Garrido R et al (1999) The gamma DOR variable HR 8799: results from a multisite campaign. MNRAS 303:275–283ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mia Sloth Lundkvist
    • 1
    • 2
  • Daniel Huber
    • 3
    • 4
  • Victor Silva Aguirre
    • 5
  • William J. Chaplin
    • 6
  1. 1.Zentrum für Astronomie der Universität HeidelbergHeidelbergGermany
  2. 2.Stellar Astrophysics CentreAarhus UniversityAarhus CDenmark
  3. 3.Institute for Astronomy, University of Hawai‘iHonoluluUSA
  4. 4.Sydney Institute for Astronomy, School of PhysicsUniversity of SydneySydneyAustralia
  5. 5.Stellar Astrophysics CentreAarhus UniversityAarhus CDenmark
  6. 6.School of Physics and AstronomyUniversity of BirminghamBirminghamUK

Section editors and affiliations

  • Hans Kjeldsen
    • 1
  1. 1.Stellar Astrophysics CentreAarhus UniversityAarhusDenmark

Personalised recommendations