Dynamical Evolution of Planetary Systems

  • Alessandro Morbidelli
Living reference work entry


Planetary systems can evolve dynamically even after the full growth of the planets themselves. There is actually circumstantial evidence that most planetary systems become unstable after the disappearance of gas from the protoplanetary disk. These instabilities can be due to the original system being too crowded and too closely packed or to external perturbations such as tides, planetesimal scattering, or torques from distant stellar companions. The Solar System was not exceptional in this sense. In its inner part, a crowded system of planetary embryos became unstable, leading to a series of mutual impacts that built the terrestrial planets on a timescale of ∼100 My. In its outer part, the giant planets became temporarily unstable, and their orbital configuration expanded under the effect of mutual encounters. A planet might have been ejected in this phase. Thus, the orbital distributions of planetary systems that we observe today, both solar and extrasolar ones, can be different from those emerging from the formation process, and it is important to consider possible long-term evolutionary effects to connect the two.


Planet Evolution Planet Migration Planet Instability Dynamical Friction Resonant Chains 


  1. Adachi I, Hayashi C, Nakazawa K (1976) The gas drag effect on the elliptical motion of a solid body in the primordial solar nebula. Prog Theor Phys 56:1756–1771ADSCrossRefGoogle Scholar
  2. Adams FC, Laughlin G, Bloch AM (2008) Turbulence implies that mean motion resonances are rare. Astrophys J 683:1117–1128ADSCrossRefGoogle Scholar
  3. Agnor CB, Canup RM, Levison HF (1999) On the character and consequences of large impacts in the late stage of terrestrial planet formation. Icarus 142:219–237Google Scholar
  4. Armitage PJ (2010) Astrophysics of planet formation. Cambridge University Press, Cambridge, p 294. ISBN 978-0-521-88745-8 (hardback)Google Scholar
  5. Bai X-N, Stone JM (2013) Wind-driven accretion in protoplanetary disks. I. Suppression of the magnetorotational instability and launching of the magnetocentrifugal wind. Astrophys J 769:76Google Scholar
  6. Baruteau C, Lin DNC (2010) Protoplanetary migration in turbulent isothermal disks. Astrophys J 709:759–773Google Scholar
  7. Batygin K, Adams FC (2017) An analytic criterion for turbulent disruption of planetary resonances. Astron J 153:120ADSCrossRefGoogle Scholar
  8. Batygin K, Morbidelli A (2013a) Analytical treatment of planetary resonances. A&A 556:A28ADSCrossRefGoogle Scholar
  9. Batygin K, Morbidelli A (2013b) Dissipative divergence of resonant orbits. Astron J 145:1ADSCrossRefGoogle Scholar
  10. Batygin K, Morbidelli A, Tsiganis K (2011) Formation and evolution of planetary systems in presence of highly inclined stellar perturbers. A&A 533:A7ADSCrossRefGoogle Scholar
  11. Batygin K, Brown ME, Betts H (2012) Instability-driven dynamical evolution model of a primordially five-planet outer solar system. Astrophys J 744:L3Google Scholar
  12. Beauge C, Nesvorny D (2012) Multiple-planet scattering and the origin of hot Jupiters. Astrophys J 751:119Google Scholar
  13. Bitsch B, Johansen A, Lambrechts M, Morbidelli A (2015) The structure of protoplanetary discs around evolving young stars. A&A 575:A28Google Scholar
  14. Bolmont E, Mathis S (2016) Effect of the rotation and tidal dissipation history of stars on the evolution of close-in planets. Celest Mech Dyn Astron 126:275–296ADSCrossRefGoogle Scholar
  15. Bonsor A, Raymond SN, Augereau J-C, Ormel CW (2014) Planetesimal-driven migration as an explanation for observations of high levels of warm, exozodiacal dust. Mon Not R Astron Soc 441:2380–2391ADSCrossRefGoogle Scholar
  16. Brasser R, Morbidelli A (2013) Oort cloud and scattered disc formation during a late dynamical instability in the solar system. Icarus 225:40–49ADSCrossRefGoogle Scholar
  17. Brasser R, Duncan MJ, Levison HF (2007) Embedded star clusters and the formation of the Oort cloud. II. The effect of the primordial solar nebula. Icarus 191:413–433ADSCrossRefGoogle Scholar
  18. Capobianco CC, Duncan M, Levison HF (2011) Planetesimal-driven planet migration in the presence of a gas disk. Icarus 211:819–831ADSCrossRefGoogle Scholar
  19. Chambers JE (2001) Making more terrestrial planets. Icarus 152:205–224ADSCrossRefGoogle Scholar
  20. Chambers JE, Wetherill GW (1998) Making the terrestrial planets: N-body integrations of planetary embryos in three dimensions. Icarus 136:304–327ADSCrossRefGoogle Scholar
  21. Chambers JE, Wetherill GW, Boss AP (1996) The stability of multi-planet systems. Icarus 119:261–268ADSCrossRefGoogle Scholar
  22. Chatterjee S, Ford EB (2015) Planetesimal interactions can explain the mysterious period ratios of small near-resonant planets. Astrophys J 803:33ADSCrossRefGoogle Scholar
  23. Chatterjee S, Ford EB, Matsumura S, Rasio FA (2008) Dynamical outcomes of planet-planet scattering. Astrophys J 686:580–602ADSCrossRefGoogle Scholar
  24. Chatterjee S, Tan JC, (2014) Inside-out Planet Formation. Astrophys J 780:53ADSCrossRefGoogle Scholar
  25. Chirikov BV (1979) A universal instability of many dimensional oscillator systems. Phys Rep 52:265ADSMathSciNetCrossRefGoogle Scholar
  26. Cossou C, Raymond SN, Hersant F, Pierens A (2014) Hot super-Earths and giant planet cores from different migration histories. A&A 569:A56ADSCrossRefGoogle Scholar
  27. Cresswell P, Nelson RP (2008) Three-dimensional simulations of multiple protoplanets embedded in a protostellar disc. A&A 482:677–690Google Scholar
  28. Deck KM, Batygin K (2015) Migration of two massive planets into (and out of) first order mean motion resonances. Astrophys J 810:119ADSCrossRefGoogle Scholar
  29. Deck KM, Payne M, Holman MJ (2013) First-order resonance overlap and the stability of close two-planet systems. Astrophys J 774:129ADSCrossRefGoogle Scholar
  30. Deienno R, Gomes RS, Walsh KJ, Morbidelli A, Nesvorny D (2016) Is the grand tack model compatible with the orbital distribution of main belt asteroids? Icarus 272:114–124Google Scholar
  31. Deienno R, Morbidelli A, Gomes RS, Nesvorny D (2017) Constraining the giant planets: initial configuration from their evolution: implications for the timing of the planetary instability. Astron J 153:153Google Scholar
  32. Fabrycky D, Tremaine S (2007) Shrinking binary and planetary orbits by Kozai cycles with tidal friction. Astrophys J 669:1298–1315Google Scholar
  33. Fang J, Margot J-L (2012) Architecture of planetary systems based on Kepler data: number of planets and coplanarity. Astrophys J 761:92ADSCrossRefGoogle Scholar
  34. Fernandez JA, Ip WH (1984) Some dynamical aspects of the accretion of Uranus and Neptune – the exchange of orbital angular momentum with planetesimals. Icarus 58:109–120ADSCrossRefGoogle Scholar
  35. Ferreira J, Pelletier G (1995) Magnetized accretion-ejection structures. III. Stellar and extragalactic jets as weakly dissipative disk outflows. A&A 295:807Google Scholar
  36. Ford EB, Rasio FA (2008) Origins of eccentric extrasolar planets: testing the planet-planet scattering model. Astrophys J 686:621–636ADSCrossRefGoogle Scholar
  37. Fressin F, Torres G, Charbonneau D, Bryson ST, Christiansen J, Dressing CD, Jenkins JM, Walkowicz LM, Batalha NM (2013) The false positive rate of Kepler and the occurrence of planets. Astrophys J 766:81ADSCrossRefGoogle Scholar
  38. Fromang S, Terquem C, Balbus SA (2002) The ionization fraction in α models of protoplanetary discs. Mon Not R Astron Soc 329:18–28ADSCrossRefGoogle Scholar
  39. Gammie CF (1996) Layered accretion in T Tauri disks. Astrophys J 457:355ADSCrossRefGoogle Scholar
  40. Gladman B (1993) Dynamics of systems of two close planets. Icarus 106:247Google Scholar
  41. Goldreich P, Soter S (1966) Q in the solar system. Icarus 5:375–389ADSCrossRefGoogle Scholar
  42. Grishin E, Perets HB (2015) Application of gas dynamical friction for planetesimals. I. Evolution of single planetesimals. Astrophys J 811:54Google Scholar
  43. Hasegawa Y, Pudritz RE (2010) Dead zones as thermal barriers to rapid planetary migration in protoplanetary disks. Astrophys J 710:L167-L171ADSCrossRefGoogle Scholar
  44. Hasegawa Y, Pudritz RE (2011) The origin of planetary system architectures – I. Multiple planet traps in gaseous discs. Mon Not R Astron Soc 417:1236–1259ADSCrossRefGoogle Scholar
  45. Howard AW, 66 colleagues (2012) Planet occurrence Within 0.25 AU of solar-type stars from Kepler. Astrophys J Suppl Ser 201:15Google Scholar
  46. Izidoro A, Ogihara M, Raymond SN, Morbidelli A, Pierens A, Bitsch B, Cossou C, Hersant F (2017) Breaking the chains: hot super-Earth systems from migration and disruption of compact resonant chains. Mon Not R Astron Soc 470:1750–1770ADSCrossRefGoogle Scholar
  47. Johansen A, Davies MB, Church RP, Holmelin V (2012) Can planetary instability explain the Kepler dichotomy? Astrophys J 758:39ADSCrossRefGoogle Scholar
  48. Juric M, Tremaine S (2008) Dynamical origin of extrasolar planet eccentricity distribution. Astrophys J 686:603–620ADSCrossRefGoogle Scholar
  49. Kirsh DR, Duncan M, Brasser R, Levison HF (2009) Simulations of planet migration driven by planetesimal scattering. Icarus 199:197–209Google Scholar
  50. Kokubo E, Ida S (2000) Formation of protoplanets from planetesimals in the solar nebula. Icarus 143:15–27ADSCrossRefGoogle Scholar
  51. Kozai Y (1962) Secular perturbations of asteroids with high inclination and eccentricity. Astron J 67:591ADSMathSciNetCrossRefGoogle Scholar
  52. Laughlin G, Steinacker A, Adams FC (2004) Type I planetary migration with MHD turbulence. Astrophys J 608:489–496ADSCrossRefGoogle Scholar
  53. Lega E, Morbidelli A, Nesvorny D (2013) Early dynamical instabilities in the giant planet systems. Mon Not R Astron Soc 431:3494–3500Google Scholar
  54. Levison HF, Morbidelli A, Gomes R, Backman D (2007) Planet migration in planetesimal disks. Protostars Planets V:669–684Google Scholar
  55. Levison HF, Morbidelli A, Tsiganis K, Nesvorny D, Gomes R (2011) Late orbital instabilities in the outer planets induced by interaction with a self-gravitating planetesimal disk. Astron J 142:152Google Scholar
  56. Li G, Naoz S, Holman M, Loeb A (2014) Chaos in the test particle eccentric Kozai-Lidov mechanism. Astrophys J 791:86Google Scholar
  57. Lidov ML (1962) The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies. Planet Space Sci 9:719–759Google Scholar
  58. Lisse CM, Wyatt MC, Chen CH, Morlok A, Watson DM, Manoj P, Sheehan P, Currie TM, Thebault P, Sitko ML (2012) Spitzer evidence for a late-heavy bombardment and the formation of ureilites in ηCorvi at ∼1 Gyr. Astrophys J 747:93ADSCrossRefGoogle Scholar
  59. Lithwick Y, Wu Y (2012) Resonant repulsion of Kepler planet pairs. Astrophys J 756:L11Google Scholar
  60. Liu B, Ormel CW, Lin DNC (2017) Dynamical rearrangement of super-Earths during disk dispersal. I. Outline of the magnetospheric rebound model. Astron Astrophys 601:A15Google Scholar
  61. Marboeuf U, Bonsor A, Augereau J-C (2016) Extrasolar comets: the origin of dust in exozodiacal disks? Planet Space Sci 133:47–62ADSCrossRefGoogle Scholar
  62. Marino S, 12 colleagues (2017) ALMA observations of the ηCorvi debris disc: inward scattering of CO-rich exocomets by a chain of 3–30 Earth mass planets? Mon Not R Astron Soc 465:2595–2615Google Scholar
  63. Masset F, Snellgrove M (2001) Reversing type II migration: resonance trapping of a lighter giant protoplanet. Mon Not R Astron Soc 320:L55-L59Google Scholar
  64. Masset FS, Morbidelli A, Crida A, Ferreira J (2006) Disk surface density transitions as protoplanet traps. Astrophys J 642:478–487Google Scholar
  65. Matsumoto Y, Nagasawa M, Ida S (2012) The orbital stability of planets trapped in the first-order mean-motion resonances. Icarus 221:624–631ADSCrossRefGoogle Scholar
  66. Mayor M, 13 colleagues (2011) The HARPS search for southern extra-solar planets XXXIV. Occurrence, mass distribution and orbital properties of super-Earths and Neptune-mass planets. ArXiv e-prints arXiv:1109.2497Google Scholar
  67. Mills SM, Fabrycky DC, Migaszewski C, Ford EB, Petigura E, Isaacson H (2016) A resonant chain of four transiting, sub-Neptune planets. Nature 533:509–512ADSCrossRefGoogle Scholar
  68. Morbidelli A, Tsiganis K, Crida A, Levison HF, Gomes R (2007) Dynamics of the giant planets of the solar system in the gaseous protoplanetary disk and their relationship to the current orbital architecture. Astron J 134:1790–1798Google Scholar
  69. Morbidelli A, Brasser R, Gomes R, Levison HF, Tsiganis K (2010) Evidence from the asteroid belt for a violent past evolution of Jupiter’s orbit. Astron J 140:1391–1401ADSCrossRefGoogle Scholar
  70. Naoz S (2016) The eccentric Kozai-Lidov effect and its applications. Annu Rev Astron Astrophys 54:441–489Google Scholar
  71. Nesvorny D (2015a) Evidence for slow migration of Neptune from the inclination distribution of Kuiper belt objects. Astron J 150:73ADSCrossRefGoogle Scholar
  72. Nesvorny D (2015b) Jumping Neptune can explain the Kuiper belt kernel. Astron J 150:68Google Scholar
  73. Nesvorny D, Vokrouhlicky D (2009) Chaotic capture of Neptune trojans. Astron J 137:5003–5011ADSCrossRefGoogle Scholar
  74. Nesvorny D, Morbidelli A (2012) Statistical study of the early solar system’s instability with four, five, and six giant planets. Astron J 144:117Google Scholar
  75. Nesvorny D, Vokrouhlicky D, Morbidelli A (2007) Capture of irregular satellites during planetary encounters. Astron J 133:1962–1976ADSCrossRefGoogle Scholar
  76. Nesvorny D, Vokrouhlicky D, Morbidelli A (2013) Capture of trojans by jumping Jupiter. Astrophys J 768:45ADSCrossRefGoogle Scholar
  77. Nesvorny D, Vokrouhlicky D, Dones L, Levison HF, Kaib N, Morbidelli A (2017) Origin and evolution of short-period comets. Astrophys J 845:27ADSCrossRefGoogle Scholar
  78. Obertas A, Van Laerhoven C, Tamayo D (2017) The stability of tightly-packed, evenly-spaced systems of Earth-mass planets orbiting a Sun-like star. Icarus 293:52–58ADSCrossRefGoogle Scholar
  79. Ogihara M, Morbidelli A, Guillot T (2015) A reassessment of the in situ formation of close-in super-Earths. A&A 578:A36ADSCrossRefGoogle Scholar
  80. Papaloizou JCB, Terquem C (2010) On the dynamics of multiple systems of hot super-Earths and Neptunes: tidal circularization, resonance and the HD 40307 system. Mon Not R Astron Soc 405:573–592Google Scholar
  81. Pichierri G, Morbidelli A, Crida A, (2018) On the Stability of resonant pairs of planets. Celest Mech Dyn Astron, submitted.Google Scholar
  82. Petigura EA, Howard AW, Marcy GW (2013) Prevalence of Earth-size planets orbiting Sun-like stars. Proc Natl Acad Sci 110:19273–19278ADSCrossRefGoogle Scholar
  83. Pu B, Wu Y (2015) Spacing of Kepler planets: sculpting by dynamical instability. Astrophys J 807:44ADSCrossRefGoogle Scholar
  84. Roig F, Nesvorny D (2015) The evolution of asteroids in the jumping-Jupiter migration model. Astron J 150:186ADSCrossRefGoogle Scholar
  85. Safronov VS (1972) Evolution of the protoplanetary cloud and formation of the Earth and planets. Keter Publishing House, p 212Google Scholar
  86. Smith AW, Lissauer JJ (2009) Orbital stability of systems of closely-spaced planets. Icarus 201:381–394ADSCrossRefGoogle Scholar
  87. Touma JR, Sridhar S (2015) The disruption of multiplanet systems through resonance with a binary orbit. Nature 524:439–441ADSCrossRefGoogle Scholar
  88. Tsiganis K, Gomes R, Morbidelli A, Levison HF (2005) Origin of the orbital architecture of the giant planets of the solar system. Nature 435:459–461ADSCrossRefGoogle Scholar
  89. Walsh KJ, Morbidelli A, Raymond SN, O’Brien DP, Mandell AM (2011) A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475:206–209ADSCrossRefGoogle Scholar
  90. Wyatt MC, Smith R, Greaves JS, Beichman CA, Bryden G, Lisse CM (2007) Transience of hot dust around Sun-like stars. Astrophys J 658:569–583ADSCrossRefGoogle Scholar
  91. Xu W, Lai D (2017) Migration of planets into and out of mean motion resonances in protoplanetary discs: analytical theory of second-order resonances. Mon Not R Astron Soc 468:3223–3238ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Observatoire de la Côte d’ Azur, Boulevard de l’ ObservatoireUniversité Côte d’ Azur, CNRSNiceFrance

Section editors and affiliations

  • Ralph Pudritz
    • 1
  1. 1.Origins InstituteMcMaster UniversityHamiltonCanada

Personalised recommendations