Skip to main content

Debris Disks: Probing Planet Formation

  • Living reference work entry
  • First Online:
Handbook of Exoplanets
  • 481 Accesses

Abstract

Debris disks are the dust disks found around ∼20% of nearby main sequence stars in far-IR surveys. They can be considered as descendants of protoplanetary disks or components of planetary systems, providing valuable information on circumstellar disk evolution and the outcome of planet formation. The debris disk population can be explained by the steady collisional erosion of planetesimal belts; population models constrain where (10–100 au) and in what quantity (>1M) planetesimals (>10 km in size) typically form in protoplanetary disks. Gas is now seen long into the debris disk phase. Some of these are secondary implying planetesimals have a solar system comet-like composition, but some systems may retain primordial gas. Ongoing planet formation processes are invoked for some debris disks, such as the continued growth of dwarf planets in an unstirred disk or the growth of terrestrial planets through giant impacts. Planets imprint structure on debris disks in many ways; images of gaps, clumps, warps, eccentricities and other disk asymmetries are readily explained by planets at ≫5 au. Hot dust in the region planets are commonly found (<5 au) is seen for a growing number of stars. This dust usually originates in an outer belt (e.g., from exocomets), although an asteroid belt or recent collision is sometimes inferred.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Augereau JC, Nelson RP, Lagrange AM, Papaloizou JCB, Mouillet D (2001) Dynamical modeling of large scale asymmetries in the beta Pictoris dust disk. A&A 370:447–455

    Article  ADS  Google Scholar 

  • Beust H, Morbidelli A (1996) Mean-motion resonances as a source for infalling comets toward β pictoris. Icarus 120:358–370

    Article  ADS  Google Scholar 

  • Beust H, Augereau JC, Bonsor A et al (2014) An independent determination of Fomalhaut b’s orbit and the dynamical effects on the outer dust belt. A&A 561:A43

    Article  Google Scholar 

  • Bonsor A, Augereau JC, Thébault P (2012) Scattering of small bodies by planets: a potential origin for exozodiacal dust? A&A 548:A104

    Article  Google Scholar 

  • Bonsor A, Raymond SN, Augereau JC (2013) The short-lived production of exozodiacal dust in the aftermath of a dynamical instability in planetary systems. MNRAS 433:2938–2945

    Article  ADS  Google Scholar 

  • Bonsor A, Raymond SN, Augereau JC, Ormel CW (2014) Planetesimal-driven migration as an explanation for observations of high levels of warm, exozodiacal dust. MNRAS 441:2380–2391

    Article  ADS  Google Scholar 

  • Booth M, Kennedy G, Sibthorpe B et al (2013) Resolved debris discs around A stars in the Herschel DEBRIS survey. MNRAS 428:1263–1280

    Article  ADS  Google Scholar 

  • Booth M, Dent WRF, Jordán A et al (2017) The northern arc of 𝜖 Eridani’s debris ring as seen by ALMA. MNRAS 469:3200–3212

    Article  ADS  Google Scholar 

  • Bowler BP (2016) Imaging extrasolar giant Planets. PASP 128(10):102001

    Article  ADS  Google Scholar 

  • Boyajian TS, LaCourse DM, Rappaport SA et al (2016) Planet hunters IX. KIC 8462852 – where’s the flux? MNRAS 457:3988–4004

    Article  ADS  Google Scholar 

  • Brandeker A, Cataldi G, Olofsson G et al (2016) Herschel detects oxygen in the β Pictoris debris disk. A&A 591:A27

    Google Scholar 

  • Bryden G, Beichman CA, Carpenter JM et al (2009) Planets and debris disks: results from a Spitzer/MIPS search for infrared excess. ApJ 705:1226–1236

    Article  ADS  Google Scholar 

  • Carpenter JM, Mamajek EE, Hillenbrand LA, Meyer MR (2009) Debris disks in the upper scorpius OB association. ApJ 705:1646–1671

    Google Scholar 

  • Carrera D, Gorti U, Johansen A, Davies MB (2017) Planetesimal formation by the streaming instability in a photoevaporating disk. ApJ 839:16

    Google Scholar 

  • Chen CH, Mittal T, Kuchner M et al (2014) The Spitzer infrared spectrograph debris disk catalog. I. Continuum analysis of unresolved targets. ApJS 211:25

    Article  ADS  Google Scholar 

  • Chiang E, Kite E, Kalas P, Graham JR, Clampin M (2009) Fomalhaut’s debris disk and planet: constraining the mass of Fomalhaut b from disk morphology. ApJ 693:734–749

    Article  ADS  Google Scholar 

  • Cieza LA, Olofsson J, Harvey PM et al (2013) The Herschel DIGIT survey of weak-line T Tauri stars: implications for disk evolution and dissipation. ApJ 762:100

    Google Scholar 

  • Currie T, Lisse CM, Kuchner M et al (2015) Direct imaging and spectroscopy of a young extrasolar Kuiper belt in the nearest OB association. ApJ 807:L7

    Article  ADS  Google Scholar 

  • Dent WRF, Wyatt MC, Roberge A et al (2014) Molecular gas clumps from the destruction of icy bodies in the β pictoris debris disk. Science 343:1490–1492

    Article  ADS  Google Scholar 

  • Eiroa C, Marshall JP, Mora A et al (2013) DUst around NEarby Stars. The survey observational results. A&A 555:A11

    Google Scholar 

  • Eistrup C, Walsh C, van Dishoeck EF (2017) Molecular abundances and C/O ratios in chemically evolving planet-forming disk midplanes. ArXiv e-prints

    Google Scholar 

  • Ercolano B, Jennings J, Rosotti G, Birnstiel T (2017) X-ray photoevaporation’s limited success in the formation of planetesimals by the streaming instability. ArXiv e-prints

    Google Scholar 

  • Faber P, Quillen AC (2007) The total number of giant planets in debris discs with central clearings. MNRAS 382:1823–1828

    Article  ADS  Google Scholar 

  • Faramaz V, Ertel S, Booth M, Cuadra J, Simmonds C (2017) Inner mean-motion resonances with eccentric planets: a possible origin for exozodiacal dust clouds. MNRAS 465:2352–2365

    Article  ADS  Google Scholar 

  • Fischer DA, Valenti J (2005) The planet-metallicity correlation. ApJ 622:1102–1117

    Article  ADS  Google Scholar 

  • Gáspár A, Rieke GH, Balog Z (2013) The collisional evolution of debris disks. ApJ 768:25

    Article  ADS  Google Scholar 

  • Gáspár A, Rieke GH, Ballering N (2016) The correlation between metallicity and debris disk mass. ApJ 826:171

    Article  ADS  Google Scholar 

  • Geiler F, Krivov AV (2017) Does warm debris dust stem from asteroid belts? MNRAS 468:959–970

    Article  ADS  Google Scholar 

  • Genda H, Kobayashi H, Kokubo E (2015) Warm debris disks produced by giant impacts during terrestrial planet formation. ApJ 810:136

    Article  ADS  Google Scholar 

  • Golimowski DA, Krist JE, Stapelfeldt KR et al (2011) Hubble and Spitzer space telescope observations of the debris disk around the nearby K Dwarf HD 92945. AJ 142:30

    Google Scholar 

  • Greaves JS, Wyatt MC (2003) Some anomalies in the occurrence of debris discs around main-sequence A and G stars. MNRAS 345:1212–1222

    Article  ADS  Google Scholar 

  • Greaves JS, Holland WS, Matthews BC et al (2016) Gas and dust around A-type stars at tens of Myr: signatures of cometary breakup. MNRAS 461:3910–3917

    Article  ADS  Google Scholar 

  • Hardy A, Caceres C, Schreiber MR et al (2015) Probing the final stages of protoplanetary disk evolution with ALMA. A&A 583:A66

    Google Scholar 

  • Hasegawa Y, Pudritz RE (2012) Evolutionary tracks of trapped, accreting protoplanets: the origin of the observed mass-period relation. ApJ 760:117

    Article  ADS  Google Scholar 

  • Heng K, Tremaine S (2010) Long-lived planetesimal discs. MNRAS 401:867–889

    Article  ADS  Google Scholar 

  • Hughes AM, Wilner DJ, Mason B et al (2012) Confirming the primarily smooth structure of the Vega debris disk at millimeter wavelengths. ApJ 750:82

    Google Scholar 

  • Hughes AM, Lieman-Sifry J, Flaherty KM et al (2017) Radial surface density profiles of gas and dust in the debris disk around 49 Ceti. ApJ 839:86

    Article  ADS  Google Scholar 

  • Jackson AP, Wyatt MC (2012) Debris from terrestrial planet formation: the Moon-forming collision. MNRAS 425:657–679

    Article  ADS  Google Scholar 

  • Jackson AP, Wyatt MC, Bonsor A, Veras D (2014) Debris froms giant impacts between planetary embryos at large orbital radii. MNRAS 440:3757–3777

    Article  ADS  Google Scholar 

  • Kaib NA, White EB, Izidoro A (2017) Simulations of the Fomalhaut system within its local galactic environment. ArXiv e-prints

    Google Scholar 

  • Kains N, Wyatt MC, Greaves JS (2011) Steady-state evolution of debris discs around solar-type stars. MNRAS 414:2486–2497

    Article  ADS  Google Scholar 

  • Kalas P, Graham JR, Fitzgerald MP, Clampin M (2013) STIS coronagraphic imaging of Fomalhaut: main belt structure and the orbit of Fomalhaut b. ApJ 775:56

    Article  ADS  Google Scholar 

  • Kennedy GM, Wyatt MC (2010) Are debris discs self-stirred? MNRAS 405:1253–1270

    Google Scholar 

  • Kennedy GM, Wyatt MC (2013) The bright end of the exo-Zodi luminosity function: disc evolution and implications for exo-Earth detectability. MNRAS 433:2334–2356

    Article  ADS  Google Scholar 

  • Kennedy GM, Wyatt MC (2014) Do two-temperature debris discs have multiple belts? MNRAS 444:3164–3182

    Google Scholar 

  • Kenyon SJ, Bromley BC (2002) Dusty rings: signposts of recent planet formation. ApJ 577:L35–L38

    Article  ADS  Google Scholar 

  • Kenyon SJ, Bromley BC (2005) Prospects for detection of catastrophic collisions in debris disks. AJ 130:269–279

    Article  ADS  Google Scholar 

  • Kenyon SJ, Bromley BC (2008) Variations on debris disks: icy planet formation at 30–150 AU for 1–3 MŁ main-sequence stars. ApJS 179:451–483

    Google Scholar 

  • Kenyon SJ, Bromley BC (2010) Variations on debris disks. II. Icy planet formation as a function of the bulk properties and initial sizes of planetesimals. ApJS 188:242–279

    Google Scholar 

  • Kiefer F, Lecavelier des Etangs A, Boissier J et al (2014) Two families of exocomets in the β pictoris system. Nature 514:462–464

    Article  ADS  Google Scholar 

  • Kóspál Á, Moór A, Juhász A et al (2013) ALMA observations of the molecular gas in the debris disk of the 30 Myr old star HD 21997. ApJ 776:77

    Article  ADS  Google Scholar 

  • Kral Q, Thébault P, Augereau JC, Boccaletti A, Charnoz S (2015) Signatures of massive collisions in debris discs. A self-consistent numerical model. A&A 573:A39

    Article  Google Scholar 

  • Kral Q, Wyatt M, Carswell RF et al (2016) A self-consistent model for the evolution of the gas produced in the debris disc of β pictoris. MNRAS 461:845–858

    Article  ADS  Google Scholar 

  • Kral Q, Matrà L, Wyatt MC, Kennedy GM (2017) Predictions for the secondary CO, C and O gas content of debris discs from the destruction of volatile-rich planetesimals. MNRAS 469: 521–550

    Google Scholar 

  • Krijt S, Kama M (2014) A dearth of small particles in debris disks. An energy-constrained smallest fragment size. A&A 566:L2

    Article  ADS  Google Scholar 

  • Krivov AV, Löhne T, Sremčević M (2006) Dust distributions in debris disks: effects of gravity, radiation pressure and collisions. A&A 455:509–519

    Article  ADS  Google Scholar 

  • Krivov AV, Eiroa C, Löhne T et al (2013) Herschel’s “Cold Debris Disks”: background galaxies or quiescent rims of planetary systems? ApJ 772:32

    Article  ADS  Google Scholar 

  • Krivov AV, Ide A, Löhne T, Johansen A, Blum J (2018) Debris disc constraints on planetesimal formation. MNRAS 474:2564–2575

    Article  ADS  Google Scholar 

  • Lagrange AM, Bonnefoy M, Chauvin G et al (2010) A giant planet imaged in the disk of the young star β pictoris. Science 329:57

    Google Scholar 

  • Lee EJ, Chiang E (2016) A primer on unifying debris disk morphologies. ApJ 827:125

    Article  ADS  Google Scholar 

  • Levison HF, Duncan MJ (1997) From the Kuiper belt to Jupiter-family comets: the spatial distribution of ecliptic comets. Icarus 127:13–32

    Article  ADS  Google Scholar 

  • Li D, Telesco CM, Wright CM (2012) The mineralogy and structure of the inner debris disk of β pictoris. ApJ 759:81

    Article  ADS  Google Scholar 

  • Lieman-Sifry J, Hughes AM, Carpenter JM et al (2016) Debris disks in the scorpius-centaurus OB association resolved by ALMA. ApJ 828:25

    Article  ADS  Google Scholar 

  • Lisse CM, Chen CH, Wyatt MC et al (2009) Abundant circumstellar silica dust and SiO gas created by a giant hypervelocity collision in the ˜12 Myr HD172555 system. ApJ 701:2019–2032

    Google Scholar 

  • Löhne T, Krivov AV, Rodmann J (2008) Long-term collisional evolution of debris disks. ApJ 673:1123–1137

    Article  ADS  Google Scholar 

  • Löhne T, Krivov AV, Kirchschlager F, Sende JA, Wolf S (2017) Collisions and drag in debris discs with eccentric parent belts. A&A 605:A7

    Article  ADS  Google Scholar 

  • Lyra W, Kuchner M (2013) Formation of sharp eccentric rings in debris disks with gas but without planets. Nature 499:184–187

    Article  ADS  Google Scholar 

  • MacGregor MA, Wilner DJ, Chandler C et al (2016) Constraints on planetesimal collision models in debris disks. ApJ 823:79

    Article  ADS  Google Scholar 

  • MacGregor MA, Matrà L, Kalas P et al (2017) A complete ALMA map of the Fomalhaut debris disk. ApJ 842:8

    Article  ADS  Google Scholar 

  • Marino S, Matrà L, Stark C et al (2016) Exocometary gas in the HD 181327 debris ring. MNRAS 460:2933–2944

    Article  ADS  Google Scholar 

  • Marino S, Wyatt MC, Kennedy GM et al (2017a) ALMA observations of the multiplanet system 61 Vir: what lies outside super-Earth systems? MNRAS 469:3518–3531

    Google Scholar 

  • Marino S, Wyatt MC, Panić O et al (2017b) ALMA observations of the η Corvi debris disc: inward scattering of CO-rich exocomets by a chain of 3–30 M planets? MNRAS 465:2595–2615

    Google Scholar 

  • Matrà L, Dent WRF, Wyatt MC et al (2017a) Exocometary gas structure, origin and physical properties around β Pictoris through ALMA CO multitransition observations. MNRAS 464:1415–1433

    Article  ADS  Google Scholar 

  • Matrà L, MacGregor MA, Kalas P et al (2017b) Detection of exocometary CO within the 440 Myr Old Fomalhaut belt: a similar CO+CO2 ice abundance in exocomets and solar system comets. ApJ 842:9

    Google Scholar 

  • Matrà L, Wilner DJ, Öberg KI et al (2018) Molecular reconnaissance of the β Pictoris gas disk with the SMA: a low HCN/(CO+CO2) outgassing ratio and predictions for future surveys. ApJ 853:147

    Article  ADS  Google Scholar 

  • Matthews BC, Krivov AV, Wyatt MC, Bryden G, Eiroa C (2014) Observations, modeling, and theory of debris disks. Protostars Planets VI:521–544

    Google Scholar 

  • Meng HYA, Su KYL, Rieke GH et al (2014) Large impacts around a solar-analog star in the era of terrestrial planet formation. Science 345:1032–1035

    Article  ADS  Google Scholar 

  • Meng HYA, Su KYL, Rieke GH et al (2015) Planetary collisions outside the solar system: time domain characterization of extreme debris disks. ApJ 805:77

    Google Scholar 

  • Meng HYA, Rieke GH, Su KYL, Gáspár A (2017) The first 40 million years of circumstellar disk evolution: the signature of terrestrial planet formation. ApJ 836:34

    Article  ADS  Google Scholar 

  • Mennesson B, Millan-Gabet R, Serabyn E et al (2014) Constraining the exozodiacal luminosity function of main-sequence stars: complete results from the Keck Nuller mid-infrared surveys. ApJ 797:119

    Google Scholar 

  • Milli J, Vigan A, Mouillet D et al (2017) Near-infrared scattered light properties of the HR 4796 A dust ring. A measured scattering phase function from 13.6deg to 166.6deg. A&A 599:A108

    Google Scholar 

  • Moór A, Curé M, Kóspál Á et al (2017) Molecular gas in debris disks around young A-type stars. ArXiv e-prints

    Google Scholar 

  • Morey É, Lestrade JF (2014) On the steady state collisional evolution of debris disks around M dwarfs. A&A 565:A58

    Google Scholar 

  • Moro-Martín A, Marshall JP, Kennedy G et al (2015) Does the presence of planets affect the frequency and properties of extrasolar Kuiper belts? Results from the Herschel debris and dunes surveys. ApJ 801:143

    Article  ADS  Google Scholar 

  • Muñoz-Gutiérrez MA, Pichardo B, Reyes-Ruiz M, Peimbert A (2015) Dynamical heating induced by dwarf planets on cold Kuiper belt-like debris disks. ApJ 811:L21

    Google Scholar 

  • Mustill AJ, Wyatt MC (2009) Debris disc stirring by secular perturbations from giant planets. MNRAS 399:1403–1414

    Article  ADS  Google Scholar 

  • Mustill AJ, Wyatt MC (2012) Dependence of a planet’s chaotic zone on particle eccentricity: the shape of debris disc inner edges. MNRAS 419:3074–3080

    Google Scholar 

  • Nesvold ER, Kuchner MJ (2015) Gap clearing by planets in a collisional debris disk. ApJ 798:83

    Google Scholar 

  • Nesvold ER, Naoz S, Fitzgerald MP (2017) HD 106906: a case study for external perturbations of a debris disk. ApJ 837:L6

    Article  ADS  Google Scholar 

  • Olofsson J, Samland M, Avenhaus H et al (2016) Azimuthal asymmetries in the debris disk around HD 61005. A massive collision of planetesimals? A&A 591:A108

    Google Scholar 

  • Pan M, Nesvold ER, Kuchner MJ (2016) Apocenter glow in eccentric debris disks: implications for Fomalhaut and 𝜖 Eridani. ApJ 832:81

    Article  ADS  Google Scholar 

  • Panić O, Holland WS, Wyatt MC et al (2013) First results of the SONS survey: submillimetre detections of debris discs. MNRAS 435:1037–1046

    Google Scholar 

  • Pawellek N, Krivov AV, Marshall JP et al (2014) Disk radii and grain sizes in Herschel-resolved debris disks. ApJ 792:65

    Article  ADS  Google Scholar 

  • Pearce TD, Wyatt MC (2014) Dynamical evolution of an eccentric planet and a less massive debris disc. MNRAS 443:2541–2560

    Article  ADS  Google Scholar 

  • Pearce TD, Wyatt MC (2015) Double-ringed debris discs could be the work of eccentric planets: explaining the strange morphology of HD 107146. MNRAS 453:3329–3340

    Article  ADS  Google Scholar 

  • Péricaud J, Di Folco E, Dutrey A, Guilloteau S, Piétu V (2017) The hybrid disks: a search and study to better understand evolution of disks. A&A 600:A62

    Article  ADS  Google Scholar 

  • Phillips NM, Greaves JS, Dent WRF et al (2010) Target selection for the SUNS and DEBRIS surveys for debris discs in the solar neighbourhood. MNRAS 403:1089–1101

    Google Scholar 

  • Rappaport S, Vanderburg A, Jacobs T et al (2017) Likely transiting exocomets detected by Kepler. ArXiv e-prints

    Article  ADS  Google Scholar 

  • Raymond SN, Armitage PJ, Moro-Martín A et al (2011) Debris disks as signposts of terrestrial planet formation. A&A 530:A62

    Article  ADS  Google Scholar 

  • Rhee JH, Song I, Zuckerman B (2008) Warm dust in the terrestrial planet zone of a sun-like pleiades star: collisions between planetary embryos? ApJ 675:777–783

    Google Scholar 

  • Ricci L, Carpenter JM, Fu B et al (2015) ALMA observations of the debris disk around the young solar analog HD 107146. ApJ 798:124

    Google Scholar 

  • Richert AJW, Lyra W, Kuchner M (2017) The interplay between radiation pressure and the photoelectric instability in optically thin disks of gas and dust. ArXiv e-prints

    Google Scholar 

  • Schneider A, Song I, Melis C et al (2013) The nearby, young, isolated, dusty star HD 166191. ApJ 777:78

    Article  ADS  Google Scholar 

  • Schüppler C, Krivov AV, Löhne T et al (2016) Origin and evolution of two-component debris discs and an application to the q1 Eridani system. MNRAS 461:2146–2154

    Article  ADS  Google Scholar 

  • Shannon A, Clarke C, Wyatt M (2014) Dancing with the stars: formation of the Fomalhaut triple system and its effect on the debris discs. MNRAS 442:142–147

    Article  ADS  Google Scholar 

  • Shannon A, Bonsor A, Kral Q, Matthews E (2016) The unseen planets of double belt debris disc systems. MNRAS 462:L116–L120

    Article  ADS  Google Scholar 

  • Sibthorpe B, Kennedy GM, Wyatt MC, Lestrade J-F, Greaves JS, Matthews BC, Duchêne G (2018) Analysis of the Herschel DEBRIS Sun-like star sample. MNRAS 475:3046–3064. https://doi.org/10.1093/mnras/stx3188. http://adsabs.harvard.edu/abs/2018MNRAS.475.3046S

    Article  ADS  Google Scholar 

  • Smith R, Wyatt MC, Dent WRF (2008) The nature of mid-infrared excesses from hot dust around Sun-like stars. A&A 485:897–915

    Article  ADS  Google Scholar 

  • Stark CC, Schneider G, Weinberger AJ et al (2014) Revealing asymmetries in the HD 181327 debris disk: a recent massive collision or interstellar medium warping. ApJ 789:58

    Article  ADS  Google Scholar 

  • Strubbe LE, Chiang EI (2006) Dust dynamics, surface brightness profiles, and thermal spectra of debris disks: the case of AU microscopii. ApJ 648:652–665

    Article  ADS  Google Scholar 

  • Su KYL, Rieke GH, Malhotra R et al (2013) Asteroid belts in debris disk twins: Vega and Fomalhaut. ApJ 763:118

    Article  ADS  Google Scholar 

  • Tabeshian M, Wiegert PA (2016) Detection and characterization of extrasolar planets through mean-motion resonances. I. Simulations of hypothetical debris disks. ApJ 818:159

    Google Scholar 

  • Takeuchi T, Artymowicz P (2001) Dust migration and morphology in optically thin circumstellar gas disks. ApJ 557:990–1006

    Article  ADS  Google Scholar 

  • Tamayo D (2014) Consequences of an eccentric orbit for Fomalhaut b. MNRAS 438:3577–3586

    Article  ADS  Google Scholar 

  • Telesco CM, Fisher RS, Wyatt MC et al (2005) Mid-infrared images of β Pictoris and the possible role of planetesimal collisions in the central disk. Nature 433:133–136

    Article  ADS  Google Scholar 

  • Thébault P, Wu Y (2008) Outer edges of debris discs. How sharp is sharp? A&A 481:713–724

    Article  ADS  Google Scholar 

  • Thureau ND, Greaves JS, Matthews BC et al (2014) An unbiased study of debris discs around A-type stars with Herschel. MNRAS 445:2558–2573

    Article  ADS  Google Scholar 

  • Vitense C, Krivov AV, Kobayashi H, Löhne T (2012) An improved model of the Edgeworth-Kuiper debris disk. A&A 540:A30

    Article  ADS  Google Scholar 

  • Wadhwa M, Amelin Y, Davis AM et al (2007) From dust to planetesimals: implications for the solar protoplanetary disk from short-lived radionuclides. Protostars Planets V:835–848

    Google Scholar 

  • Winn JN, Fabrycky DC (2015) The occurrence and architecture of exoplanetary systems. ARA&A 53:409–447

    Article  ADS  Google Scholar 

  • Wisdom J (1980) The resonance overlap criterion and the onset of stochastic behavior in the restricted three-body problem. AJ 85:1122–1133

    Article  ADS  Google Scholar 

  • Wyatt MC (2003) Resonant trapping of planetesimals by planet migration: debris disk clumps and Vega’s similarity to the solar system. ApJ 598:1321–1340

    Article  ADS  Google Scholar 

  • Wyatt MC (2005a) Spiral structure when setting up pericenter glow: possible giant planets at hundreds of AU in the HD 141569 disk. A&A 440:937–948

    Article  ADS  Google Scholar 

  • Wyatt MC (2005b) The insignificance of P-R drag in detectable extrasolar planetesimal belts. A&A 433:1007–1012

    Article  ADS  Google Scholar 

  • Wyatt MC (2006) Dust in resonant extrasolar Kuiper belts: grain size and wavelength dependence of disk structure. ApJ 639:1153–1165

    Article  ADS  Google Scholar 

  • Wyatt MC (2008) Evolution of debris disks. ARA&A 46:339–383

    Article  ADS  Google Scholar 

  • Wyatt MC, Dent WRF (2002) Collisional processes in extrasolar planetesimal discs – dust clumps in Fomalhaut’s debris disc. MNRAS 334:589–607

    Article  ADS  Google Scholar 

  • Wyatt MC, Jackson AP (2016) Insights into planet formation from debris disks. II. Giant impacts in extrasolar planetary systems. Space Sci Rev 205:231–265

    Article  ADS  Google Scholar 

  • Wyatt MC, Dermott SF, Telesco CM et al (1999) How observations of circumstellar disk asymmetries can reveal hidden planets: pericenter glow and its application to the HR 4796 Disk. ApJ 527:918–944

    Article  ADS  Google Scholar 

  • Wyatt MC, Clarke CJ, Greaves JS (2007a) Origin of the metallicity dependence of exoplanet host stars in the protoplanetary disc mass distribution. MNRAS 380:1737–1743

    Article  ADS  Google Scholar 

  • Wyatt MC, Smith R, Greaves JS et al (2007b) Transience of hot dust around Sun-like stars. ApJ 658:569–583

    Article  ADS  Google Scholar 

  • Wyatt MC, Smith R, Su KYL et al (2007c) Steady state evolution of debris disks around A stars. ApJ 663:365–382

    Article  ADS  Google Scholar 

  • Wyatt MC, Kennedy G, Sibthorpe B et al (2012) Herschel imaging of 61 Vir: implications for the prevalence of debris in low-mass planetary systems. MNRAS 424:1206–1223

    Article  ADS  Google Scholar 

  • Wyatt MC, Panić O, Kennedy GM, Matrà L (2015) Five steps in the evolution from protoplanetary to debris disk. Ap&SS 357:103

    Article  ADS  Google Scholar 

  • Wyatt MC, Bonsor A, Jackson AP, Marino S, Shannon A (2017) How to design a planetary system for different scattering outcomes: giant impact sweet spot, maximizing exocomets, scattered discs. MNRAS 464:3385–3407

    Article  ADS  Google Scholar 

  • Zheng X, Lin DNC, Kouwenhoven MBN (2017) Planetesimal clearing and size-dependent asteroid retention by secular resonance sweeping during the depletion of the solar nebula. ApJ 836:207

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark C. Wyatt .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wyatt, M.C. (2018). Debris Disks: Probing Planet Formation. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-30648-3_146-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30648-3_146-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30648-3

  • Online ISBN: 978-3-319-30648-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics