Skip to main content

Populations of Extrasolar Giant Planets from Transit and Radial Velocity Surveys

  • Living reference work entry
  • First Online:
Handbook of Exoplanets

Abstract

Transit and radial velocity surveys have deeply explored the population of extrasolar giant planets, with hundreds of objects detected to date. All these detections allow to understand their physical properties and to constrain their formation, migration, and evolution mechanism. In this chapter, the observed properties of these planets are presented along with the various populations identified in the data. The occurrence rates of giant exoplanets, as observed in different stellar environment by various surveys, are also reviewed and compared. Finally, the presence and properties of the giant exoplanets are discussed in the regard of the properties of the host star. Over this chapter, the observational constraints are discussed in the context of the dominant planet formation, migration, and evolution scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adibekyan VZ, Figueira P, Santos NC et al (2013) Orbital and physical properties of planets and their hosts: new insights on planet formation and evolution. A&A 560:A51

    Article  ADS  Google Scholar 

  • Akeson RL, Chen X, Ciardi D et al (2013) The NASA exoplanet archive: data and tools for exoplanet research. PASP 125:989

    Article  ADS  Google Scholar 

  • Almenara JM, Damiani C, Bouchy F et al (2015) SOPHIE velocimetry of Kepler transit candidates. XV. KOI-614b, KOI-206b, and KOI-680b: a massive warm Jupiter orbiting a G0 metallic dwarf and two highly inflated planets with a distant companion around evolved F-type stars. A&A 575:A71

    Article  ADS  Google Scholar 

  • Baglin A, Auvergne M, Boisnard L et al (2006) CoRoT: a high precision photometer for stellar ecolution and exoplanet finding. In: 36th COSPAR scientific assembly, COSPAR meeting, vol 36

    Google Scholar 

  • Bakos G, Noyes RW, Kovács G et al (2004) Wide-field millimagnitude photometry with the HAT: a tool for extrasolar planet detection. PASP 116:266–277

    Article  ADS  Google Scholar 

  • Baraffe I, Chabrier G, Fortney J, Sotin C (2014) Planetary internal structures. In: Protostars and planets VI, University of Arizona Press, Tucson, 914:763–786

    Google Scholar 

  • Batalha NM (2014) Exploring exoplanet populations with NASA’s Kepler Mission. Proc Nat Acad Sci 111:12,647–12,654

    Article  ADS  Google Scholar 

  • Bayliss DDR, Sackett PD (2011) The frequency of hot Jupiters in the galaxy: results from the SuperLupus survey. ApJ 743:103

    Article  ADS  Google Scholar 

  • Becker JC, Vanderburg A, Adams FC, Rappaport SA, Schwengeler HM (2015) WASP-47: a hot Jupiter system with two additional planets discovered by K2. ApJ 812:L18

    Article  ADS  Google Scholar 

  • Borucki W, Koch D, Batalha N et al (2009) KEPLER: search for Earth-size planets in the habitable zone. In: Pont F, Sasselov D, Holman MJ (eds) Transiting planets, IAU symposium, vol 253, pp 289–299. https://doi.org/10.1017/S1743921308026513

    Article  Google Scholar 

  • Borucki WJ, Koch DG, Basri G et al (2011) Characteristics of Kepler planetary candidates based on the first data set. ApJ 728:117

    Google Scholar 

  • Boss AP (2002) Stellar metallicity and the formation of extrasolar gas giant planets. ApJ 567:L149–L153

    Article  ADS  Google Scholar 

  • Bowler BP, Johnson JA, Marcy GW et al (2010) Retired a stars and their companions. III. Comparing the mass-period distributions of planets around a-type stars and sun-like stars. ApJ 709:396–410

    Article  ADS  Google Scholar 

  • Brucalassi A, Pasquini L, Saglia R et al (2016) Search for giant planets in M67. III. Excess of hot Jupiters in dense open clusters. A&A 592:L1

    Article  ADS  Google Scholar 

  • Bruno G, Almenara JM, Barros SCC et al (2015) SOPHIE velocimetry of Kepler transit candidates. XIV. A joint photometric, spectroscopic, and dynamical analysis of the Kepler-117 system. A&A 573:A124

    Article  Google Scholar 

  • Chabrier G, Johansen A, Janson M, Rafikov R (2014) Giant planet and brown dwarf formation. In: Protostars and planets VI, University of Arizona Press, Tucson, 914:619–642

    Google Scholar 

  • Chang SH, Gu PG, Bodenheimer PH (2010) Tidal and magnetic interactions between a hot Jupiter and its host star in the magnetospheric cavity of a protoplanetary disk. ApJ 708:1692–1702

    Article  ADS  Google Scholar 

  • Coughlin JL, Mullally F, Thompson SE et al (2016) Planetary candidates observed by Kepler. VII. The first fully uniform catalog based on the entire 48-month data set (Q1-Q17 DR24). ApJS 224:12

    Article  ADS  Google Scholar 

  • Crida A, Bitsch B (2017) Runaway gas accretion and gap opening versus type I migration. Icarus 285:145–154

    Article  ADS  Google Scholar 

  • Csizmadia S, Hatzes A, Gandolfi D et al (2015) Transiting exoplanets from the CoRoT space mission. XXVIII. CoRoT-33b, an object in the brown dwarf desert with 2:3 commensurability with its host star. A&A 584:A13

    Article  Google Scholar 

  • Cumming A, Butler RP, Marcy GW et al (2008) The keck planet search: detectability and the minimum mass and orbital period distribution of extrasolar planets. PASP 120:531

    Article  ADS  Google Scholar 

  • Damiani C, Meunier JC, Moutou C et al (2016) Stellar classification of CoRoT targets. A&A 595:A95

    Article  Google Scholar 

  • Deleuil M, Aigrain S, Moutou C et al (2018, in press) Planets, candidates, and binaries from the CoRoT/Exoplanet program - The CoRoT transit catalog. A&A

    Google Scholar 

  • Delfosse X, Forveille T, Mayor M et al (1998) The closest extrasolar planet. A giant planet around the M4 dwarf GL 876. A&A 338:L67–L70

    Google Scholar 

  • Dong S, Zheng Z, Zhu Z et al (2014) On the metallicities of Kepler stars. ApJ 789:L3

    Article  ADS  Google Scholar 

  • Fabrycky DC, Lissauer JJ, Ragozzine D et al (2014) Architecture of Kepler’s multi-transiting systems. II. New investigations with twice as many candidates. ApJ 790:146

    Article  ADS  Google Scholar 

  • Fischer DA, Valenti J (2005) The planet-metallicity correlation. ApJ 622:1102–1117

    Article  ADS  Google Scholar 

  • Ford EB (2014) Architectures of planetary systems and implications for their formation. Proc Nat Acad Sci 111:12,616–12,621

    Article  ADS  Google Scholar 

  • Fressin F, Torres G, Charbonneau D et al (2013) The false positive rate of Kepler and the occurrence of planets. ApJ 766:81

    Article  ADS  Google Scholar 

  • Gilliland RL, Brown TM, Guhathakurta P et al (2000) A lack of planets in 47 Tucanae from a hubble space telescope search. ApJ 545:L47–L51

    Google Scholar 

  • Gonzalez G (1997) The stellar metallicity-giant planet connection. MNRAS 285:403–412

    Article  ADS  Google Scholar 

  • Gould A, Dorsher S, Gaudi BS, Udalski A (2006) Frequency of hot Jupiters and very hot Jupiters from the OGLE-III transit surveys toward the galactic bulge and Carina. Acta Astron 56:1–50

    Google Scholar 

  • Grether D, Lineweaver CH (2006) How dry is the brown dwarf desert? Quantifying the relative number of planets, brown dwarfs, and stellar companions around nearby sun-like stars. ApJ 640:1051–1062

    Article  ADS  Google Scholar 

  • Guenther EW, Gandolfi D, Sebastian D et al (2012) Multi-object spectroscopy of stars in the CoRoT fields. II. The stellar population of the CoRoT fields IRa01, LRa01, LRa02, and LRa06. A&A 543:A125

    Google Scholar 

  • Guo X, Johnson JA, Mann AW et al (2017) The metallicity distribution and hot Jupiter rate of the Kepler field: hectochelle high-resolution spectroscopy for 776 Kepler target stars. ApJ 838:25

    Article  ADS  Google Scholar 

  • Hartman JD, Gaudi BS, Holman MJ et al (2009) Deep MMT transit survey of the open cluster M37 IV: limit on the fraction of stars with planets as small as 0.3RJ. ApJ 695:336–356

    Article  ADS  Google Scholar 

  • Hatzes AP, Rauer H (2015) A definition for giant planets based on the mass-density relationship. ApJ 810:L25

    Article  ADS  Google Scholar 

  • Haywood M (2001) A revision of the solar neighbourhood metallicity distribution. MNRAS 325:1365–1382

    Article  ADS  Google Scholar 

  • Hébrard G, Arnold L, Forveille T et al (2016) The SOPHIE search for northern extrasolar planets. X. Detection and characterization of giant planets by the dozen. A&A 588:A145

    Article  ADS  Google Scholar 

  • Holman MJ, Fabrycky DC, Ragozzine D et al (2010) Kepler-9: a system of multiple planets transiting a sun-like star, confirmed by timing variations. Science 330:51

    Article  ADS  Google Scholar 

  • Howard AW, Marcy GW, Johnson JA et al (2010) The occurrence and mass distribution of close-in Super-Earths, Neptunes, and Jupiters. Science 330:653

    Article  ADS  Google Scholar 

  • Howard AW, Marcy GW, Bryson ST et al (2012) Planet occurrence within 0.25 AU of solar-type stars from Kepler. ApJS 201:15

    Google Scholar 

  • Huber D, Silva Aguirre V, Matthews JM et al (2014) Revised stellar properties of Kepler targets for the quarter 1–16 transit detection run. ApJS 211:2

    Article  ADS  Google Scholar 

  • Johnson JA, Fischer DA, Marcy GW et al (2007) Retired a stars and their companions: exoplanets orbiting three intermediate-mass subgiants. ApJ 665:785–793

    Article  ADS  Google Scholar 

  • Johnson JA, Aller KM, Howard AW, Crepp JR (2010) Giant planet occurrence in the stellar mass-metallicity plane. PASP 122:905

    Article  ADS  Google Scholar 

  • Johnson JA, Gazak JZ, Apps K et al (2012) Characterizing the cool KOIs. II. The M dwarf KOI-254 and its hot Jupiter. AJ 143:111

    Article  ADS  Google Scholar 

  • Knutson HA, Fulton BJ, Montet BT et al (2014) Friends of hot Jupiters. I. A radial velocity search for massive, long-period companions to close-in gas giant planets. ApJ 785:126

    Article  ADS  Google Scholar 

  • Lloyd JP (2011) “Retired” planet hosts: not so massive, maybe just portly after lunch. ApJ 739:L49

    Article  ADS  Google Scholar 

  • Lloyd JP (2013) The mass distribution of subgiant planet hosts. ApJ 774:L2

    Article  ADS  Google Scholar 

  • Marcy GW, Butler RP (2000) Planets orbiting other suns. PASP 112:137–140

    Google Scholar 

  • Marcy G, Butler RP, Fischer D et al (2005) Observed properties of exoplanets: masses, orbits, and metallicities. Prog Theor Phys Suppl 158:24–42

    Article  ADS  Google Scholar 

  • Masuda K (2014) Very low density planets around Kepler-51 revealed with transit timing variations and an anomaly similar to a planet-planet eclipse event. ApJ 783:53

    Article  ADS  Google Scholar 

  • Matsakos T, Königl A (2016) On the origin of the sub-Jovian desert in the orbital-period-planetary-mass plane. ApJ 820:L8

    Article  ADS  Google Scholar 

  • Mayor M, Queloz D (1995) A Jupiter-Mass companion to a solar-type star. Nature 378:355–359

    Article  ADS  Google Scholar 

  • Mayor M, Marmier M, Lovis C et al (2011) The HARPS search for Southern extra-solar planets XXXIV. Occurrence, mass distribution and orbital properties of super-Earths and Neptune-mass planets. ArXiv e-prints

    Google Scholar 

  • Mazeh T, Holczer T, Faigler S (2016) Dearth of short-period Neptunian exoplanets: a desert in period-mass and period-radius planes. A&A 589:A75

    Article  ADS  Google Scholar 

  • Morbidelli A, Crida A (2007) The dynamics of Jupiter and Saturn in the gaseous protoplanetary disk. Icarus 191:158–171

    Article  ADS  Google Scholar 

  • Mordasini C, Alibert Y, Georgy C et al (2012) Characterization of exoplanets from their formation. II. The planetary mass-radius relationship. A&A 547:A112

    Article  ADS  Google Scholar 

  • Mortier A, Santos NC, Sousa S et al (2013) On the functional form of the metallicity-giant planet correlation. A&A 551:A112

    Article  ADS  Google Scholar 

  • Morton TD, Johnson JA (2011) On the low false positive probabilities of Kepler planet candidates. ApJ 738:170

    Article  ADS  Google Scholar 

  • Morton TD, Bryson ST, Coughlin JL et al (2016) False positive probabilities for all Kepler objects of interest: 1284 newly validated planets and 428 likely false positives. ApJ 822:86

    Article  ADS  Google Scholar 

  • Moutou C, Pont F, Barge P et al (2005) Comparative blind test of five planetary transit detection algorithms on realistic synthetic light curves. A&A 437:355–368

    Article  ADS  Google Scholar 

  • Moutou C, Deleuil M, Guillot T et al (2013) CoRoT: harvest of the exoplanet program. Icarus 226:1625–1634

    Article  ADS  Google Scholar 

  • Naef D, Mayor M, Beuzit JL et al (2005) The ELODIE planet search: synthetic view of the survey and its global detection threshold. In: Favata F, Hussain GAJ, Battrick B (eds) 13th Cambridge workshop on cool stars, stellar systems and the sun, vol 560. ESA Special Publication, p 833

    Google Scholar 

  • Nayakshin S (2017) Dawes review 7: the tidal downsizing hypothesis of planet formation. PASA 34:e002

    Google Scholar 

  • Nayakshin S, Fletcher M (2015) Tidal downsizing model – III. Planets from sub-Earths to brown dwarfs: structure and metallicity preferences. MNRAS 452:1654–1676

    Article  ADS  Google Scholar 

  • Neveu-VanMalle M, Queloz D, Anderson DR et al (2016) Hot Jupiters with relatives: discovery of additional planets in orbit around WASP-41 and WASP-47. A&A 586:A93

    Article  ADS  Google Scholar 

  • Pepe F, Molaro P, Cristiani S et al (2014) ESPRESSO: the next European exoplanet hunter. Astron Nachr 335:8

    Article  ADS  Google Scholar 

  • Pollacco DL, Skillen I, Collier Cameron A et al (2006) The WASP project and the SuperWASP cameras. PASP 118:1407–1418

    Article  ADS  Google Scholar 

  • Pollack JB, Hubickyj O, Bodenheimer P et al (1996) Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124:62–85

    Article  ADS  Google Scholar 

  • Quinn SN, White RJ, Latham DW et al (2012) Two “b”s in the beehive: the discovery of the first hot Jupiters in an open cluster. ApJ 756:L33

    Article  ADS  Google Scholar 

  • Rowe JF, Bryson ST, Marcy GW et al (2014) Validation of Kepler’s multiple planet candidates. III. Light curve analysis and announcement of hundreds of new multi-planet systems. ApJ 784:45

    Article  ADS  Google Scholar 

  • Sahu KC, Casertano S, Bond HE et al (2006) Transiting extrasolar planetary candidates in the galactic bulge. Nature 443:534–540

    Article  ADS  Google Scholar 

  • Santerne A (2014) Professional/Amateur collaborations in exoplanet science. In: European planetary science congress 2014, EPSC Abstracts, vol 9, id EPSC2014-188 9:EPSC2014-188

    Google Scholar 

  • Santerne A, Díaz RF, Moutou C et al (2012) SOPHIE velocimetry of Kepler transit candidates. VII. A false-positive rate of 35% for Kepler close-in giant candidates. A&A 545:A76

    Article  ADS  Google Scholar 

  • Santerne A, Moutou C, Tsantaki M et al (2016) SOPHIE velocimetry of Kepler transit candidates. XVII. The physical properties of giant exoplanets within 400 days of period. A&A 587:A64

    Article  Google Scholar 

  • Santos NC, Israelian G, Mayor M (2001) The metal-rich nature of stars with planets. A&A 373:1019–1031

    Article  ADS  Google Scholar 

  • Santos NC, Israelian G, Mayor M, Rebolo R, Udry S (2003) Statistical properties of exoplanets. II. Metallicity, orbital parameters, and space velocities. A&A 398:363–376

    Article  ADS  Google Scholar 

  • Santos NC, Sousa SG, Mortier A et al (2013) SWEET-Cat: a catalogue of parameters for stars with ExoplanETs. I. New atmospheric parameters and masses for 48 stars with planets. A&A 556:A150

    Article  ADS  Google Scholar 

  • Schlaufman KC, Winn JN (2016) The occurrence of additional giant planets inside the water-ice line in systems with hot Jupiters: evidence against high-eccentricity migration. ApJ 825:62

    Article  ADS  Google Scholar 

  • Schneider J, Dedieu C, Le Sidaner P, Savalle R, Zolotukhin I (2011) Defining and cataloging exoplanets: the exoplanet.eu database. A&A 532:A79

    Article  ADS  Google Scholar 

  • Sousa SG, Santos NC, Israelian G, Mayor M, Udry S (2011) Spectroscopic stellar parameters for 582 FGK stars in the HARPS volume-limited sample. Revising the metallicity-planet correlation. A&A 533:A141

    Article  ADS  Google Scholar 

  • Udry S, Santos NC (2007) Statistical properties of exoplanets. ARA&A 45:397–439

    Article  ADS  Google Scholar 

  • Udry S, Mayor M, Santos NC (2003) Statistical properties of exoplanets. I. The period distribution: constraints for the migration scenario. A&A 407:369–376

    Article  ADS  Google Scholar 

  • Valsecchi F, Rasio FA, Steffen JH (2014) From hot Jupiters to super-Earths via Roche Lobe overflow. ApJ 793:L3

    Article  ADS  Google Scholar 

  • Vidal-Madjar A, Lecavelier des Etangs A, Désert JM et al (2003) An extended upper atmosphere around the extrasolar planet HD209458b. Nature 422:143–146

    Article  ADS  Google Scholar 

  • Weiss LM, Marcy GW, Rowe JF et al (2013) The mass of KOI-94d and a relation for planet radius, mass, and incident flux. ApJ 768:14

    Article  ADS  Google Scholar 

  • Winn JN, Sanchis-Ojeda R, Rogers L et al (2017) Absence of a metallicity effect for ultra-short-period planets. ArXiv e-prints

    Article  ADS  Google Scholar 

  • Wright JT, Marcy GW, Howard AW et al (2012) The frequency of hot Jupiters orbiting nearby solar-type stars. ApJ 753:160

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Santerne .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Santerne, A. (2018). Populations of Extrasolar Giant Planets from Transit and Radial Velocity Surveys. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-30648-3_154-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30648-3_154-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30648-3

  • Online ISBN: 978-3-319-30648-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics