Debris Disks: Probing Planet Formation

  • Mark C. Wyatt
Living reference work entry


Debris disks are the dust disks found around ∼20% of nearby main sequence stars in far-IR surveys. They can be considered as descendants of protoplanetary disks or components of planetary systems, providing valuable information on circumstellar disk evolution and the outcome of planet formation. The debris disk population can be explained by the steady collisional erosion of planetesimal belts; population models constrain where (10–100 au) and in what quantity (>1M) planetesimals (>10 km in size) typically form in protoplanetary disks. Gas is now seen long into the debris disk phase. Some of these are secondary implying planetesimals have a solar system comet-like composition, but some systems may retain primordial gas. Ongoing planet formation processes are invoked for some debris disks, such as the continued growth of dwarf planets in an unstirred disk or the growth of terrestrial planets through giant impacts. Planets imprint structure on debris disks in many ways; images of gaps, clumps, warps, eccentricities and other disk asymmetries are readily explained by planets at ≫5 au. Hot dust in the region planets are commonly found (<5 au) is seen for a growing number of stars. This dust usually originates in an outer belt (e.g., from exocomets), although an asteroid belt or recent collision is sometimes inferred.


Circumstellar disks Planet formation Debris disks Extrasolar planets Exocomets 


  1. Augereau JC, Nelson RP, Lagrange AM, Papaloizou JCB, Mouillet D (2001) Dynamical modeling of large scale asymmetries in the beta Pictoris dust disk. A&A 370:447–455ADSCrossRefGoogle Scholar
  2. Beust H, Morbidelli A (1996) Mean-motion resonances as a source for infalling comets toward β pictoris. Icarus 120:358–370ADSCrossRefGoogle Scholar
  3. Beust H, Augereau JC, Bonsor A et al (2014) An independent determination of Fomalhaut b’s orbit and the dynamical effects on the outer dust belt. A&A 561:A43CrossRefGoogle Scholar
  4. Bonsor A, Augereau JC, Thébault P (2012) Scattering of small bodies by planets: a potential origin for exozodiacal dust? A&A 548:A104CrossRefGoogle Scholar
  5. Bonsor A, Raymond SN, Augereau JC (2013) The short-lived production of exozodiacal dust in the aftermath of a dynamical instability in planetary systems. MNRAS 433:2938–2945ADSCrossRefGoogle Scholar
  6. Bonsor A, Raymond SN, Augereau JC, Ormel CW (2014) Planetesimal-driven migration as an explanation for observations of high levels of warm, exozodiacal dust. MNRAS 441:2380–2391ADSCrossRefGoogle Scholar
  7. Booth M, Kennedy G, Sibthorpe B et al (2013) Resolved debris discs around A stars in the Herschel DEBRIS survey. MNRAS 428:1263–1280ADSCrossRefGoogle Scholar
  8. Booth M, Dent WRF, Jordán A et al (2017) The northern arc of 𝜖 Eridani’s debris ring as seen by ALMA. MNRAS 469:3200–3212ADSCrossRefGoogle Scholar
  9. Bowler BP (2016) Imaging extrasolar giant Planets. PASP 128(10):102001ADSCrossRefGoogle Scholar
  10. Boyajian TS, LaCourse DM, Rappaport SA et al (2016) Planet hunters IX. KIC 8462852 – where’s the flux? MNRAS 457:3988–4004ADSCrossRefGoogle Scholar
  11. Brandeker A, Cataldi G, Olofsson G et al (2016) Herschel detects oxygen in the β Pictoris debris disk. A&A 591:A27Google Scholar
  12. Bryden G, Beichman CA, Carpenter JM et al (2009) Planets and debris disks: results from a Spitzer/MIPS search for infrared excess. ApJ 705:1226–1236ADSCrossRefGoogle Scholar
  13. Carpenter JM, Mamajek EE, Hillenbrand LA, Meyer MR (2009) Debris disks in the upper scorpius OB association. ApJ 705:1646–1671Google Scholar
  14. Carrera D, Gorti U, Johansen A, Davies MB (2017) Planetesimal formation by the streaming instability in a photoevaporating disk. ApJ 839:16Google Scholar
  15. Chen CH, Mittal T, Kuchner M et al (2014) The Spitzer infrared spectrograph debris disk catalog. I. Continuum analysis of unresolved targets. ApJS 211:25ADSCrossRefGoogle Scholar
  16. Chiang E, Kite E, Kalas P, Graham JR, Clampin M (2009) Fomalhaut’s debris disk and planet: constraining the mass of Fomalhaut b from disk morphology. ApJ 693:734–749ADSCrossRefGoogle Scholar
  17. Cieza LA, Olofsson J, Harvey PM et al (2013) The Herschel DIGIT survey of weak-line T Tauri stars: implications for disk evolution and dissipation. ApJ 762:100Google Scholar
  18. Currie T, Lisse CM, Kuchner M et al (2015) Direct imaging and spectroscopy of a young extrasolar Kuiper belt in the nearest OB association. ApJ 807:L7ADSCrossRefGoogle Scholar
  19. Dent WRF, Wyatt MC, Roberge A et al (2014) Molecular gas clumps from the destruction of icy bodies in the β pictoris debris disk. Science 343:1490–1492ADSCrossRefGoogle Scholar
  20. Eiroa C, Marshall JP, Mora A et al (2013) DUst around NEarby Stars. The survey observational results. A&A 555:A11Google Scholar
  21. Eistrup C, Walsh C, van Dishoeck EF (2017) Molecular abundances and C/O ratios in chemically evolving planet-forming disk midplanes. ArXiv e-printsGoogle Scholar
  22. Ercolano B, Jennings J, Rosotti G, Birnstiel T (2017) X-ray photoevaporation’s limited success in the formation of planetesimals by the streaming instability. ArXiv e-printsGoogle Scholar
  23. Faber P, Quillen AC (2007) The total number of giant planets in debris discs with central clearings. MNRAS 382:1823–1828ADSCrossRefGoogle Scholar
  24. Faramaz V, Ertel S, Booth M, Cuadra J, Simmonds C (2017) Inner mean-motion resonances with eccentric planets: a possible origin for exozodiacal dust clouds. MNRAS 465:2352–2365ADSCrossRefGoogle Scholar
  25. Fischer DA, Valenti J (2005) The planet-metallicity correlation. ApJ 622:1102–1117ADSCrossRefGoogle Scholar
  26. Gáspár A, Rieke GH, Balog Z (2013) The collisional evolution of debris disks. ApJ 768:25ADSCrossRefGoogle Scholar
  27. Gáspár A, Rieke GH, Ballering N (2016) The correlation between metallicity and debris disk mass. ApJ 826:171ADSCrossRefGoogle Scholar
  28. Geiler F, Krivov AV (2017) Does warm debris dust stem from asteroid belts? MNRAS 468:959–970ADSCrossRefGoogle Scholar
  29. Genda H, Kobayashi H, Kokubo E (2015) Warm debris disks produced by giant impacts during terrestrial planet formation. ApJ 810:136ADSCrossRefGoogle Scholar
  30. Golimowski DA, Krist JE, Stapelfeldt KR et al (2011) Hubble and Spitzer space telescope observations of the debris disk around the nearby K Dwarf HD 92945. AJ 142:30Google Scholar
  31. Greaves JS, Wyatt MC (2003) Some anomalies in the occurrence of debris discs around main-sequence A and G stars. MNRAS 345:1212–1222ADSCrossRefGoogle Scholar
  32. Greaves JS, Holland WS, Matthews BC et al (2016) Gas and dust around A-type stars at tens of Myr: signatures of cometary breakup. MNRAS 461:3910–3917ADSCrossRefGoogle Scholar
  33. Hardy A, Caceres C, Schreiber MR et al (2015) Probing the final stages of protoplanetary disk evolution with ALMA. A&A 583:A66Google Scholar
  34. Hasegawa Y, Pudritz RE (2012) Evolutionary tracks of trapped, accreting protoplanets: the origin of the observed mass-period relation. ApJ 760:117ADSCrossRefGoogle Scholar
  35. Heng K, Tremaine S (2010) Long-lived planetesimal discs. MNRAS 401:867–889ADSCrossRefGoogle Scholar
  36. Hughes AM, Wilner DJ, Mason B et al (2012) Confirming the primarily smooth structure of the Vega debris disk at millimeter wavelengths. ApJ 750:82Google Scholar
  37. Hughes AM, Lieman-Sifry J, Flaherty KM et al (2017) Radial surface density profiles of gas and dust in the debris disk around 49 Ceti. ApJ 839:86ADSCrossRefGoogle Scholar
  38. Jackson AP, Wyatt MC (2012) Debris from terrestrial planet formation: the Moon-forming collision. MNRAS 425:657–679ADSCrossRefGoogle Scholar
  39. Jackson AP, Wyatt MC, Bonsor A, Veras D (2014) Debris froms giant impacts between planetary embryos at large orbital radii. MNRAS 440:3757–3777ADSCrossRefGoogle Scholar
  40. Kaib NA, White EB, Izidoro A (2017) Simulations of the Fomalhaut system within its local galactic environment. ArXiv e-printsGoogle Scholar
  41. Kains N, Wyatt MC, Greaves JS (2011) Steady-state evolution of debris discs around solar-type stars. MNRAS 414:2486–2497ADSCrossRefGoogle Scholar
  42. Kalas P, Graham JR, Fitzgerald MP, Clampin M (2013) STIS coronagraphic imaging of Fomalhaut: main belt structure and the orbit of Fomalhaut b. ApJ 775:56ADSCrossRefGoogle Scholar
  43. Kennedy GM, Wyatt MC (2010) Are debris discs self-stirred? MNRAS 405:1253–1270Google Scholar
  44. Kennedy GM, Wyatt MC (2013) The bright end of the exo-Zodi luminosity function: disc evolution and implications for exo-Earth detectability. MNRAS 433:2334–2356ADSCrossRefGoogle Scholar
  45. Kennedy GM, Wyatt MC (2014) Do two-temperature debris discs have multiple belts? MNRAS 444:3164–3182Google Scholar
  46. Kenyon SJ, Bromley BC (2002) Dusty rings: signposts of recent planet formation. ApJ 577:L35–L38ADSCrossRefGoogle Scholar
  47. Kenyon SJ, Bromley BC (2005) Prospects for detection of catastrophic collisions in debris disks. AJ 130:269–279ADSCrossRefGoogle Scholar
  48. Kenyon SJ, Bromley BC (2008) Variations on debris disks: icy planet formation at 30–150 AU for 1–3 MŁ main-sequence stars. ApJS 179:451–483Google Scholar
  49. Kenyon SJ, Bromley BC (2010) Variations on debris disks. II. Icy planet formation as a function of the bulk properties and initial sizes of planetesimals. ApJS 188:242–279Google Scholar
  50. Kiefer F, Lecavelier des Etangs A, Boissier J et al (2014) Two families of exocomets in the β pictoris system. Nature 514:462–464ADSCrossRefGoogle Scholar
  51. Kóspál Á, Moór A, Juhász A et al (2013) ALMA observations of the molecular gas in the debris disk of the 30 Myr old star HD 21997. ApJ 776:77ADSCrossRefGoogle Scholar
  52. Kral Q, Thébault P, Augereau JC, Boccaletti A, Charnoz S (2015) Signatures of massive collisions in debris discs. A self-consistent numerical model. A&A 573:A39CrossRefGoogle Scholar
  53. Kral Q, Wyatt M, Carswell RF et al (2016) A self-consistent model for the evolution of the gas produced in the debris disc of β pictoris. MNRAS 461:845–858ADSCrossRefGoogle Scholar
  54. Kral Q, Matrà L, Wyatt MC, Kennedy GM (2017) Predictions for the secondary CO, C and O gas content of debris discs from the destruction of volatile-rich planetesimals. MNRAS 469: 521–550Google Scholar
  55. Krijt S, Kama M (2014) A dearth of small particles in debris disks. An energy-constrained smallest fragment size. A&A 566:L2ADSCrossRefGoogle Scholar
  56. Krivov AV, Löhne T, Sremčević M (2006) Dust distributions in debris disks: effects of gravity, radiation pressure and collisions. A&A 455:509–519ADSCrossRefGoogle Scholar
  57. Krivov AV, Eiroa C, Löhne T et al (2013) Herschel’s “Cold Debris Disks”: background galaxies or quiescent rims of planetary systems? ApJ 772:32ADSCrossRefGoogle Scholar
  58. Krivov AV, Ide A, Löhne T, Johansen A, Blum J (2018) Debris disc constraints on planetesimal formation. MNRAS 474:2564–2575ADSCrossRefGoogle Scholar
  59. Lagrange AM, Bonnefoy M, Chauvin G et al (2010) A giant planet imaged in the disk of the young star β pictoris. Science 329:57Google Scholar
  60. Lee EJ, Chiang E (2016) A primer on unifying debris disk morphologies. ApJ 827:125ADSCrossRefGoogle Scholar
  61. Levison HF, Duncan MJ (1997) From the Kuiper belt to Jupiter-family comets: the spatial distribution of ecliptic comets. Icarus 127:13–32ADSCrossRefGoogle Scholar
  62. Li D, Telesco CM, Wright CM (2012) The mineralogy and structure of the inner debris disk of β pictoris. ApJ 759:81ADSCrossRefGoogle Scholar
  63. Lieman-Sifry J, Hughes AM, Carpenter JM et al (2016) Debris disks in the scorpius-centaurus OB association resolved by ALMA. ApJ 828:25ADSCrossRefGoogle Scholar
  64. Lisse CM, Chen CH, Wyatt MC et al (2009) Abundant circumstellar silica dust and SiO gas created by a giant hypervelocity collision in the ˜12 Myr HD172555 system. ApJ 701:2019–2032Google Scholar
  65. Löhne T, Krivov AV, Rodmann J (2008) Long-term collisional evolution of debris disks. ApJ 673:1123–1137ADSCrossRefGoogle Scholar
  66. Löhne T, Krivov AV, Kirchschlager F, Sende JA, Wolf S (2017) Collisions and drag in debris discs with eccentric parent belts. A&A 605:A7ADSCrossRefGoogle Scholar
  67. Lyra W, Kuchner M (2013) Formation of sharp eccentric rings in debris disks with gas but without planets. Nature 499:184–187ADSCrossRefGoogle Scholar
  68. MacGregor MA, Wilner DJ, Chandler C et al (2016) Constraints on planetesimal collision models in debris disks. ApJ 823:79ADSCrossRefGoogle Scholar
  69. MacGregor MA, Matrà L, Kalas P et al (2017) A complete ALMA map of the Fomalhaut debris disk. ApJ 842:8ADSCrossRefGoogle Scholar
  70. Marino S, Matrà L, Stark C et al (2016) Exocometary gas in the HD 181327 debris ring. MNRAS 460:2933–2944ADSCrossRefGoogle Scholar
  71. Marino S, Wyatt MC, Kennedy GM et al (2017a) ALMA observations of the multiplanet system 61 Vir: what lies outside super-Earth systems? MNRAS 469:3518–3531Google Scholar
  72. Marino S, Wyatt MC, Panić O et al (2017b) ALMA observations of the η Corvi debris disc: inward scattering of CO-rich exocomets by a chain of 3–30 M planets? MNRAS 465:2595–2615Google Scholar
  73. Matrà L, Dent WRF, Wyatt MC et al (2017a) Exocometary gas structure, origin and physical properties around β Pictoris through ALMA CO multitransition observations. MNRAS 464:1415–1433ADSCrossRefGoogle Scholar
  74. Matrà L, MacGregor MA, Kalas P et al (2017b) Detection of exocometary CO within the 440 Myr Old Fomalhaut belt: a similar CO+CO2 ice abundance in exocomets and solar system comets. ApJ 842:9Google Scholar
  75. Matrà L, Wilner DJ, Öberg KI et al (2018) Molecular reconnaissance of the β Pictoris gas disk with the SMA: a low HCN/(CO+CO2) outgassing ratio and predictions for future surveys. ApJ 853:147ADSCrossRefGoogle Scholar
  76. Matthews BC, Krivov AV, Wyatt MC, Bryden G, Eiroa C (2014) Observations, modeling, and theory of debris disks. Protostars Planets VI:521–544Google Scholar
  77. Meng HYA, Su KYL, Rieke GH et al (2014) Large impacts around a solar-analog star in the era of terrestrial planet formation. Science 345:1032–1035ADSCrossRefGoogle Scholar
  78. Meng HYA, Su KYL, Rieke GH et al (2015) Planetary collisions outside the solar system: time domain characterization of extreme debris disks. ApJ 805:77Google Scholar
  79. Meng HYA, Rieke GH, Su KYL, Gáspár A (2017) The first 40 million years of circumstellar disk evolution: the signature of terrestrial planet formation. ApJ 836:34ADSCrossRefGoogle Scholar
  80. Mennesson B, Millan-Gabet R, Serabyn E et al (2014) Constraining the exozodiacal luminosity function of main-sequence stars: complete results from the Keck Nuller mid-infrared surveys. ApJ 797:119Google Scholar
  81. Milli J, Vigan A, Mouillet D et al (2017) Near-infrared scattered light properties of the HR 4796 A dust ring. A measured scattering phase function from 13.6deg to 166.6deg. A&A 599:A108Google Scholar
  82. Moór A, Curé M, Kóspál Á et al (2017) Molecular gas in debris disks around young A-type stars. ArXiv e-printsGoogle Scholar
  83. Morey É, Lestrade JF (2014) On the steady state collisional evolution of debris disks around M dwarfs. A&A 565:A58Google Scholar
  84. Moro-Martín A, Marshall JP, Kennedy G et al (2015) Does the presence of planets affect the frequency and properties of extrasolar Kuiper belts? Results from the Herschel debris and dunes surveys. ApJ 801:143ADSCrossRefGoogle Scholar
  85. Muñoz-Gutiérrez MA, Pichardo B, Reyes-Ruiz M, Peimbert A (2015) Dynamical heating induced by dwarf planets on cold Kuiper belt-like debris disks. ApJ 811:L21Google Scholar
  86. Mustill AJ, Wyatt MC (2009) Debris disc stirring by secular perturbations from giant planets. MNRAS 399:1403–1414ADSCrossRefGoogle Scholar
  87. Mustill AJ, Wyatt MC (2012) Dependence of a planet’s chaotic zone on particle eccentricity: the shape of debris disc inner edges. MNRAS 419:3074–3080Google Scholar
  88. Nesvold ER, Kuchner MJ (2015) Gap clearing by planets in a collisional debris disk. ApJ 798:83Google Scholar
  89. Nesvold ER, Naoz S, Fitzgerald MP (2017) HD 106906: a case study for external perturbations of a debris disk. ApJ 837:L6ADSCrossRefGoogle Scholar
  90. Olofsson J, Samland M, Avenhaus H et al (2016) Azimuthal asymmetries in the debris disk around HD 61005. A massive collision of planetesimals? A&A 591:A108Google Scholar
  91. Pan M, Nesvold ER, Kuchner MJ (2016) Apocenter glow in eccentric debris disks: implications for Fomalhaut and 𝜖 Eridani. ApJ 832:81ADSCrossRefGoogle Scholar
  92. Panić O, Holland WS, Wyatt MC et al (2013) First results of the SONS survey: submillimetre detections of debris discs. MNRAS 435:1037–1046Google Scholar
  93. Pawellek N, Krivov AV, Marshall JP et al (2014) Disk radii and grain sizes in Herschel-resolved debris disks. ApJ 792:65ADSCrossRefGoogle Scholar
  94. Pearce TD, Wyatt MC (2014) Dynamical evolution of an eccentric planet and a less massive debris disc. MNRAS 443:2541–2560ADSCrossRefGoogle Scholar
  95. Pearce TD, Wyatt MC (2015) Double-ringed debris discs could be the work of eccentric planets: explaining the strange morphology of HD 107146. MNRAS 453:3329–3340ADSCrossRefGoogle Scholar
  96. Péricaud J, Di Folco E, Dutrey A, Guilloteau S, Piétu V (2017) The hybrid disks: a search and study to better understand evolution of disks. A&A 600:A62ADSCrossRefGoogle Scholar
  97. Phillips NM, Greaves JS, Dent WRF et al (2010) Target selection for the SUNS and DEBRIS surveys for debris discs in the solar neighbourhood. MNRAS 403:1089–1101Google Scholar
  98. Rappaport S, Vanderburg A, Jacobs T et al (2017) Likely transiting exocomets detected by Kepler. ArXiv e-printsADSCrossRefGoogle Scholar
  99. Raymond SN, Armitage PJ, Moro-Martín A et al (2011) Debris disks as signposts of terrestrial planet formation. A&A 530:A62ADSCrossRefGoogle Scholar
  100. Rhee JH, Song I, Zuckerman B (2008) Warm dust in the terrestrial planet zone of a sun-like pleiades star: collisions between planetary embryos? ApJ 675:777–783Google Scholar
  101. Ricci L, Carpenter JM, Fu B et al (2015) ALMA observations of the debris disk around the young solar analog HD 107146. ApJ 798:124Google Scholar
  102. Richert AJW, Lyra W, Kuchner M (2017) The interplay between radiation pressure and the photoelectric instability in optically thin disks of gas and dust. ArXiv e-printsGoogle Scholar
  103. Schneider A, Song I, Melis C et al (2013) The nearby, young, isolated, dusty star HD 166191. ApJ 777:78ADSCrossRefGoogle Scholar
  104. Schüppler C, Krivov AV, Löhne T et al (2016) Origin and evolution of two-component debris discs and an application to the q1 Eridani system. MNRAS 461:2146–2154ADSCrossRefGoogle Scholar
  105. Shannon A, Clarke C, Wyatt M (2014) Dancing with the stars: formation of the Fomalhaut triple system and its effect on the debris discs. MNRAS 442:142–147ADSCrossRefGoogle Scholar
  106. Shannon A, Bonsor A, Kral Q, Matthews E (2016) The unseen planets of double belt debris disc systems. MNRAS 462:L116–L120ADSCrossRefGoogle Scholar
  107. Sibthorpe B, Kennedy GM, Wyatt MC, Lestrade J-F, Greaves JS, Matthews BC, Duchêne G (2018) Analysis of the Herschel DEBRIS Sun-like star sample. MNRAS 475:3046–3064. Scholar
  108. Smith R, Wyatt MC, Dent WRF (2008) The nature of mid-infrared excesses from hot dust around Sun-like stars. A&A 485:897–915ADSCrossRefGoogle Scholar
  109. Stark CC, Schneider G, Weinberger AJ et al (2014) Revealing asymmetries in the HD 181327 debris disk: a recent massive collision or interstellar medium warping. ApJ 789:58ADSCrossRefGoogle Scholar
  110. Strubbe LE, Chiang EI (2006) Dust dynamics, surface brightness profiles, and thermal spectra of debris disks: the case of AU microscopii. ApJ 648:652–665ADSCrossRefGoogle Scholar
  111. Su KYL, Rieke GH, Malhotra R et al (2013) Asteroid belts in debris disk twins: Vega and Fomalhaut. ApJ 763:118ADSCrossRefGoogle Scholar
  112. Tabeshian M, Wiegert PA (2016) Detection and characterization of extrasolar planets through mean-motion resonances. I. Simulations of hypothetical debris disks. ApJ 818:159Google Scholar
  113. Takeuchi T, Artymowicz P (2001) Dust migration and morphology in optically thin circumstellar gas disks. ApJ 557:990–1006ADSCrossRefGoogle Scholar
  114. Tamayo D (2014) Consequences of an eccentric orbit for Fomalhaut b. MNRAS 438:3577–3586ADSCrossRefGoogle Scholar
  115. Telesco CM, Fisher RS, Wyatt MC et al (2005) Mid-infrared images of β Pictoris and the possible role of planetesimal collisions in the central disk. Nature 433:133–136ADSCrossRefGoogle Scholar
  116. Thébault P, Wu Y (2008) Outer edges of debris discs. How sharp is sharp? A&A 481:713–724ADSCrossRefGoogle Scholar
  117. Thureau ND, Greaves JS, Matthews BC et al (2014) An unbiased study of debris discs around A-type stars with Herschel. MNRAS 445:2558–2573ADSCrossRefGoogle Scholar
  118. Vitense C, Krivov AV, Kobayashi H, Löhne T (2012) An improved model of the Edgeworth-Kuiper debris disk. A&A 540:A30ADSCrossRefGoogle Scholar
  119. Wadhwa M, Amelin Y, Davis AM et al (2007) From dust to planetesimals: implications for the solar protoplanetary disk from short-lived radionuclides. Protostars Planets V:835–848Google Scholar
  120. Winn JN, Fabrycky DC (2015) The occurrence and architecture of exoplanetary systems. ARA&A 53:409–447ADSCrossRefGoogle Scholar
  121. Wisdom J (1980) The resonance overlap criterion and the onset of stochastic behavior in the restricted three-body problem. AJ 85:1122–1133ADSCrossRefGoogle Scholar
  122. Wyatt MC (2003) Resonant trapping of planetesimals by planet migration: debris disk clumps and Vega’s similarity to the solar system. ApJ 598:1321–1340ADSCrossRefGoogle Scholar
  123. Wyatt MC (2005a) Spiral structure when setting up pericenter glow: possible giant planets at hundreds of AU in the HD 141569 disk. A&A 440:937–948ADSCrossRefGoogle Scholar
  124. Wyatt MC (2005b) The insignificance of P-R drag in detectable extrasolar planetesimal belts. A&A 433:1007–1012ADSCrossRefGoogle Scholar
  125. Wyatt MC (2006) Dust in resonant extrasolar Kuiper belts: grain size and wavelength dependence of disk structure. ApJ 639:1153–1165ADSCrossRefGoogle Scholar
  126. Wyatt MC (2008) Evolution of debris disks. ARA&A 46:339–383ADSCrossRefGoogle Scholar
  127. Wyatt MC, Dent WRF (2002) Collisional processes in extrasolar planetesimal discs – dust clumps in Fomalhaut’s debris disc. MNRAS 334:589–607ADSCrossRefGoogle Scholar
  128. Wyatt MC, Jackson AP (2016) Insights into planet formation from debris disks. II. Giant impacts in extrasolar planetary systems. Space Sci Rev 205:231–265ADSCrossRefGoogle Scholar
  129. Wyatt MC, Dermott SF, Telesco CM et al (1999) How observations of circumstellar disk asymmetries can reveal hidden planets: pericenter glow and its application to the HR 4796 Disk. ApJ 527:918–944ADSCrossRefGoogle Scholar
  130. Wyatt MC, Clarke CJ, Greaves JS (2007a) Origin of the metallicity dependence of exoplanet host stars in the protoplanetary disc mass distribution. MNRAS 380:1737–1743ADSCrossRefGoogle Scholar
  131. Wyatt MC, Smith R, Greaves JS et al (2007b) Transience of hot dust around Sun-like stars. ApJ 658:569–583ADSCrossRefGoogle Scholar
  132. Wyatt MC, Smith R, Su KYL et al (2007c) Steady state evolution of debris disks around A stars. ApJ 663:365–382ADSCrossRefGoogle Scholar
  133. Wyatt MC, Kennedy G, Sibthorpe B et al (2012) Herschel imaging of 61 Vir: implications for the prevalence of debris in low-mass planetary systems. MNRAS 424:1206–1223ADSCrossRefGoogle Scholar
  134. Wyatt MC, Panić O, Kennedy GM, Matrà L (2015) Five steps in the evolution from protoplanetary to debris disk. Ap&SS 357:103ADSCrossRefGoogle Scholar
  135. Wyatt MC, Bonsor A, Jackson AP, Marino S, Shannon A (2017) How to design a planetary system for different scattering outcomes: giant impact sweet spot, maximizing exocomets, scattered discs. MNRAS 464:3385–3407ADSCrossRefGoogle Scholar
  136. Zheng X, Lin DNC, Kouwenhoven MBN (2017) Planetesimal clearing and size-dependent asteroid retention by secular resonance sweeping during the depletion of the solar nebula. ApJ 836:207ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute of AstronomyUniversity of CambridgeCambridgeUK

Section editors and affiliations

  • Ralph Pudritz
    • 1
  1. 1.Origins InstituteMcMaster UniversityHamiltonCanada

Personalised recommendations