Skip to main content

Exotic Forms of Life on Other Worlds

  • Living reference work entry
  • First Online:
Handbook of Exoplanets
  • 468 Accesses

Abstract

The majority of exoplanets discovered to date, and nearly all the other planets and moons in our solar system, differ significantly from the geophysical conditions on Earth. This necessarily means that habitats on other worlds vary substantially from those with which we are familiar. Organic evolution under the different selective pressures in those alien environments may be expected to give rise to forms of life that are exotic by comparison with our own. Many forms of life may lie beyond the reach of light from their central star due to distance or subsurface sequestration, requiring other sources of energy. Life that could float among the clouds in dense atmospheres might assume sizes and morphologies of remarkable dimensions. Some life could be reminiscent of microbial forms on Earth but remain quiescent in soil or rock until seasonal transitions or the periodic passage of a terminator between frigid darkness and scorching daylight temporarily brings them to life. Cells bounded by amphiphilic membranes stable in hydrocarbon solvents may thrive in the petrochemical seas of worlds too cold for the existence of liquid water. Finally, structural entities capable of self-assembly and energy consumption may populate alien habitats, despite lacking anything like the cellular organization of life on Earth. Exotic forms of life clearly may be found well beyond the limits of any zone deemed habitable merely by the potential for water in liquid form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Barlow NG (1997) Mars. In: Shirley JH, Fairbridge RW (eds) Encyclopedia of planetary sciences. Chapman & Hall, London, pp 430–432

    Chapter  Google Scholar 

  • Beck CHM, Irwin LN (2016) The evolutionary imperative: why change happens, where it leads, and how we might survive. CCB Publishing, Vancouver

    Google Scholar 

  • Ben Zion MY, He X, Maass CC, Sha R, Seeman NC, Chaikin PM (2017) Self-assembled three-dimensional chiral colloidal architecture. Science 358:633–636

    Article  ADS  Google Scholar 

  • Bowen TC, Noble RD, Falconer JL (2004) Fundamentals and applications of pervaporation through zeolite membranes. J Membr Sci 245(1):1–33

    Article  Google Scholar 

  • Cairns-Smith AG (1982) Genetic takeover. Cambridge University Press, London

    Google Scholar 

  • Carr MH (1996) Water on mars. Oxford University Press, Oxford

    Google Scholar 

  • Coustenis A, Lorenz RD (1999) Titan. In: Weissman PR, McFadden L-A, Johnson TV (eds) Encyclopedia of the solar system, 1st edn. Academic, New York, pp 377–404

    Google Scholar 

  • Davis WL, McKay CP (1996) Origins of life: a comparison of theories and application to Mars. Orig Life Evol Biosph 26:61–73

    Article  ADS  Google Scholar 

  • Evers CH, Luiken JA, Bolhuis PG, Kegel WK (2016) Self-assembly of microcapsules via colloidal bond hybridization and anisotropy. Nature 534:364–368. https://doi.org/10.1038/nature17956

    Article  ADS  Google Scholar 

  • Feinberg G, Shapiro R (1980) Life beyond earth – the intelligent Earthling’s guide to life in the universe. William Morrow and Company, New York

    Google Scholar 

  • Grinspoon DH (2003) Lonely planets: the natural philosophy of alien life, 1st edn. HarperCollins, New York

    Google Scholar 

  • Hand E (2011) Venus scientists fear neglect. Nature 477:145. https://doi.org/10.1038/477145a

    Article  ADS  Google Scholar 

  • Hoyle F (1983) The intelligent universe. Michael Joseph, London

    Google Scholar 

  • Hudson RL, Moore MH (2004) Reactions of nitriles in ice’s relevant to Titan, comets, and the interstellar medium: formation of cyanate ion, ketenimines, and isonitriles. Icarus 172(2):466–478

    Article  ADS  Google Scholar 

  • Hunten DM (1999) Venus: atmosphere. In: Weissman PR, McFadden L-A, Johnson TV (eds) Encyclopedia of the solar system, 1st edn. Academic, New York, pp 147–159

    Google Scholar 

  • Irwin LN, Schulze-Makuch D (2001) Assessing the plausibility of life on other worlds. Astrobiology 1(2):143–160

    Article  ADS  Google Scholar 

  • Irwin LN, Schulze-Makuch D (2011) Cosmic biology: how life could evolve on other worlds, 1st edn. Praxis, New York

    Book  Google Scholar 

  • Kargel J (2004) Mars – a warmer, wetter planet. Praxis Publishing, Chichester

    Google Scholar 

  • Lovelock JE (1979) Gaia: a new look at life on earth. Oxford University Press, Oxford

    Google Scholar 

  • Lovelock JE (1995) New statements on the Gaia theory. Microbiologia 11(3):295–304

    Google Scholar 

  • McKay CP (2016) Titan as the abode of life. Life 6(1). https://doi.org/10.3390/life6010008

  • McKay CP, Smith HD (2005) Possibilities for methanogenic life in liquid methane on the surface of Titan. Icarus 178(1):274–276

    Article  ADS  Google Scholar 

  • Mendez A (2017) Exoplanets catalogue – planetary habitability laboratory, University of Puerto Rico at Arecibo. http://phl.upr.edu/projects/habitable-exoplanets-catalog/stats. Accessed 22 Dec 2017

  • Miyakawa S, Joshi PC, Gaffey MJ et al (2006) Studies in the mineral and salt-catalyzed formation of RNA oligomers. Orig Life Evol Biosph 36(4):343–361. https://doi.org/10.1007/s11084-006-9009-6

    Article  ADS  Google Scholar 

  • Morowitz H, Sagan C (1967) Life in the clouds of Venus? Nature 215(9):1259–1260. https://doi.org/10.1038/2151259a0

    Article  ADS  Google Scholar 

  • Moskowitz C (2014) Surf’s up on titan. Sci Am 310(6):20

    Article  ADS  Google Scholar 

  • Percec V, Wilson DA, Leowanawat P et al (2010) Self-assembly of Janus dendrimers into uniform dendrimersomes and other complex architectures. Science 328(5981):1009–1014. https://doi.org/10.1126/science.1185547

    Article  ADS  Google Scholar 

  • Phillips T (2014) Water detected on dwarf planet Ceres. In: Phillips T (ed) Science@NASA. https://science.nasa.gov/science-news/science-at-nasa/2014/22jan_ceres

  • Prettyman TH, Yamashita N, Toplis MJ et al (2017) Extensive water ice within Ceres’ aqueously altered regolith: evidence from nuclear spectroscopy. Science 355:55–59. https://doi.org/10.1126/science.aah6765

    Article  ADS  Google Scholar 

  • Raulin F (2008) Planetary science: organic lakes on Titan. Nature 454:587–589

    Article  ADS  Google Scholar 

  • Sagan C (1961) The planet Venus. Science 133:849–858

    Article  ADS  Google Scholar 

  • Sagan C, Salpeter EE (1976) Particles, environments, and possible ecologies in the Jovian atmosphere. Astrophys J 32(4):737–755

    Article  ADS  Google Scholar 

  • Schulze-Makuch D, Grinspoon DH (2005) Biologically enhanced energy and carbon cycling on titan? Astrobiology 5(4):560–567

    Article  ADS  Google Scholar 

  • Schulze-Makuch D, Irwin LN (2002) Reassessing the possibility of life on Venus: proposal for an astrobiology mission. Astrobiology 2(2):197–202

    Article  ADS  Google Scholar 

  • Schulze-Makuch D, Irwin LN (2004) Life in the universe: expectations and constraints, 1st edn. Springer, Berlin

    Google Scholar 

  • Schulze-Makuch D, Irwin LN (2006) Exotic forms of life in the universe. Naturwissenschaften 93(4):155–172

    Article  ADS  Google Scholar 

  • Schulze-Makuch D, Irwin LN (2008) Life in the universe: expectations and constraints, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Schulze-Makuch D, Irwin LN (2018) Life in the universe: expectations and constraints, 3rd edn. Springer, Berlin

    Google Scholar 

  • Schulze-Makuch D, Guan H, Irwin LN, Vega E (2002a) Redefining life: an ecological, thermodynamic, and bioinformatic approach. In: Fundamentals of life, Editions Scientifiques et Medicales. Elsevier SAS, Amsterdam, pp 169–179

    Google Scholar 

  • Schulze-Makuch D, Irwin LN, Irwin T (2002b) Astrobiological relevance and feasibility of a sample collection mission to the atmosphere of Venus. In: Lacoste H (ed) ESA conference on exo/astrobiology, ESA Publications Division, Graz, Austria

    Google Scholar 

  • Schulze-Makuch D, Grinspoon DH, Abbas O, Irwin LN, Bullock MA (2004) A sulfur-based survival strategy for putative phototrophic life in the Venusian atmosphere. Astrobiology 4(1):11–18

    Article  ADS  Google Scholar 

  • Schulze-Makuch D, Dohm JM, Fairen AG, Baker VR, Fink W, Strom RG (2005) Venus, Mars, and the ices on Mercury and the moon: astrobiological implications and proposed mission designs. Astrobiology 5(6):778–795

    Article  ADS  Google Scholar 

  • Schulze-Makuch D, Irwin LN, Fairén AG (2013) Drastic environmental change and its effects on a planetary biosphere. Icarus 225:275–280

    Article  Google Scholar 

  • Slade (1992) Mercury radar imaging: evidence for polar ice. Science 258:635–640

    Article  ADS  Google Scholar 

  • Smith DJ (2013) Microbes in the upper atmosphere and unique opportunities for astrobiology research. Astrobiology 13:981–990

    Article  ADS  Google Scholar 

  • Stevenson J, Lunine J, Clancy P (2015) Membrane alternatives in worlds without oxygen: creation of an azotosome. Sci Adv 1(1):e1400067. https://doi.org/10.1126/sciadv.1400067

    Article  ADS  Google Scholar 

  • Tamulis A, Tamuliene J, Tamulis V (2003) Ziriakoviene. A quantum mechanical design of molecular computer elements suitable for self-assembling to quantum computing living systems. In: 6th international conference on self-formation, theory and applications, Vilnius, Lithuania

    Google Scholar 

  • Titus TN, Kieffer HH, Christensen PR (2003) Exposed water ice discovered near the south pole of Mars. Science 299:1048–1051

    Article  ADS  Google Scholar 

  • Tsytovich VN, Morfill GE, Fortov VE, Gusein-Zade NG, Klumov BA, Vladimirov SV (2007) From plasma crystals and helical structures towards inorganic living matter. New J Phys 9:263. https://doi.org/10.1088/1367-2630/9/8/263

    Article  Google Scholar 

  • Vernadsky IV (1997) The biosphere. Springer, Copernicus, New York

    Google Scholar 

  • Vidal C (2016) Stellivore extraterrestrials? Binary stars as living systems. Acta Astronaut 128(Suppl C):251–256. https://doi.org/10.1016/j.actaastro.2016.06.038

    Article  ADS  Google Scholar 

  • Wong WSY, Li M, Nisbet DR, Craig VSJ, Wang Z, Tricoli A (2016) Mimosa origami: a nanostructure-enabled directional self-organization regime of materials. Sci Adv 2(6):e1600417. https://doi.org/10.1126/sciadv.1600417

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis N. Irwin .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Irwin, L.N. (2018). Exotic Forms of Life on Other Worlds. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-30648-3_161-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30648-3_161-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30648-3

  • Online ISBN: 978-3-319-30648-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics