Skip to main content

Formation of Terrestrial Planets

  • Living reference work entry
  • First Online:
Handbook of Exoplanets

Abstract

The past decade has seen major progress in our understanding of terrestrial planet formation. Yet key questions remain. In this review we first address the growth of 100 km-scale planetesimals as a consequence of dust coagulation and concentration, with current models favoring the streaming instability. Planetesimals grow into Mars-sized (or larger) planetary embryos by a combination of pebble and planetesimal accretion. Models for the final assembly of the inner Solar System must match constraints related to the terrestrial planets and asteroids including their orbital and compositional distributions and inferred growth timescales. Two current models – the Grand Tack and low-mass (or empty) primordial asteroid belt scenarios – can each match the empirical constraints, but both have key uncertainties that require further study. We present formation models for close-in super-Earths – the closest current analogs to our own terrestrial planets despite their very different formation histories – and for terrestrial exoplanets in gas giant systems. We explain why super-Earth systems cannot form in situ but rather may be the result of inward gas-driven migration followed by the disruption of compact resonant chains. The Solar System is unlikely to have harbored an early system of super-Earths; rather, Jupiter’s early formation may have blocked the ice giants’ inward migration. Finally, we present a chain of events that may explain why our Solar System looks different than more than 99% of exoplanet systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aarseth SJ, Lin DNC, Palmer PL (1993) Evolution of planetesimals. II. Numerical simulations. ApJ 403:351

    Article  ADS  Google Scholar 

  • Adachi I, Hayashi C, Nakazawa K (1976) The gas drag effect on the elliptical motion of a solid body in the primordial solar nebula. Prog Theor Phys 56:1756–1771

    Article  ADS  Google Scholar 

  • Adams FC, Laughlin G (2003) Migration and dynamical relaxation in crowded systems of giant planets. Icarus 163:290–306

    Article  ADS  Google Scholar 

  • Adams ER, Seager S, Elkins-Tanton L (2008) Ocean planet or thick atmosphere: on the mass-radius relationship for solid exoplanets with massive atmospheres. ApJ 673:1160–1164

    Article  ADS  Google Scholar 

  • Agnor CB, Canup RM, Levison HF (1999) On the character and consequences of large impacts in the late stage of terrestrial planet formation. Icarus 142:219–237

    Article  ADS  Google Scholar 

  • Alessi M, Pudritz RE, Cridland AJ (2017) On the formation and chemical composition of super Earths. MNRAS 464:428–452

    Article  ADS  Google Scholar 

  • Alexander CMO, Bowden R, Fogel ML et al (2012) The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science 337:721

    Article  ADS  Google Scholar 

  • Alexander R, Pascucci I, Andrews S, Armitage P, Cieza L (2014) The dispersal of protoplanetary disks. In: Beuther H (ed) Protostars and planets VI. University of Arizona Press, Tucson, pp 475–496

    Google Scholar 

  • Alibert Y (2017) Maximum mass of planetary embryos that formed in core-accretion models. A&A 606:A69

    Article  ADS  Google Scholar 

  • Alibert Y, Mordasini C, Benz W, Winisdoerffer C (2005) Models of giant planet formation with migration and disc evolution. A&A 434:343–353

    Article  ADS  Google Scholar 

  • Allègre CJ, Manhès G, Göpel C (2008) The major differentiation of the Earth at ∼ 4.45 Ga. Earth Planet Sci Lett 267:386–398

    Article  ADS  Google Scholar 

  • ALMA Partnership, Brogan CL, Pérez LM et al (2015) The 2014 ALMA long baseline campaign: first results from high angular resolution observations toward the HL Tau region. ApJ 808:L3

    Google Scholar 

  • André P, Di Francesco J, Ward-Thompson D et al (2014) From filamentary networks to dense cores in molecular clouds: toward a new paradigm for star formation. In: Beuther H (ed) Protostars and planets VI. University of Arizona Press, Tucson, pp 27–51

    Google Scholar 

  • Andrews SM, Wilner DJ, Hughes AM, Qi C, Dullemond CP (2010) Protoplanetary disk structures in Ophiuchus. II. Extension to fainter sources. ApJ 723:1241–1254

    Article  ADS  Google Scholar 

  • Ansdell M, Williams JP, Manara CF et al (2017) An ALMA survey of protoplanetary disks in the σ orionis cluster. AJ 153:240

    Article  ADS  Google Scholar 

  • Armitage PJ (2011) Dynamics of protoplanetary disks. ARA&A 49:195–236

    Article  ADS  Google Scholar 

  • Armitage PJ, Eisner JA, Simon JB (2016) Prompt planetesimal formation beyond the snow line. ApJ 828:L2

    Article  ADS  Google Scholar 

  • Asphaug E, Jutzi M, Movshovitz N (2011) Chondrule formation during planetesimal accretion. Earth Planet Sci Lett 308:369–379

    Article  ADS  Google Scholar 

  • Avice G, Marty B, Burgess R (2017) The origin and degassing history of the Earth’s atmosphere revealed by Archean Xenon. Nat Commun 8:15455

    Article  ADS  Google Scholar 

  • Badro J, Côté AS, Brodholt JP (2014) A seismologically consistent compositional model of Earth’s core. Proc Natl Acad Sci 111:7542–7545

    Article  ADS  Google Scholar 

  • Bai XN, Stone JM (2010) Dynamics of solids in the midplane of protoplanetary disks: implications for planetesimal formation. ApJ 722:1437–1459

    Article  ADS  Google Scholar 

  • Baker VR, Strom RG, Gulick VC, Kargel JS, Komatsu G (1991) Ancient oceans, ice sheets and the hydrological cycle on Mars. Nature 352:589–594

    Article  ADS  Google Scholar 

  • Balbus SA (2003) Enhanced angular momentum transport in accretion disks. ARA&A 41:555–597

    Article  ADS  Google Scholar 

  • Balbus SA, Hawley JF (1991) A powerful local shear instability in weakly magnetized disks. I – linear analysis. II – nonlinear evolution. ApJ 376:214–233

    Article  ADS  Google Scholar 

  • Barge P, Richard S, Le Dizès S (2016) Vortices in stratified protoplanetary disks. From baroclinic instability to vortex layers. A&A 592:A136

    Article  ADS  Google Scholar 

  • Barker AJ, Latter HN (2015) On the vertical-shear instability in astrophysical discs. MNRAS 450:21–37

    Article  ADS  Google Scholar 

  • Barnes R, Quinn TR, Lissauer JJ, Richardson DC (2009) N-body simulations of growth from 1 km planetesimals at 0.4 AU. Icarus 203:626–643

    Article  ADS  Google Scholar 

  • Baruteau C, Masset F (2008) On the corotation torque in a radiatively inefficient disk. ApJ 672:1054–1067

    Article  ADS  Google Scholar 

  • Bate MR (2018) On the diversity and statistical properties of protostellar discs. MNRAS 475: 5618–5658

    Article  ADS  Google Scholar 

  • Batygin K, Laughlin G (2015) Jupiter’s decisive role in the inner Solar System’s early evolution. Proc Natl Acad Sci 112:4214–4217

    Article  ADS  Google Scholar 

  • Beauge C, Aarseth SJ (1990) N-body simulations of planetary formation. MNRAS 245:30–39

    Google Scholar 

  • Beaugé C, Nesvorný D (2012) Multiple-planet scattering and the origin of hot Jupiters. ApJ 751:119

    Article  ADS  Google Scholar 

  • Beckwith SVW, Sargent AI, Chini RS, Guesten R (1990) A survey for circumstellar disks around young stellar objects. AJ 99:924–945

    Article  ADS  Google Scholar 

  • Binney J, Tremaine S (2008) Galactic dynamics, 2nd edn. Princeton University Press, Princeton

    Google Scholar 

  • Birnstiel T, Ormel CW, Dullemond CP (2011) Dust size distributions in coagulation/fragmentation equilibrium: numerical solutions and analytical fits. A&A 525:A11

    Article  Google Scholar 

  • Birnstiel T, Klahr H, Ercolano B (2012) A simple model for the evolution of the dust population in protoplanetary disks. A&A 539:A148

    Article  ADS  MATH  Google Scholar 

  • Bitsch B, Kley W (2010) Orbital evolution of eccentric planets in radiative discs. A&A 523:A30

    Article  ADS  Google Scholar 

  • Bitsch B, Morbidelli A, Lega E, Crida A (2014) Stellar irradiated discs and implications on migration of embedded planets. II. Accreting-discs. A&A 564:A135

    Article  ADS  Google Scholar 

  • Bitsch B, Lambrechts M, Johansen A (2015) The growth of planets by pebble accretion in evolving protoplanetary discs. A&A 582:A112

    Article  ADS  Google Scholar 

  • Blum J, Wurm G (2000) Experiments on sticking, restructuring, and fragmentation of preplanetary dust aggregates. Icarus 143:138–146

    Article  ADS  Google Scholar 

  • Blum J, Wurm G (2008) The growth mechanisms of macroscopic bodies in protoplanetary disks. ARA&A 46:21–56

    Article  ADS  Google Scholar 

  • Blum J, Wurm G, Kempf S et al (2000) Growth and form of planetary seedlings: results from a microgravity aggregation experiment. Phys Rev Lett 85:2426–2429

    Google Scholar 

  • Bodenheimer P, Pollack JB (1986) Calculations of the accretion and evolution of giant planets The effects of solid cores. Icarus 67:391–408

    Article  ADS  Google Scholar 

  • Boley AC, Morris MA, Ford EB (2014) Overcoming the meter barrier and the formation of systems with tightly Packed inner planets (STIPs). ApJ 792:L27

    Article  ADS  Google Scholar 

  • Bonfils X, Delfosse X, Udry S et al (2013) The HARPS search for southern extra-Solar planets. XXXI. The M-dwarf sample. A&A 549:A109

    Article  ADS  Google Scholar 

  • Borucki WJ, Koch D, Basri G et al (2010) Kepler planet-detection mission: introduction and first results. Science 327:977

    Google Scholar 

  • Bouvier A, Wadhwa M (2010) The age of the Solar System redefined by the oldest Pb-Pb age of a meteoritic inclusion. Nat Geosci 3:637–641

    Article  ADS  Google Scholar 

  • Brasser R, Morbidelli A, Gomes R, Tsiganis K, Levison HF (2009) Constructing the secular architecture of the Solar system II: the terrestrial planets. A&A 507:1053–1065

    Article  ADS  Google Scholar 

  • Brasser R, Matsumura S, Ida S, Mojzsis SJ, Werner SC (2016) Analysis of terrestrial planet formation by the grand tack model: system architecture and tack location. ApJ 821:75

    Article  ADS  Google Scholar 

  • Brauer F, Dullemond CP, Johansen A et al (2007) Survival of the mm-cm size grain population observed in protoplanetary disks. A&A 469:1169–1182

    Article  ADS  Google Scholar 

  • Brauer F, Henning T, Dullemond CP (2008) Planetesimal formation near the snow line in MRI-driven turbulent protoplanetary disks. A&A 487:L1–L4

    Article  ADS  Google Scholar 

  • Briceño C, Vivas AK, Calvet N et al (2001) The CIDA-QUEST large-scale survey of orion OB1: evidence for rapid disk dissipation in a dispersed stellar population. Science 291:93–97

    Article  ADS  Google Scholar 

  • Bromley BC, Kenyon SJ (2011) A new hybrid N-body-coagulation code for the formation of gas giant planets. ApJ 731:101

    Article  ADS  Google Scholar 

  • Bromley BC, Kenyon SJ (2017) Terrestrial planet formation: dynamical shake-up and the low mass of mars. AJ 153:216

    Article  ADS  Google Scholar 

  • Brouwers MG, Vazan A, Ormel CW (2017) How cores grow by pebble accretion I. Direct core growth. ArXiv e-prints

    Google Scholar 

  • Butler RP, Wright JT, Marcy GW et al (2006) Catalog of nearby exoplanets. ApJ 646:505–522

    Article  ADS  Google Scholar 

  • Carrera D, Davies MB, Johansen A (2016) Survival of habitable planets in unstable planetary systems. MNRAS 463:3226–3238

    Article  ADS  Google Scholar 

  • Carrera D, Gorti U, Johansen A, Davies MB (2017) Planetesimal formation by the streaming instability in a photoevaporating disk. ApJ 839:16

    Article  ADS  Google Scholar 

  • Chambers J (2006) A semi-analytic model for oligarchic growth. Icarus 180:496–513

    Article  ADS  MathSciNet  Google Scholar 

  • Chambers JE (1999) A hybrid symplectic integrator that permits close encounters between massive bodies. MNRAS 304:793–799

    Article  ADS  Google Scholar 

  • Chambers JE (2001) Making more terrestrial planets. Icarus 152:205–224

    Article  ADS  Google Scholar 

  • Chambers JE (2010) Planetesimal formation by turbulent concentration. Icarus 208:505–517

    Article  ADS  Google Scholar 

  • Chambers JE (2016) Pebble accretion and the diversity of planetary systems. ApJ 825:63

    Article  ADS  Google Scholar 

  • Chambers JE, Wetherill GW (1998) Making the terrestrial planets: N-body integrations of planetary embryos in three dimensions. Icarus 136:304–327

    Article  ADS  Google Scholar 

  • Chatterjee S, Tan JC (2014) Inside-out planet formation. ApJ 780:53

    Article  ADS  Google Scholar 

  • Chatterjee S, Tan JC (2015) Vulcan planets: inside-out formation of the innermost super-Earths. ApJ 798:L32

    Article  ADS  Google Scholar 

  • Chatterjee S, Ford EB, Matsumura S, Rasio FA (2008) Dynamical outcomes of planet-planet scattering. ApJ 686:580–602

    Article  ADS  Google Scholar 

  • Chen J, Kipping D (2017) Probabilistic forecasting of the masses and radii of other worlds. ApJ 834:17

    Article  ADS  Google Scholar 

  • Chiang E, Laughlin G (2013) The minimum-mass extrasolar nebula: in situ formation of close-in super-Earths. MNRAS 431:3444–3455

    Article  ADS  Google Scholar 

  • Chiang E, Youdin AN (2010) Forming planetesimals in Solar and extrasolar nebulae. Ann Rev Earth Planet Sci 38:493–522

    Article  ADS  Google Scholar 

  • Chokshi A, Tielens AGGM, Hollenbach D (1993) Dust coagulation. ApJ 407:806–819

    Article  ADS  Google Scholar 

  • Ciardi DR, Fabrycky DC, Ford EB et al (2013) On the relative sizes of planets within kepler multiple-candidate systems. ApJ 763:41

    Article  ADS  Google Scholar 

  • Connelly JN, Bizzarro M, Krot AN et al (2012) The absolute chronology and thermal processing of solids in the Solar protoplanetary disk. Science 338:651

    Article  ADS  Google Scholar 

  • Cossou C, Raymond SN, Hersant F, Pierens A (2014) Hot super-Earths and giant planet cores from different migration histories. A&A 569:A56

    Article  ADS  Google Scholar 

  • Cresswell P, Dirksen G, Kley W, Nelson RP (2007) On the evolution of eccentric and inclined protoplanets embedded in protoplanetary disks. A&A 473:329–342

    Article  ADS  Google Scholar 

  • Crida A (2009) Minimum mass solar nebulae and planetary migration. ApJ 698:606–614

    Article  ADS  Google Scholar 

  • Crida A, Morbidelli A, Masset F (2006) On the width and shape of gaps in protoplanetary disks. Icarus 181:587–604

    Article  ADS  Google Scholar 

  • Cumming A, Butler RP, Marcy GW et al (2008) The keck planet search: detectability and the minimum mass and orbital period distribution of extrasolar planets. PASP 120: 531–554

    Article  ADS  Google Scholar 

  • Cuzzi JN, Weidenschilling SJ (2006) Particle-gas dynamics and primary accretion. In: Lauretta DS, McSween HY (eds) Meteorites and the early solar system II, pp 353–381. http://adsabs.harvard.edu/abs/2006mess.book..353C

  • Cuzzi JN, Hogan RC, Shariff K (2008) Toward planetesimals: dense chondrule clumps in the protoplanetary nebula. ApJ 687:1432–1447

    Article  ADS  Google Scholar 

  • D’Angelo G, Marzari F (2012) Outward migration of Jupiter and Saturn in evolved gaseous disks. ApJ 757:50

    Article  ADS  Google Scholar 

  • Dauphas N (2017) The isotopic nature of the Earth’s accreting material through time. Nature 541:521–524

    Article  ADS  Google Scholar 

  • Dauphas N, Chaussidon M (2011) A perspective from extinct radionuclides on a young stellar object: the Sun and its accretion disk. Ann Rev Earth Planet Sci 39:351–386

    Article  ADS  Google Scholar 

  • Dauphas N, Pourmand A (2011) Hf-W-Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature 473:489–492

    Article  ADS  Google Scholar 

  • Dawson RI, Lee EJ, Chiang E (2016) Correlations between compositions and orbits established by the giant impact era of planet formation. ApJ 822:54

    Article  ADS  Google Scholar 

  • Deienno R, Gomes RS, Walsh KJ, Morbidelli A, Nesvorný D (2016) Is the grand tack model compatible with the orbital distribution of main belt asteroids? Icarus 272:114–124

    Article  ADS  Google Scholar 

  • Deienno R, Morbidelli A, Gomes RS, Nesvorný D (2017) Constraining the giant planets’ initial configuration from their evolution: implications for the timing of the planetary instability. AJ 153:153

    Article  ADS  Google Scholar 

  • DeMeo FE, Carry B (2013) The taxonomic distribution of asteroids from multi-filter all-sky photometric surveys. Icarus 226:723–741

    Article  ADS  Google Scholar 

  • DeMeo FE, Carry B (2014) Solar system evolution from compositional mapping of the asteroid belt. Nature 505:629–634

    Article  ADS  Google Scholar 

  • DeMeo FE, Alexander CMO, Walsh KJ, Chapman CR, Binzel RP (2015) The Compositional structure of the asteroid belt. pp 13–41. https://doi.org/10.2458/azu_uapress_9780816532131-ch002

  • Desch SJ (2007) Mass distribution and planet formation in the solar nebula. ApJ 671:878–893

    Article  ADS  Google Scholar 

  • Desch SJ, Connolly HC Jr (2002) A model of the thermal processing of particles in solar nebula shocks: application to the cooling rates of chondrules. Meteorit Planet Sci 37:183–207

    Article  ADS  Google Scholar 

  • Dodson-Robinson SE, Willacy K, Bodenheimer P, Turner NJ, Beichman CA (2009) Ice lines, planetesimal composition and solid surface density in the solar nebula. Icarus 200: 672–693

    Article  ADS  Google Scholar 

  • Dominik C, Nübold H (2002) Magnetic aggregation: dynamics and numerical modeling. Icarus 157:173–186

    Article  ADS  Google Scholar 

  • Dominik C, Tielens AGGM (1997) The physics of dust coagulation and the structure of dust aggregates in space. ApJ 480:647–673

    Article  ADS  Google Scholar 

  • Donahue TM, Hoffman JH, Hodges RR, Watson AJ (1982) Venus was wet – a measurement of the ratio of deuterium to hydrogen. Science 216:630–633

    Article  ADS  Google Scholar 

  • Dong S, Zhu Z (2013) Fast rise of “Neptune-size” planets (4–8 RŁ) from P ∼10 to ∼250 Days – Statistics of Kepler Planet Candidates up to ∼0.75 AU. ApJ 778:53

    Article  ADS  Google Scholar 

  • Dong R, Zhu Z, Whitney B (2015) Observational signatures of planets in protoplanetary disks I. gaps opened by single and multiple young planets in disks. ApJ 809:93

    Google Scholar 

  • Drake MJ, Campins H (2006) Origin of water on the terrestial planets. In: Daniela L, Sylvio Ferraz M, Angel FJ (eds) Asteroids, comets, meteors, IAU Symposium, vol 229, pp 381–394. https://doi.org/10.1017/S1743921305006861

    Article  Google Scholar 

  • Drazkowska J, Alibert Y (2017) Planetesimal formation starts at the snow line. A&A 608:A92

    Article  ADS  Google Scholar 

  • Drazkowska J, Dullemond CP (2014) Can dust coagulation trigger streaming instability? A&A 572:A78

    Article  ADS  Google Scholar 

  • Drazkowska J, Windmark F, Dullemond CP (2013) Planetesimal formation via sweep-up growth at the inner edge of dead zones. A&A 556:A37

    Article  ADS  Google Scholar 

  • Drazkowska J, Alibert Y, Moore B (2016) Close-in planetesimal formation by pile-up of drifting pebbles. A&A 594:A105

    Article  ADS  Google Scholar 

  • Dressing CD, Charbonneau D (2015) The occurrence of potentially habitable planets orbiting M dwarfs estimated from the full kepler dataset and an empirical measurement of the detection sensitivity. ApJ 807:45

    Article  ADS  Google Scholar 

  • Dullemond CP, Hollenbach D, Kamp I, D’Alessio P (2007) Models of the structure and evolution of protoplanetary disks. In: Reipurth B, Jewitt D, Keil K (eds) Protostars and planets V. University of Arizona Press, Tucson, pp 555–572

    Google Scholar 

  • Duncan MJ, Levison HF, Lee MH (1998) A multiple time step symplectic algorithm for integrating close encounters. AJ 116:2067–2077

    Article  ADS  Google Scholar 

  • Dürmann C, Kley W (2015) Migration of massive planets in accreting disks. A&A 574:A52

    Article  ADS  Google Scholar 

  • Dutrey A, Lecavelier Des Etangs A, Augereau J-C (2004) The observation of circumstellar disks: dust and gas components. In: Kronk GW (ed) Comets II, pp 81–95. http://adsabs.harvard.edu/abs/2004come.book...81D

  • Eke VR, Lawrence DJ, Teodoro LFA (2017) How thick are Mercury’s polar water ice deposits? Icarus 284:407–415

    Article  ADS  Google Scholar 

  • Fabrycky DC, Lissauer JJ, Ragozzine D et al (2014) Architecture of Kepler’s multi-transiting Systems. II. New investigations with twice as many candidates. ApJ 790:146

    Article  ADS  Google Scholar 

  • Fang J, Margot JL (2012) Architecture of planetary systems based on Kepler data: number of planets and coplanarity. ApJ 761:92

    Article  ADS  Google Scholar 

  • Fedele D, Tazzari M, Booth R et al (2017) ALMA continuum observations of the protoplanetary disk AS 209. Evidence of multiple gaps opened by a single planet. ArXiv e-prints

    Google Scholar 

  • Fernandez JA, Ip WH (1984) Some dynamical aspects of the accretion of Uranus and Neptune – The exchange of orbital angular momentum with planetesimals. Icarus 58:109–120

    Article  ADS  Google Scholar 

  • Fischer DA, Howard AW, Laughlin GP et al (2014) Exoplanet detection techniques. In: Beuther H (ed) Protostars and planets VI. University of Arizona Press, Tucson, pp 715–737

    Google Scholar 

  • Fischer RA, Ciesla FJ (2014) Dynamics of the terrestrial planets from a large number of N-body simulations. Earth Planet Sci Lett 392:28–38

    Article  ADS  Google Scholar 

  • Flock M, Ruge JP, Dzyurkevich N et al (2015) Gaps, rings, and non-axisymmetric structures in protoplanetary disks. From simulations to ALMA observations. A&A 574:A68

    Article  ADS  Google Scholar 

  • Fogg MJ, Nelson RP (2005) Oligarchic and giant impact growth of terrestrial planets in the presence of gas giant planet migration. A&A 441:791–806

    Article  ADS  Google Scholar 

  • Fogg MJ, Nelson RP (2007) On the formation of terrestrial planets in hot-Jupiter systems. A&A 461:1195–1208

    Article  ADS  Google Scholar 

  • Ford EB, Rasio FA (2008) Origins of eccentric extrasolar planets: testing the planet-planet scattering model. ApJ 686:621–636

    Article  ADS  Google Scholar 

  • Ford EB, Rasio FA, Yu K (2003) Dynamical instabilities in extrasolar planetary systems. In: Deming D, Seager S (ed) Scientific frontiers in research on extrasolar planets. Astronomical Society of the Pacific Conference Series, vol 294. Astronomical Society of the Pacific, San Francisco, pp 181–188

    Google Scholar 

  • Fressin F, Torres G, Charbonneau D et al (2013) The False positive rate of Kepler and the occurrence of planets. ApJ 766:81

    Article  ADS  Google Scholar 

  • Genda H, Ikoma M (2008) Origin of the ocean on the Earth: early evolution of water D/H in a hydrogen-rich atmosphere. Icarus 194:42–52

    Article  ADS  Google Scholar 

  • Gillon M, Triaud AHMJ, Demory BO et al (2017) Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542:456–460

    Article  ADS  Google Scholar 

  • Ginzburg S, Schlichting HE, Sari R (2016) Super-earth atmospheres: self-consistent gas accretion and retention. ApJ 825:29

    Article  ADS  Google Scholar 

  • Glaschke P, Amaro-Seoane P, Spurzem R (2014) Hybrid methods in planetesimal dynamics: description of a new composite algorithm. MNRAS 445:3620–3649

    Article  ADS  Google Scholar 

  • Goldreich P, Tremaine SD (1978) The velocity dispersion in Saturn’s rings. Icarus 34:227–239

    Article  ADS  Google Scholar 

  • Goldreich P, Tremaine S (1980) Disk-satellite interactions. ApJ 241:425–441

    Article  ADS  MathSciNet  Google Scholar 

  • Goldreich P, Ward WR (1973) The formation of planetesimals. ApJ 183:1051–1062

    Article  ADS  Google Scholar 

  • Goldreich P, Lithwick Y, Sari R (2004) Planet formation by coagulation: a focus on Uranus and Neptune. ARA&A 42:549–601

    Article  ADS  Google Scholar 

  • Gomes R, Levison HF, Tsiganis K, Morbidelli A (2005) Origin of the cataclysmic late heavy bombardment period of the terrestrial planets. Nature 435:466–469

    Article  ADS  Google Scholar 

  • Gonzalez G, Brownlee D, Ward P (2001) The galactic habitable zone: galactic chemical evolution. Icarus 152:185–200

    Article  ADS  Google Scholar 

  • Gorti U, Hollenbach D (2009) Photoevaporation of circumstellar disks by far-ultraviolet, extreme-ultraviolet and X-ray radiation from the central star. ApJ 690:1539–1552

    Article  ADS  Google Scholar 

  • Gorti U, Hollenbach D, Dullemond CP (2015) The impact of dust evolution and photoevaporation on disk dispersal. ApJ 804:29

    Article  ADS  Google Scholar 

  • Gradie J, Tedesco E (1982) Compositional structure of the asteroid belt. Science 216:1405–1407

    Article  ADS  Google Scholar 

  • Greenberg R, Hartmann WK, Chapman CR, Wacker JF (1978) Planetesimals to planets – numerical simulation of collisional evolution. Icarus 35:1–26

    Article  ADS  Google Scholar 

  • Greenberg R, Bottke WF, Carusi A, Valsecchi GB (1991) Planetary accretion rates – analytical derivation. Icarus 94:98–111

    Article  ADS  Google Scholar 

  • Greenzweig Y, Lissauer JJ (1990) Accretion rates of protoplanets. Icarus 87:40–77

    Article  ADS  Google Scholar 

  • Grimm SL, Stadel JG (2014) The GENGA code: gravitational encounters in N-body simulations with GPU acceleration. ApJ 796:23

    Article  ADS  Google Scholar 

  • Grinspoon DH (1993) Implications of the high D/H ratio for the sources of water in Venus’ atmosphere. Nature 363:428–431

    Article  ADS  Google Scholar 

  • Grishin E, Perets HB (2015) Application of gas dynamical friction for planetesimals. I. Evolution of single planetesimals. ApJ 811:54

    Article  ADS  Google Scholar 

  • Grossman L, Larimer JW (1974) Early chemical history of the Solar System. Rev Geophys Space Phys 12:71–101

    Article  ADS  Google Scholar 

  • Guillot T, Stevenson DJ, Hubbard WB, Saumon D (2004) The interior of Jupiter. In: Bagenal F, Dowling TE, McKinnon WB (eds) Jupiter. The planet, satellites and magnetosphere, pp 35–57. http://adsabs.harvard.edu/abs/2004jpsm.book...35G

  • Gundlach B, Kilias S, Beitz E, Blum J (2011) Micrometer-sized ice particles for planetary-science experiments – I. Preparation, critical rolling friction force, and specific surface energy. Icarus 214:717–723

    Article  ADS  Google Scholar 

  • Güttler C, Blum J, Zsom A, Ormel CW, Dullemond CP (2010) The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals?. I. Mapping the zoo of laboratory collision experiments. A&A 513:A56

    Article  ADS  Google Scholar 

  • Haghighipour N, Boss AP (2003) On gas drag-induced rapid migration of solids in a nonuniform solar nebula. ApJ 598:1301–1311

    Article  ADS  Google Scholar 

  • Haghighipour N, Winter OC (2016) Formation of terrestrial planets in disks with different surface density profiles. Celest Mech Dyn Astron 124:235–268

    Article  ADS  Google Scholar 

  • Hahn JM, Malhotra R (1999) Orbital evolution of planets embedded in a planetesimal disk. AJ 117:3041–3053

    Article  ADS  Google Scholar 

  • Haisch KE Jr, Lada EA, Lada CJ (2001) Disk frequencies and lifetimes in young clusters. ApJ 553:L153–L156

    Google Scholar 

  • Halliday AN (2008) A young Moon-forming giant impact at 70–110 million years accompanied by late-stage mixing, core formation and degassing of the Earth. Philos Trans R Soc Lond Ser A 366:4163–4181

    Article  ADS  Google Scholar 

  • Halliday AN (2013) The origins of volatiles in the terrestrial planets. Geochim Cosmochim Acta 105:146–171

    Article  ADS  Google Scholar 

  • Hallis LJ, Huss GR, Nagashima K et al (2015) Evidence for primordial water in Earth’s deep mantle. Science 350:795–797

    Article  ADS  Google Scholar 

  • Hansen BMS (2009) Formation of the terrestrial planets from a narrow annulus. ApJ 703: 1131–1140

    Article  ADS  Google Scholar 

  • Hansen BMS, Murray N (2012) Migration then assembly: formation of Neptune-mass planets inside 1 AU. ApJ 751:158

    Article  ADS  Google Scholar 

  • Hansen BMS, Murray N (2013) Testing in situ assembly with the Kepler planet candidate sample. ApJ 775:53

    Article  ADS  Google Scholar 

  • Hasegawa Y, Pudritz RE (2011) The origin of planetary system architectures – I. Multiple planet traps in gaseous discs. MNRAS 417:1236–1259

    Article  ADS  Google Scholar 

  • Hasegawa Y, Pudritz RE (2012) Evolutionary tracks of trapped, accreting protoplanets: the origin of the observed mass-period relation. ApJ 760:117

    Article  ADS  Google Scholar 

  • Hayashi C (1981) Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Prog Theor Phys Suppl 70:35–53

    Article  ADS  Google Scholar 

  • Heim LO, Blum J, Preuss M, Butt HJ (1999) Adhesion and friction forces between spherical micrometer-sized particles. Phys Rev Lett 83:3328–3331

    Article  ADS  Google Scholar 

  • Hillenbrand LA (2008) Disk-dispersal and planet-formation timescales. Physica Scripta Volume T 130(1):014024

    Google Scholar 

  • Holland WS, Greaves JS, Zuckerman B et al (1998) Submillimetre images of dusty debris around nearby stars. Nature 392:788–791

    Article  ADS  Google Scholar 

  • Horn B, Lyra W, Mac Low MM, Sándor Z (2012) Orbital migration of interacting low-mass planets in evolutionary radiative turbulent models. ApJ 750:34

    Article  ADS  Google Scholar 

  • Howard AW, Marcy GW, Johnson JA et al (2010) The occurrence and mass distribution of close-in super-Earths, Neptunes, and Jupiters. Science 330:653

    Article  ADS  Google Scholar 

  • Howard AW, Marcy GW, Bryson ST et al (2012) Planet Occurrence within 0.25 AU of Solar-type Stars from Kepler. ApJS 201:15

    Google Scholar 

  • Hu X, Zhu Z, Tan JC, Chatterjee S (2016) Inside-out planet formation. III. Planet-disk interaction at the dead zone inner boundary. ApJ 816:19

    Google Scholar 

  • Hu X, Tan JC, Zhu Z et al (2017) Inside-out planet formation. IV. Pebble evolution and planet formation timescales. ArXiv e-prints

    Google Scholar 

  • Hubickyj O, Bodenheimer P, Lissauer JJ (2005) Accretion of the gaseous envelope of Jupiter around a 5–10 Earth-mass core. Icarus 179:415–431

    Article  ADS  Google Scholar 

  • Ida S, Guillot T (2016) Formation of dust-rich planetesimals from sublimated pebbles inside of the snow line. A&A 596:L3

    Article  ADS  Google Scholar 

  • Ida S, Lin DNC (2004) Toward a deterministic model of planetary formation. I. A desert in the mass and semimajor axis distributions of extrasolar planets. ApJ 604:388–413

    Article  ADS  Google Scholar 

  • Ida S, Makino J (1993) Scattering of planetesimals by a protoplanet – slowing down of runaway growth. Icarus 106:210

    Article  ADS  Google Scholar 

  • Ida S, Nakazawa K (1989) Collisional probability of planetesimals revolving in the Solar gravitational field. III. A&A 224:303–315

    Google Scholar 

  • Ikoma M, Genda H (2006) Constraints on the mass of a habitable planet with water of nebular origin. ApJ 648:696–706

    Article  ADS  Google Scholar 

  • Ikoma M, Hori Y (2012) In situ accretion of hydrogen-rich atmospheres on short-period super-Earths: implications for the Kepler-11 planets. ApJ 753:66

    Article  ADS  Google Scholar 

  • Inaba S, Wetherill GW, Ikoma M (2003) Formation of gas giant planets: core accretion models with fragmentation and planetary envelope. Icarus 166:46–62

    Article  ADS  Google Scholar 

  • Inamdar NK, Schlichting HE (2015) The formation of super-Earths and mini-Neptunes with giant impacts. MNRAS 448:1751–1760

    Article  ADS  Google Scholar 

  • Inamdar NK, Schlichting HE (2016) Stealing the gas: giant impacts and the large diversity in exoplanet densities. ApJ 817:L13

    Article  ADS  Google Scholar 

  • Isella A, Pérez LM, Carpenter JM et al (2013) An azimuthal asymmetry in the LkHα 330 disk. ApJ 775:30

    Article  ADS  Google Scholar 

  • Izidoro A, de Souza Torres K, Winter OC, Haghighipour N (2013) A compound model for the origin of Earth’s water. ApJ 767:54

    Article  ADS  Google Scholar 

  • Izidoro A, Haghighipour N, Winter OC, Tsuchida M (2014a) Terrestrial planet formation in a protoplanetary disk with a local mass depletion: a successful scenario for the formation of mars. ApJ 782:31

    Article  ADS  Google Scholar 

  • Izidoro A, Morbidelli A, Raymond SN (2014b) Terrestrial planet formation in the presence of migrating Super-Earths. ApJ 794:11

    Article  ADS  Google Scholar 

  • Izidoro A, Morbidelli A, Raymond SN, Hersant F, Pierens A (2015a) Accretion of Uranus and Neptune from inward-migrating planetary embryos blocked by Jupiter and Saturn. A&A 582:A99

    Article  ADS  Google Scholar 

  • Izidoro A, Raymond SN, Morbidelli A, Hersant F, Pierens A (2015b) Gas giant planets as dynamical barriers to inward-migrating super-Earths. ApJ 800:L22

    Article  ADS  Google Scholar 

  • Izidoro A, Raymond SN, Morbidelli A, Winter OC (2015c) Terrestrial planet formation constrained by Mars and the structure of the asteroid belt. MNRAS 453:3619–3634

    Article  ADS  Google Scholar 

  • Izidoro A, Raymond SN, Pierens A et al (2016) The asteroid belt as a relic from a chaotic early Solar System. ApJ 833:40

    Article  ADS  Google Scholar 

  • Izidoro A, Ogihara M, Raymond SN et al (2017) Breaking the chains: hot super-Earth systems from migration and disruption of compact resonant chains. MNRAS 470:1750–1770

    Article  ADS  Google Scholar 

  • Jacobsen SB (2005) The Hf-W Isotopic system and the origin of the Earth and Moon. Ann Rev Earth Planet Sci 33:531–570

    Article  ADS  MathSciNet  Google Scholar 

  • Jacobson SA, Morbidelli A (2014) Lunar and terrestrial planet formation in the grand tack scenario. Philos Trans R Soc Lond A 372:0174

    Article  ADS  Google Scholar 

  • Jacobson SA, Walsh KJ (2015) Earth and terrestrial planet formation, vol 212. Geophysical monograph series. American Geophysical Union, Washington, DC, pp 49–70

    Google Scholar 

  • Jacobson SA, Morbidelli A, Raymond SN et al (2014) Highly siderophile elements in Earth’s mantle as a clock for the Moon-forming impact. Nature 508:84–87

    Article  ADS  Google Scholar 

  • Jin S, Mordasini C (2018) Compositional imprints in density–distance–time: a rocky composition for close-in low-mass exoplanets from the location of the valley of evaporation. ApJ 853:163

    Article  ADS  Google Scholar 

  • Johansen A, Lacerda P (2010) Prograde rotation of protoplanets by accretion of pebbles in a gaseous environment. MNRAS 404:475–485

    Google Scholar 

  • Johansen A, Lambrechts M (2017) Forming planets via pebble accretion. Ann Rev Earth Planet Sci 45:359–387

    Article  ADS  Google Scholar 

  • Johansen A, Youdin A (2007) Protoplanetary disk turbulence driven by the streaming instability: nonlinear saturation and particle concentration. ApJ 662:627–641

    Article  ADS  Google Scholar 

  • Johansen A, Oishi JS, Mac Low MM et al (2007) Rapid planetesimal formation in turbulent circumstellar disks. Nature 448:1022–1025

    Article  ADS  Google Scholar 

  • Johansen A, Youdin A, Mac Low MM (2009) Particle clumping and planetesimal formation depend strongly on metallicity. ApJ 704:L75–L79

    Article  ADS  Google Scholar 

  • Johansen A, Davies MB, Church RP, Holmelin V (2012a) Can planetary instability explain the Kepler dichotomy? ApJ 758:39

    Article  ADS  Google Scholar 

  • Johansen A, Youdin AN, Lithwick Y (2012b) Adding particle collisions to the formation of asteroids and Kuiper belt objects via streaming instabilities. A&A 537:A125

    Article  ADS  Google Scholar 

  • Johansen A, Blum J, Tanaka H et al (2014) The multifaceted planetesimal formation process. In: Beuther H (ed) Protostars and planets VI. University of Arizona Press, Tucson, pp 547–570

    Google Scholar 

  • Johansen A, Mac Low MM, Lacerda P, Bizzarro M (2015) Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion. Sci Adv 1:1500109

    Article  ADS  Google Scholar 

  • Johnson BC, Minton DA, Melosh HJ, Zuber MT (2015) Impact jetting as the origin of chondrules. Nature 517:339–341

    Article  ADS  Google Scholar 

  • Johnson JA, Butler RP, Marcy GW et al (2007) A new planet around an M dwarf: revealing a correlation between exoplanets and stellar mass. ApJ 670:833–840

    Article  ADS  Google Scholar 

  • Jurić M, Tremaine S (2008) Dynamical origin of extrasolar planet eccentricity distribution. ApJ 686:603–620

    Article  ADS  Google Scholar 

  • Kaib NA, Chambers JE (2016) The fragility of the terrestrial planets during a giant-planet instability. MNRAS 455:3561–3569

    Article  ADS  Google Scholar 

  • Kaib NA, Cowan NB (2015) The feeding zones of terrestrial planets and insights into Moon formation. Icarus 252:161–174

    Article  ADS  Google Scholar 

  • Kasting JF, Pollack JB (1983) Loss of water from Venus. I – Hydrodynamic escape of hydrogen. Icarus 53:479–508

    Article  ADS  Google Scholar 

  • Kenyon SJ, Bromley BC (2004) Collisional cascades in planetesimal disks. II. Embedded planets. AJ 127:513–530

    Article  ADS  Google Scholar 

  • Kenyon SJ, Bromley BC (2006) Terrestrial planet formation. I. The transition from oligarchic growth to chaotic growth. AJ 131:1837–1850

    Article  ADS  Google Scholar 

  • Kenyon SJ, Bromley BC (2009) Rapid formation of icy super-Earths and the cores of gas giant planets. ApJ 690:L140–L143

    Article  ADS  Google Scholar 

  • Kenyon SJ, Hartmann L (1987) Spectral energy distributions of T Tauri stars – disk flaring and limits on accretion. ApJ 323:714–733

    Article  ADS  Google Scholar 

  • Kenyon SJ, Luu JX (1999) Accretion in the early Kuiper belt. II. Fragmentation. AJ 118: 1101–1119

    Google Scholar 

  • Kleine T, Touboul M, Bourdon B et al (2009) Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim Cosmochim Acta 73:5150–5188

    Article  ADS  Google Scholar 

  • Kley W, Crida A (2008) Migration of protoplanets in radiative discs. A&A 487:L9–L12

    Article  ADS  Google Scholar 

  • Kley W, Nelson RP (2012) Planet-disk interaction and orbital evolution. ARA&A 50:211–249

    Article  ADS  Google Scholar 

  • Kley W, Bitsch B Klahr H (2009) Planet migration in three-dimensional radiative discs. A&A 506:971–987

    Article  ADS  MATH  Google Scholar 

  • Kobayashi H, Tanaka H, Krivov AV, Inaba S (2010) Planetary growth with collisional fragmentation and gas drag. Icarus 209:836–847

    Article  ADS  Google Scholar 

  • Koerner DW, Ressler ME, Werner MW, Backman DE (1998) Mid-Infrared imaging of a circumstellar disk around HR 4796: mapping the debris of planetary formation. ApJ 503:L83–L87

    Article  ADS  Google Scholar 

  • Kokubo E, Ida S (1995) Orbital evolution of protoplanets embedded in a swarm of planetesimals. Icarus 114:247–257

    Article  ADS  Google Scholar 

  • Kokubo E, Ida S (1996) On runaway growth of planetesimals. Icarus 123:180–191

    Article  ADS  Google Scholar 

  • Kokubo E, Ida S (1998) Oligarchic growth of protoplanets. Icarus 131:171–178

    Article  ADS  Google Scholar 

  • Kokubo E, Ida S (2000) Formation of protoplanets from planetesimals in the solar nebula. Icarus 143:15–27

    Article  ADS  Google Scholar 

  • Kokubo E, Ida S (2002) Formation of protoplanet systems and diversity of planetary systems. ApJ 581:666–680

    Article  ADS  Google Scholar 

  • Kokubo E, Kominami J, Ida S (2006) Formation of terrestrial planets from protoplanets. I. Statistics of basic dynamical properties. ApJ 642:1131–1139

    Article  ADS  Google Scholar 

  • Kominami J, Ida S (2004) Formation of terrestrial planets in a dissipating gas disk with Jupiter and Saturn. Icarus 167:231–243

    Article  ADS  Google Scholar 

  • Kopparapu RK (2013) A revised estimate of the occurrence rate of terrestrial planets in the habitable zones around Kepler M-dwarfs. ApJ 767:L8

    Article  ADS  Google Scholar 

  • Kothe S, Güttler C, Blum J (2010) The Physics of protoplanetesimal dust agglomerates. V. Multiple impacts of dusty agglomerates at velocities above the fragmentation threshold. ApJ 725: 1242–1251

    Article  ADS  Google Scholar 

  • Kretke KA, Lin DNC (2007) Grain retention and formation of planetesimals near the snow line in MRI-driven turbulent protoplanetary disks. ApJ 664:L55–L58

    Article  ADS  Google Scholar 

  • Krijt S, Ormel CW, Dominik C, Tielens AGGM (2015) Erosion and the limits to planetesimal growth. A&A 574:A83

    Article  ADS  Google Scholar 

  • Krijt S, Ormel CW, Dominik C, Tielens AGGM (2016) A panoptic model for planetesimal formation and pebble delivery. A&A 586:A20

    Article  ADS  Google Scholar 

  • Krivov AV (2010) Debris disks: seeing dust, thinking of planetesimals and planets. Res Astron Astrophys 10:383–414

    Article  ADS  Google Scholar 

  • Kruijer TS, Sprung P, Kleine T et al (2012) Hf-W chronometry of core formation in planetesimals inferred from weakly irradiated iron meteorites. Geochim Cosmochim Acta 99:287–304

    Google Scholar 

  • Kurokawa H, Sato M, Ushioda M et al (2014) Evolution of water reservoirs on Mars: constraints from hydrogen isotopes in martian meteorites. Earth Planet Sci Lett 394:179–185

    Article  ADS  Google Scholar 

  • Lambrechts M, Johansen A (2012) Rapid growth of gas-giant cores by pebble accretion. A&A 544:A32

    Article  ADS  Google Scholar 

  • Lambrechts M, Johansen A (2014) Forming the cores of giant planets from the radial pebble flux in protoplanetary discs. A&A 572:A107

    Article  ADS  Google Scholar 

  • Lambrechts M, Lega E (2017) Reduced gas accretion on super-Earths and ice giants. A&A 606:A146

    Article  ADS  Google Scholar 

  • Lambrechts M, Johansen A, Morbidelli A (2014) Separating gas-giant and ice-giant planets by halting pebble accretion. A&A 572:A35

    Article  ADS  Google Scholar 

  • Laskar J (1997) Large scale chaos and the spacing of the inner planets. A&A 317:L75–L78

    Google Scholar 

  • Latham DW, Rowe JF, Quinn SN et al (2011) A first comparison of Kepler planet candidates in single and multiple systems. ApJ 732:L24

    Article  ADS  Google Scholar 

  • Lawrence DJ, Feldman WC, Goldsten JO et al (2013) Evidence for water ice near Mercury’s North Pole from MESSENGER neutron spectrometer measurements. Science 339:292

    Article  ADS  Google Scholar 

  • Lecar M, Aarseth SJ (1986) A numerical simulation of the formation of the terrestrial planets. ApJ 305:564–579

    Article  ADS  Google Scholar 

  • Lecar M, Podolak M, Sasselov D, Chiang E (2006) On the location of the snow line in a protoplanetary disk. ApJ 640:1115–1118

    Article  ADS  Google Scholar 

  • Lécuyer C, Gillet P, Robert F (1998) The hydrogen isotope composition of seawater and the global water cycle. Chem Geol 145:249–261

    Article  ADS  Google Scholar 

  • Lee EJ, Chiang E (2016) Breeding super-Earths and birthing super-puffs in transitional disks. ApJ 817:90

    Article  ADS  Google Scholar 

  • Lee EJ, Chiang E, Ormel CW (2014) Make super-Earths, not Jupiters: accreting nebular gas onto solid cores at 0.1 AU and beyond. ApJ 797:95

    Article  ADS  Google Scholar 

  • Leinhardt ZM (2008) Terrestrial planet formation: a review and current directions. In: Fischer D, Rasio FA, Thorsett SE, Wolszczan A (eds) Extreme solar systems. Astronomical society of the Pacific conference series, vol 398. http://adsabs.harvard.edu/abs/2008ASPC..398..225L

  • Leinhardt ZM, Richardson DC (2005) Planetesimals to protoplanets. I. Effect of fragmentation on terrestrial planet formation. ApJ 625:427–440

    Article  ADS  Google Scholar 

  • Leinhardt ZM, Richardson DC, Lufkin G, Haseltine J (2009) Planetesimals to protoplanets – II. Effect of debris on terrestrial planet formation. MNRAS 396:718–728

    Article  ADS  Google Scholar 

  • Levison HF, Thommes E, Duncan MJ (2010) Modeling the formation of giant planet cores. I. Evaluating key processes. AJ 139:1297–1314

    Article  ADS  Google Scholar 

  • Levison HF, Morbidelli A, Tsiganis K, Nesvorný D, Gomes R (2011) Late orbital instabilities in the outer planets induced by interaction with a self-gravitating planetesimal disk. AJ 142:152

    Article  ADS  Google Scholar 

  • Levison HF, Duncan MJ, Thommes E (2012) A lagrangian integrator for planetary accretion and dynamics (LIPAD). AJ 144:119

    Article  ADS  Google Scholar 

  • Levison HF, Kretke KA, Duncan MJ (2015a) Growing the gas-giant planets by the gradual accumulation of pebbles. Nature 524:322–324

    Article  ADS  Google Scholar 

  • Levison HF, Kretke KA, Walsh KJ, Bottke WF (2015b) Growing the terrestrial planets from the gradual accumulation of sub-meter sized objects. Proc Natl Acad Sci 112:14,180–14,185

    Article  ADS  Google Scholar 

  • Lichtenberg T, Golabek GJ, Dullemond CP et al (2017) Impact splash chondrule formation during planetesimal recycling. ArXiv e-prints

    Google Scholar 

  • Lin DNC, Ida S (1997) On the origin of massive eccentric planets. ApJ 477:781–+

    Article  ADS  Google Scholar 

  • Lin DNC, Papaloizou J (1986) On the tidal interaction between protoplanets and the protoplanetary disk. III – Orbital migration of protoplanets. ApJ 309:846–857

    Article  ADS  Google Scholar 

  • Lin DNC, Bodenheimer P, Richardson DC (1996) Orbital migration of the planetary companion of 51 Pegasi to its present location. Nature 380:606–607

    Article  ADS  Google Scholar 

  • Lin MK, Youdin AN (2015) Cooling requirements for the vertical shear instability in protoplanetary disks. ApJ 811:17

    Article  ADS  Google Scholar 

  • Lineweaver CH, Fenner Y, Gibson BK (2004) The galactic habitable zone and the age distribution of complex life in the milky way. Science 303:59–62

    Article  ADS  Google Scholar 

  • Lissauer JJ (1987) Timescales for planetary accretion and the structure of the protoplanetary disk. Icarus 69:249–265

    Article  ADS  Google Scholar 

  • Lissauer JJ (1993) Planet formation. ARA&A 31:129–174

    Article  ADS  Google Scholar 

  • Lissauer JJ (2007) Planets formed in habitable zones of M dwarf stars probably are deficient in volatiles. ApJ 660:L149–L152

    Article  ADS  Google Scholar 

  • Lissauer JJ, Fabrycky DC, Ford EB et al (2011a) A closely packed system of low-mass, low-density planets transiting Kepler-11. Nature 470:53–58

    Article  ADS  Google Scholar 

  • Lissauer JJ, Ragozzine D, Fabrycky DC et al (2011b) Architecture and dynamics of Kepler’s candidate multiple transiting planet systems. ApJS 197:8

    Article  ADS  Google Scholar 

  • Lissauer JJ, Jontof-Hutter D, Rowe JF et al (2013) All six planets known to orbit Kepler-11 have low densities. ApJ 770:131

    Article  ADS  Google Scholar 

  • Lodders K (2003) Solar system abundances and condensation temperatures of the elements. ApJ 591:1220–1247

    Article  ADS  Google Scholar 

  • Lopez ED (2017) Born dry in the photoevaporation desert: Kepler’s ultra-short-period planets formed water-poor. MNRAS 472:245–253

    Article  ADS  Google Scholar 

  • Lopez ED, Fortney JJ (2014) Understanding the mass-radius relation for sub-neptunes: radius as a proxy for composition. ApJ 792:1

    Article  ADS  Google Scholar 

  • Lopez ED,Rice K (2016) Predictions for the period dependence of the transition between rocky super-Earths and gaseous sub-Neptunes and implications for η_⊕. ArXiv e-prints

    Google Scholar 

  • Lovis C, Mayor M (2007) Planets around evolved intermediate-mass stars. I. Two substellar companions in the open clusters NGC 2423 and NGC 4349. A&A 472:657–664

    Article  ADS  Google Scholar 

  • Luger R, Sestovic M, Kruse E et al (2017) A seven-planet resonant chain in TRAPPIST-1. Nat Astron 1:0129

    Article  ADS  Google Scholar 

  • Lykawka PS, Ito T (2013) Terrestrial planet formation during the migration and resonance crossings of the giant planets. ApJ 773:65

    Article  ADS  Google Scholar 

  • Lykawka PS, Ito T (2017) Terrestrial planet formation: constraining the formation of Mercury. ApJ 838:106

    Article  ADS  Google Scholar 

  • Lyra W, Klahr H (2011) The baroclinic instability in the context of layered accretion. Self-sustained vortices and their magnetic stability in local compressible unstratified models of protoplanetary disks. A&A 527:A138

    Article  ADS  MATH  Google Scholar 

  • Lyra W, Johansen A, Klahr H, Piskunov N (2008a) Embryos grown in the dead zone. Assembling the first protoplanetary cores in low mass self-gravitating circumstellar disks of gas and solids. A&A 491:L41–L44

    Article  ADS  Google Scholar 

  • Lyra W, Johansen A, Klahr H, Piskunov N (2008b) Global magnetohydrodynamical models of turbulence in protoplanetary disks. I. A cylindrical potential on a Cartesian grid and transport of solids. A&A 479:883–901

    Article  ADS  Google Scholar 

  • Lyra W, Johansen A, Klahr H, Piskunov N (2009) Standing on the shoulders of giants. Trojan Earths and vortex trapping in low mass self-gravitating protoplanetary disks of gas and solids. A&A 493:1125–1139

    Article  ADS  Google Scholar 

  • Lyra W, Paardekooper SJ, Mac Low MM (2010) Orbital migration of low-mass planets in evolutionary radiative models: avoiding catastrophic infall. ApJ 715:L68–L73

    Article  ADS  Google Scholar 

  • Mamajek EE (2009) Initial conditions of planet formation: lifetimes of primordial disks. In: Usuda T, Tamura M, Ishii M (eds) American institute of physics conference series, vol 1158, pp 3–10. https://doi.org/10.1063/1.3215910

  • Mandell AM, Raymond SN, Sigurdsson S (2007) Formation of Earth-like planets during and after giant planet migration. ApJ 660:823–844

    Article  ADS  Google Scholar 

  • Marcy GW, Isaacson H, Howard AW et al (2014) Masses, radii, and orbits of small Kepler planets: the transition from gaseous to rocky planets. ApJS 210:20

    Google Scholar 

  • Martin RG, Livio M (2012) On the evolution of the snow line in protoplanetary discs. MNRAS 425:L6–L9

    Article  ADS  Google Scholar 

  • Martin RG, Livio M (2015) The Solar System as an exoplanetary system. ApJ 810:105

    Article  ADS  Google Scholar 

  • Marty B (2012) The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet Sci Lett 313:56–66

    Article  ADS  Google Scholar 

  • Marty B, Yokochi R (2006) Water in the early Earth. Rev Mineral Geochem 62(1):421. http://dx.doi.org/10.2138/rmg.2006.62.18

    Article  ADS  Google Scholar 

  • Marty B, Avice G, Sano Y et al (2016) Origins of volatile elements (H, C, N, noble gases) on Earth and Mars in light of recent results from the ROSETTA cometary mission. Earth Planet Sci Lett 441:91–102

    Article  ADS  Google Scholar 

  • Marzari F (2014) Impact of planet-planet scattering on the formation and survival of debris discs. MNRAS 444:1419–1424

    Article  ADS  Google Scholar 

  • Masset F, Snellgrove M (2001) Reversing type II migration: resonance trapping of a lighter giant protoplanet. MNRAS 320:L55–L59

    Article  ADS  Google Scholar 

  • Masset FS, Papaloizou JCB (2003) Runaway migration and the formation of hot Jupiters. ApJ 588:494–508

    Article  ADS  Google Scholar 

  • Masset FS, Morbidelli A, Crida A, Ferreira J (2006) Disk surface density transitions as protoplanet traps. ApJ 642:478–487

    Article  ADS  Google Scholar 

  • Matsumura S, Ida S, Nagasawa M (2013) Effects of dynamical evolution of giant planets on survival of terrestrial planets. ApJ 767:129

    Article  ADS  Google Scholar 

  • Mayor M, Marmier M, Lovis C et al (2011) The HARPS search for southern extra-solar planets XXXIV. Occurrence, mass distribution and orbital properties of super-Earths and Neptune-mass planets. arXiv:11092497

    Google Scholar 

  • McKee CF, Ostriker EC (2007) Theory of star formation. ARA&A 45:565–687

    Article  ADS  Google Scholar 

  • McNeil DS, Nelson RP (2010) On the formation of hot Neptunes and super-Earths. MNRAS 401:1691–1708

    Article  ADS  Google Scholar 

  • Mills SM, Fabrycky DC, Migaszewski C et al (2016) A resonant chain of four transiting, sub-Neptune planets. Nature 533:509–512

    Article  ADS  Google Scholar 

  • Mizuno H (1980) Formation of the giant planets. Prog Theor Phys 64:544–557

    Article  ADS  Google Scholar 

  • Moorhead AV, Adams FC (2005) Giant planet migration through the action of disk torques and planet planet scattering. Icarus 178:517–539

    Article  ADS  Google Scholar 

  • Morbidelli A, Crida A (2007) The dynamics of Jupiter and Saturn in the gaseous protoplanetary disk. Icarus 191:158–171

    Article  ADS  Google Scholar 

  • Morbidelli A, Nesvorny D (2012) Dynamics of pebbles in the vicinity of a growing planetary embryo: hydro-dynamical simulations. A&A 546:A18

    Article  ADS  Google Scholar 

  • Morbidelli A, Raymond SN (2016) Challenges in planet formation. J Geophys Res (Planets) 121:1962–1980

    ADS  Google Scholar 

  • Morbidelli A, Chambers J, Lunine JI et al (2000) Source regions and time scales for the delivery of water to Earth. Meteorit Planet Sci 35:1309–1320

    Google Scholar 

  • Morbidelli A, Levison HF, Tsiganis K, Gomes R (2005) Chaotic capture of Jupiter’s Trojan asteroids in the early Solar System. Nature 435:462–465

    Article  ADS  Google Scholar 

  • Morbidelli A, Tsiganis K, Crida A, Levison HF, Gomes R (2007) Dynamics of the giant planets of the Solar System in the gaseous protoplanetary disk and their relationship to the current orbital architecture. AJ 134:1790–1798

    Article  ADS  Google Scholar 

  • Morbidelli A, Bottke WF, Nesvorný D, Levison HF (2009) Asteroids were born big. Icarus 204:558–573

    Article  ADS  Google Scholar 

  • Morbidelli A, Lunine JI, O’Brien DP, Raymond SN, Walsh KJ (2012) Building terrestrial planets. Ann Rev Earth Planet Sci 40:251–275

    Article  ADS  Google Scholar 

  • Morbidelli A, Lambrechts M, Jacobson S, Bitsch B (2015a) The great dichotomy of the Solar System: small terrestrial embryos and massive giant planet cores. Icarus 258:418–429

    Article  ADS  Google Scholar 

  • Morbidelli A, Walsh KJ, O’Brien DP, Minton DA, Bottke WF (2015b) The dynamical evolution of the asteroid belt. pp 493–507. https://doi.org/10.2458/azu_uapress_9780816532131-ch026

  • Morbidelli A, Bitsch B, Crida A et al (2016) Fossilized condensation lines in the Solar System protoplanetary disk. Icarus 267:368–376

    Article  ADS  Google Scholar 

  • Morbidelli A, Nesvorny D, Laurenz V et al (2018) The timeline of the Lunar bombardment – revisited. ArXiv e-prints

    Article  ADS  Google Scholar 

  • Moriarty J, Fischer D (2015) Building massive compact planetesimal disks from the accretion of pebbles. ApJ 809:94

    Article  ADS  Google Scholar 

  • Morishima R (2015) A particle-based hybrid code for planet formation. Icarus 260:368–395

    Article  ADS  Google Scholar 

  • Morishima R (2017) Onset of oligarchic growth and implication for accretion histories of dwarf planets. Icarus 281:459–475

    Article  ADS  Google Scholar 

  • Morishima R, Schmidt MW, Stadel J, Moore B (2008) Formation and accretion history of terrestrial planets from runaway growth through to late time: implications for orbital eccentricity. ApJ 685:1247–1261

    Article  ADS  Google Scholar 

  • Morishima R, Stadel J, Moore B (2010) From planetesimals to terrestrial planets: N-body simulations including the effects of nebular gas and giant planets. Icarus 207:517–535

    Article  ADS  Google Scholar 

  • Moro-Martín A, Marshall JP, Kennedy G et al (2015) Does the presence of planets affect the frequency and properties of extrasolar Kuiper belts? Results from the Herschel Debris and Dunes Surveys. ApJ 801:143

    Article  ADS  Google Scholar 

  • Morris MA, Desch SJ (2010) Thermal histories of chondrules in solar nebula shocks. apj 722:1474–1494

    Article  ADS  Google Scholar 

  • Mulders GD, Pascucci I, Apai D (2015a) A stellar-mass-dependent drop in planet occurrence rates. ApJ 798:112

    Article  ADS  Google Scholar 

  • Mulders GD, Pascucci I, Apai D (2015b) An increase in the mass of planetary systems around lower-mass stars. ApJ 814:130

    Article  ADS  Google Scholar 

  • Nagasawa M, Ida S, Bessho T (2008) Formation of hot planets by a combination of planet scattering, tidal circularization, and the Kozai mechanism. ApJ 678:498–508

    Article  ADS  Google Scholar 

  • Najita JR, Carr JS, Glassgold AE, Valenti JA (2007) Gaseous inner disks. In: Reipurth B, Jewitt D, Keil K (eds) Protostars and planets V. University of Arizona Press, Tucson, pp 507–522

    Google Scholar 

  • Nakagawa Y, Sekiya M, Hayashi C (1986) Settling and growth of dust particles in a laminar phase of a low-mass solar nebula. Icarus 67:375–390

    Article  ADS  Google Scholar 

  • Natta A, Testi L, Calvet N et al (2007) Dust in protoplanetary disks: properties and evolution. In: Reipurth B, Jewitt D, Keil K (eds) Protostars and planets V. University of Arizona Press, Tucson, pp 767–781

    Google Scholar 

  • Nelson RP, Gressel O, Umurhan OM (2013) Linear and non-linear evolution of the vertical shear instability in accretion discs. MNRAS 435:2610–2632

    Article  ADS  Google Scholar 

  • Nesvorný D, Morbidelli A (2012) Statistical study of the early Solar System’s instability with four, five, and six giant planets. AJ 144:117

    Article  ADS  Google Scholar 

  • Nimmo F, Kleine T (2007) How rapidly did Mars accrete? Uncertainties in the Hf-W timing of core formation. Icarus 191:497–504

    Article  ADS  Google Scholar 

  • Nomura H, Tsukagoshi T, Kawabe R et al (2016) ALMA observations of a gap and a ring in the protoplanetary disk around TW Hya. ApJ 819:L7

    Article  ADS  Google Scholar 

  • Nomura R, Hirose K, Uesugi K et al (2014) Low core-mantle boundary temperature inferred from the solidus of pyrolite. Science 343:522–525

    Article  ADS  Google Scholar 

  • O’dell CR, Wen Z (1994) Postrefurbishment mission hubble space telescope images of the core of the orion nebula: proplyds, Herbig-Haro objects, and measurements of a circumstellar disk. ApJ 436:194–202

    Article  ADS  Google Scholar 

  • O’Brien DP, Morbidelli A, Levison HF (2006) Terrestrial planet formation with strong dynamical friction. Icarus 184:39–58

    Article  ADS  Google Scholar 

  • O’Brien DP, Walsh KJ, Morbidelli A, Raymond SN, Mandell AM (2014) Water delivery and giant impacts in the ‘Grand Tack’ scenario. Icarus 239:74–84

    Article  ADS  Google Scholar 

  • O’Brien DP, Izidoro A, Jacobson SA, Raymond SN, Rubie DC (2018) The delivery of water during terrestrial planet formation. ArXiv e-prints

    Google Scholar 

  • Ogihara M, Ida S (2009) N-body simulations of planetary accretion around M dwarf stars. ApJ 699:824–838

    Article  ADS  Google Scholar 

  • Ogihara M, Morbidelli A, Guillot T (2015) A reassessment of the in situ formation of close-in super-Earths. A&A 578:A36

    Article  ADS  Google Scholar 

  • Okuzumi S (2009) Electric charging of dust aggregates and its effect on dust coagulation in protoplanetary disks. ApJ 698:1122–1135

    Article  ADS  Google Scholar 

  • Okuzumi S, Tanaka H, Kobayashi H, Wada K (2012) Rapid coagulation of porous dust aggregates outside the snow line: a pathway to successful icy planetesimal formation. ApJ 752:106

    Article  ADS  Google Scholar 

  • Ormel CW, Klahr HH (2010) The effect of gas drag on the growth of protoplanets. Analytical expressions for the accretion of small bodies in laminar disks. A&A 520:A43

    Article  ADS  Google Scholar 

  • Ormel CW, Spaans M, Tielens AGGM (2007) Dust coagulation in protoplanetary disks: porosity matters. A&A 461:215–232

    Article  ADS  Google Scholar 

  • Ormel CW, Dullemond CP, Spaans M (2010a) A new condition for the transition from runaway to oligarchic growth. ApJ 714:L103–L107

    Article  ADS  Google Scholar 

  • Ormel CW, Dullemond CP, Spaans M (2010b) Accretion among preplanetary bodies: the many faces of runaway growth. Icarus 210:507–538

    Article  ADS  Google Scholar 

  • Owen JE, Wu Y (2013) Kepler planets: a tale of evaporation. ApJ 775:105

    Article  ADS  Google Scholar 

  • Owen JE, Wu Y (2017) The evaporation valley in the Kepler planets. ApJ 847:29

    Article  ADS  Google Scholar 

  • Owen T, Maillard JP, de Bergh C, Lutz BL (1988) Deuterium on Mars – the abundance of HDO and the value of D/H. Science 240:1767–1770

    Article  ADS  Google Scholar 

  • Paardekooper SJ, Mellema G (2006) Halting type I planet migration in non-isothermal disks. A&A 459:L17–L20

    Article  ADS  Google Scholar 

  • Paardekooper SJ, Mellema G (2008) Growing and moving low-mass planets in non-isothermal disks. A&A 478:245–266

    Article  ADS  Google Scholar 

  • Paardekooper SJ, Papaloizou JCB (2008) On disc protoplanet interactions in a non-barotropic disc with thermal diffusion. A&A 485:877–895

    Article  ADS  MATH  Google Scholar 

  • Paardekooper SJ, Baruteau C, Crida A, Kley W (2010) A torque formula for non-isothermal type I planetary migration – I. Unsaturated horseshoe drag. MNRAS 401:1950–1964

    Article  ADS  Google Scholar 

  • Paardekooper SJ, Baruteau C, Kley W (2011) A torque formula for non-isothermal type I planetary migration – II. Effects of diffusion. MNRAS 410:293–303

    Article  ADS  Google Scholar 

  • Papaloizou JCB, Lin DNC (1995) Theory Of accretion disks I: angular momentum transport processes. ARA&A 33:505–540

    Article  ADS  Google Scholar 

  • Papaloizou JCB, Terquem C (2006) Planet formation and migration. Rep Prog Phys 69:119–180

    Article  ADS  Google Scholar 

  • Petigura EA, Howard AW, Marcy GW (2013) Prevalence of Earth-size planets orbiting Sun-like stars. Proc Natl Acad Sci 110:19273–19278

    Article  ADS  Google Scholar 

  • Petit JM, Morbidelli A, Chambers J (2001) The primordial excitation and clearing of the asteroid belt. Icarus 153:338–347

    Article  ADS  Google Scholar 

  • Petit JM, Chambers J, Franklin F, Nagasawa M (2002) Primordial excitation and depletion of the main belt. University of Arizona Press, Tucson, pp 711–723

    Google Scholar 

  • Pierens A, Nelson RP (2008) On the formation and migration of giant planets in circumbinary discs. A&A 483:633–642

    Article  ADS  Google Scholar 

  • Pierens A, Raymond SN (2011) Two phase, inward-then-outward migration of Jupiter and Saturn in the gaseous solar nebula. A&A 533:A131

    Article  ADS  Google Scholar 

  • Pierens A, Raymond SN, Nesvorny D, Morbidelli A (2014) Outward migration of Jupiter and Saturn in 3:2 or 2:1 resonance in radiative disks: implications for the grand tack and nice models. ApJ 795:L11

    Article  ADS  Google Scholar 

  • Pollack JB, Hubickyj O, Bodenheimer P et al (1996) Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124:62–85

    Article  ADS  Google Scholar 

  • Poppe T, Blum J, Henning T (2000) Experiments on collisional grain charging of micron-sized preplanetary dust. ApJ 533:472–480

    Article  ADS  Google Scholar 

  • Raettig N, Lyra W, Klahr H (2013) A parameter study for baroclinic vortex amplification. ApJ 765:115

    Article  ADS  Google Scholar 

  • Rafikov RR (2003a) Planetesimal disk evolution driven by embryo-planetesimal gravitational scattering. AJ 125:922–941

    Article  ADS  Google Scholar 

  • Rafikov RR (2003b) The growth of planetary embryos: orderly, runaway, or Oligarchic? AJ 125:942–961

    Article  ADS  Google Scholar 

  • Rafikov RR (2004) Fast accretion of small planetesimals by protoplanetary cores. AJ 128: 1348–1363

    Article  ADS  MathSciNet  Google Scholar 

  • Rasio FA, Ford EB (1996) Dynamical instabilities and the formation of extrasolar planetary systems. Science 274:954–956

    Article  ADS  Google Scholar 

  • Rauch KP, Hamilton DP (2002) The HNBody package for symplectic integration of nearly-Keplerian systems. In: AAS/division of dynamical astronomy meeting #33. Bulletin of the American astronomical society, vol 34, p 938. http://adsabs.harvard.edu/abs/2002DDA....33.0802R

  • Raymond SN, Cossou C (2014) No universal minimum-mass extrasolar nebula: evidence against in situ accretion of systems of hot super-Earths. MNRAS 440:L11–L15

    Article  ADS  Google Scholar 

  • Raymond SN, Izidoro A (2017a) Origin of water in the inner Solar system: planetesimals scattered inward during Jupiter and Saturn’s rapid gas accretion. Icarus 297:134–148

    Article  ADS  Google Scholar 

  • Raymond SN, Izidoro A (2017b) The empty primordial asteroid belt. Sci Adv 3:e1701,138

    Article  ADS  Google Scholar 

  • Raymond SN, Morbidelli A (2014) The grand tack model: a critical review. In: Complex planetary systems. Proceedings of the international astronomical union, IAU Symposium, vol 310, pp 194–203. https://doi.org/10.1017/S1743921314008254

    Article  ADS  Google Scholar 

  • Raymond SN, Quinn T, Lunine JI (2004) Making other Earths: dynamical simulations of terrestrial planet formation and water delivery. Icarus 168:1–17

    Article  ADS  Google Scholar 

  • Raymond SN, Quinn T, Lunine JI (2005) Terrestrial planet formation in disks with varying surface density profiles. ApJ 632:670–676

    Article  ADS  Google Scholar 

  • Raymond SN, Mandell AM, Sigurdsson S (2006a) Exotic Earths: forming habitable worlds with Giant planet migration. Science 313:1413–1416

    Article  ADS  Google Scholar 

  • Raymond SN, Quinn T, Lunine JI (2006b) High-resolution simulations of the final assembly of Earth-like planets I. Terrestrial accretion and dynamics. Icarus 183:265–282

    Article  ADS  Google Scholar 

  • Raymond SN, Quinn T, Lunine JI (2007a) High-resolution simulations of the final assembly of Earth-like planets. 2. Water delivery and planetary habitability. Astrobiology 7:66–84

    Article  ADS  Google Scholar 

  • Raymond SN, Scalo J, Meadows VS (2007b) A decreased probability of habitable planet formation around low-mass stars. ApJ 669:606–614

    Article  ADS  Google Scholar 

  • Raymond SN, Barnes R, Mandell AM (2008) Observable consequences of planet formation models in systems with close-in terrestrial planets. MNRAS 384:663–674

    Article  ADS  Google Scholar 

  • Raymond SN, O’Brien DP, Morbidelli A, Kaib NA (2009) Building the terrestrial planets: constrained accretion in the inner Solar System. Icarus 203:644–662

    Article  ADS  Google Scholar 

  • Raymond SN, Armitage PJ, Gorelick N (2010) Planet-planet scattering in planetesimal disks. II. Predictions for outer extrasolar planetary systems. ApJ 711:772–795

    Article  ADS  Google Scholar 

  • Raymond SN, Armitage PJ, Moro-Martín A et al (2011) Debris disks as signposts of terrestrial planet formation. A&A 530:A62

    Article  ADS  Google Scholar 

  • Raymond SN, Armitage PJ, Moro-Martín A et al (2012) Debris disks as signposts of terrestrial planet formation. II. Dependence of exoplanet architectures on giant planet and disk properties. A&A 541:A11

    Article  ADS  Google Scholar 

  • Raymond SN, Kokubo E, Morbidelli A, Morishima R, Walsh KJ (2014) Terrestrial planet formation at home and abroad. In: Beuther H (ed) Protostars and planets VI. University of Arizona Press, Tucson, pp 595–618

    Google Scholar 

  • Raymond SN, Izidoro A, Bitsch B, Jacobson SA (2016) Did Jupiter’s core form in the innermost parts of the Sun’s protoplanetary disc? MNRAS 458:2962–2972

    Article  ADS  Google Scholar 

  • Raymond SN, Armitage PJ, Veras D, Quintana EV, Barclay T (2017) Implications of the interstellar object 1I/’Oumuamua for planetary dynamics and planetesimal formation. ArXiv e-prints

    Google Scholar 

  • Rein H, Spiegel DS (2015) IAS15: a fast, adaptive, high-order integrator for gravitational dynamics, accurate to machine precision over a billion orbits. MNRAS 446:1424–1437

    Google Scholar 

  • Rein H, Tamayo D (2015) WHFAST: a fast and unbiased implementation of a symplectic Wisdom-Holman integrator for long-term gravitational simulations. MNRAS 452:376–388

    Article  ADS  Google Scholar 

  • Rein H, Lesur G, Leinhardt ZM (2010) The validity of the super-particle approximation during planetesimal formation. A&A 511:A69

    Article  ADS  Google Scholar 

  • Ricci L, Testi L, Natta A et al (2010) Dust properties of protoplanetary disks in the Taurus-Auriga star forming region from millimeter wavelengths. A&A 512:A15

    Article  ADS  Google Scholar 

  • Richardson DC, Quinn T, Stadel J, Lake G (2000) Direct large-scale N-body simulations of planetesimal dynamics. Icarus 143:45–59

    Article  ADS  MathSciNet  Google Scholar 

  • Rodmann J, Henning T, Chandler CJ, Mundy LG, Wilner DJ (2006) Large dust particles in disks around T Tauri stars. A&A 446:211–221

    Article  ADS  Google Scholar 

  • Rogers LA (2015) Most 1.6 Earth-radius planets are not rocky. ApJ 801:41

    Article  ADS  Google Scholar 

  • Romanova MM, Ustyugova GV, Koldoba AV, Wick JV, Lovelace RVE (2003) Three-dimensional simulations of disk accretion to an inclined dipole. I. Magnetospheric flows at different θ. ApJ 595:1009–1031

    Article  ADS  Google Scholar 

  • Romanova MM, Ustyugova GV, Koldoba AV, Lovelace RVE (2004) Three-dimensional simulations of disk accretion to an inclined dipole. II. Hot spots and variability. ApJ 610:920–932

    Article  ADS  Google Scholar 

  • Romanova MM, Kulkarni AK, Lovelace RVE (2008) Unstable disk accretion onto magnetized stars: first global three-dimensional magnetohydrodynamic simulations. ApJ 673:L171

    Article  ADS  Google Scholar 

  • Rowan D, Meschiari S, Laughlin G et al (2016) The Lick-Carnegie Exoplanet Survey: HD 32963 – a new Jupiter analog orbiting a Sun-like Star. ApJ 817:104

    Article  ADS  Google Scholar 

  • Safronov VS (1972) Evolution of the protoplanetary cloud and formation of the Earth and planets. IPST, Jerusalem

    Google Scholar 

  • Saha P, Tremaine S (1994) Long-term planetary integration with individual time steps. AJ 108:1962–1969

    Article  ADS  Google Scholar 

  • Sato T, Okuzumi S, Ida S (2016) On the water delivery to terrestrial embryos by ice pebble accretion. A&A 589:A15

    Article  ADS  Google Scholar 

  • Schäfer U, Yang CC, Johansen A (2017) Initial mass function of planetesimals formed by the streaming instability. A&A 597:A69

    Article  Google Scholar 

  • Scheinberg A, Fu RR, Elkins-Tanton LT, Weiss BP (2015) Asteroid differentiation: melting and large-scale structure, pp 533–552. doi: https://doi.org/10.2458/azu˙uapress˙9780816532131-ch028

    Google Scholar 

  • Schlaufman KC (2014) Tests of in situ formation scenarios for compact multiplanet systems. ApJ 790:91

    Article  ADS  Google Scholar 

  • Schlichting HE (2014) Formation of close in super-Earths and mini-Neptunes: required disk masses and their implications. ApJ 795:L15

    Article  ADS  Google Scholar 

  • Schlichting HE, Sari R (2011) Runaway growth during planet formation: explaining the size distribution of large Kuiper belt objects. ApJ 728:68

    Article  ADS  Google Scholar 

  • Schlichting HE, Fuentes CI, Trilling DE (2013) Initial planetesimal sizes and the size distribution of small Kuiper belt objects. AJ 146:36

    Article  ADS  Google Scholar 

  • Schneider G, Smith BA, Becklin EE et al (1999) NICMOS imaging of the HR 4796A circumstellar disk. ApJ 513:L127–L130

    Article  ADS  Google Scholar 

  • Scott ERD (2007) Chondrites and the protoplanetary disk. Ann Rev Earth Planet Sci 35:577–620

    Article  ADS  Google Scholar 

  • Scott ERD, Krot AN (2014) Chondrites and their components. In: Davis AM (ed) Meteorites and cosmochemical processes, pp 65–137. http://adsabs.harvard.edu/abs/2014mcp..book...65S

    Chapter  Google Scholar 

  • Scott ERD, Taylor GJ (1983) Chondrules and other components in C, O, and E chondrites: similarities in their properties and origins. J Geophys Res 88:B275–B286

    Article  ADS  Google Scholar 

  • Selsis F, Chazelas B, Bordé P et al (2007) Could we identify hot ocean-planets with CoRoT, Kepler and Doppler velocimetry? Icarus 191:453–468

    Article  ADS  Google Scholar 

  • Shi JM, Chiang E (2013) From dust to planetesimals: criteria for gravitational instability of small particles in gas. ApJ 764:20

    Article  ADS  Google Scholar 

  • Shu FH, Adams FC, Lizano S (1987) Star formation in molecular clouds – observation and theory. ARA&A 25:23–81

    Article  ADS  Google Scholar 

  • Shu FH, Shang H, Gounelle M, Glassgold AE, Lee T (2001) The origin of chondrules and refractory inclusions in chondritic meteorites. ApJ 548:1029–1050

    Article  ADS  Google Scholar 

  • Simon JB, Armitage PJ, Li R, Youdin AN (2016) The mass and size distribution of planetesimals formed by the streaming instability. I. The role of self-gravity. ApJ 822:55

    Article  ADS  Google Scholar 

  • Sirono Si (2011) Planetesimal formation induced by sintering. ApJ 733:L41

    Article  ADS  Google Scholar 

  • Smith BA, Terrile RJ (1984) A circumstellar disk around Beta Pictoris. Science 226:1421–1424

    Article  ADS  Google Scholar 

  • Spaute D, Weidenschilling SJ, Davis DR, Marzari F (1991) Accretional evolution of a planetesimal swarm. I – a new simulation. Icarus 92:147–164

    Article  ADS  Google Scholar 

  • Squire J, Hopkins PF (2017) Resonant drag instabilities in protoplanetary disks: the streaming instability and new, faster-growing instabilities. ArXiv e-prints

    Google Scholar 

  • Steffen JH, Ragozzine D, Fabrycky DC et al (2012) Kepler constraints on planets near hot Jupiters. Proc Natl Acad Sci 109:7982–7987

    Article  ADS  Google Scholar 

  • Stewart ST, Leinhardt ZM (2009) Velocity-dependent catastrophic disruption criteria for planetesimals. ApJ 691:L133–L137

    Article  ADS  Google Scholar 

  • Stoll MHR, Kley W (2016) Particle dynamics in discs with turbulence generated by the vertical shear instability. A&A 594:A57

    Article  ADS  Google Scholar 

  • Takeuchi T, Artymowicz P (2001) Dust migration and morphology in optically thin circumstellar gas disks. ApJ 557:990–1006

    Article  ADS  Google Scholar 

  • Tanaka H, Ida S (1997) Distribution of planetesimals around a protoplanet in the nebula gas. Icarus 125:302–316

    Article  ADS  Google Scholar 

  • Tanaka H, Ida S (1999) Growth of a migrating protoplanet. Icarus 139:350–366

    Article  ADS  Google Scholar 

  • Tanaka H, Ward WR (2004) Three-dimensional interaction between a planet and an isothermal gaseous disk. II. Eccentricity waves and bending waves. ApJ 602:388–395

    Article  ADS  Google Scholar 

  • Tanaka H, Takeuchi T, Ward WR (2002) Three-dimensional interaction between a planet and an isothermal gaseous disk. I. Corotation and Lindblad torques and planet migration. ApJ 565:1257–1274

    Article  ADS  Google Scholar 

  • Teiser J, Wurm G (2009) Decimetre dust aggregates in protoplanetary discs. A&A 505:351–359

    Article  ADS  Google Scholar 

  • Terquem C, Papaloizou JCB (2007) Migration and the formation of systems of hot super-Earths and Neptunes. ApJ 654:1110–1120

    Article  ADS  Google Scholar 

  • Testi L, Natta A, Shepherd DS, Wilner DJ (2003) Large grains in the disk of CQ Tau. A&A 403:323–328

    Article  ADS  Google Scholar 

  • Testi L, Birnstiel T, Ricci L et al (2014) Dust evolution in protoplanetary disks. In: Beuther H (ed) Protostars and planets VI. University of Arizona Press, Tucson, pp 339–361

    Google Scholar 

  • Thommes EW, Duncan MJ, Levison HF (2003) Oligarchic growth of giant planets. Icarus 161: 431–455

    Article  ADS  Google Scholar 

  • Toliou A, Morbidelli A, Tsiganis K (2016) Magnitude and timing of the giant planet instability: a reassessment from the perspective of the asteroid belt. A&A 592:A72

    Article  ADS  Google Scholar 

  • Toomre A (1964) On the gravitational stability of a disk of stars. ApJ 139:1217–1238

    Article  ADS  Google Scholar 

  • Touboul M, Kleine T, Bourdon B, Palme H, Wieler R (2007) Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals. Nature 450:1206–1209

    Article  ADS  Google Scholar 

  • Tremaine S, Dong S (2012) The statistics of multi-planet systems. AJ 143:94

    Article  ADS  Google Scholar 

  • Tsiganis K, Gomes R, Morbidelli A, Levison HF (2005) Origin of the orbital architecture of the giant planets of the Solar System. Nature 435:459–461

    Article  ADS  Google Scholar 

  • Udry S, Santos NC (2007) Statistical properties of exoplanets. ARA&A 45:397–439

    Article  ADS  Google Scholar 

  • Umurhan OM, Nelson RP, Gressel O (2016) Linear analysis of the vertical shear instability: outstanding issues and improved solutions. A&A 586:A33

    Article  ADS  Google Scholar 

  • van der Marel N, van Dishoeck EF, Bruderer S et al (2013) A major asymmetric dust trap in a transition disk. Science 340:1199–1202

    Article  ADS  Google Scholar 

  • Veras D, Armitage PJ (2005) The influence of massive planet scattering on Nascent terrestrial planets. ApJ 620:L111–L114

    Article  ADS  Google Scholar 

  • Veras D, Armitage PJ (2006) Predictions for the correlation between giant and terrestrial extrasolar planets in dynamically evolved systems. ApJ 645:1509–1515

    Article  ADS  Google Scholar 

  • Villeneuve J, Chaussidon M, Libourel G (2009) Homogeneous distribution of 26Al in the Solar System from the Mg isotopic composition of chondrules. Science 325:985

    Article  ADS  Google Scholar 

  • Volk K Gladman B (2015) Consolidating and crushing exoplanets: did it happen here? ApJ 806:L26

    Article  ADS  Google Scholar 

  • Wada K, Tanaka H, Suyama T, Kimura H, Yamamoto T (2009) Collisional growth conditions for dust aggregates. ApJ 702:1490–1501

    Article  ADS  Google Scholar 

  • Wakita S, Matsumoto Y, Oshino S, Hasegawa Y (2017) Planetesimal collisions as a chondrule forming event. ApJ 834:125

    Article  ADS  Google Scholar 

  • Walsh KJ, Levison HF (2016) Terrestrial planet formation from an annulus. AJ 152:68

    Article  ADS  Google Scholar 

  • Walsh KJ, Morbidelli A, Raymond SN, O’Brien DP, Mandell AM (2011) A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475:206–209

    Article  ADS  Google Scholar 

  • Walsh KJ, Morbidelli A, Raymond SN, O’Brien DP, Mandell AM (2012) Populating the asteroid belt from two parent source regions due to the migration of giant planets –“The Grand Tack”. Meteorit Planet Sci 47:1941–1947

    Article  ADS  Google Scholar 

  • Ward W (1997) Protoplanet migration by nebula tides. Icarus 126(2):261–281. http://adsabs.harvard.edu/abs/1997Icar..126..261W

    Article  ADS  Google Scholar 

  • Ward WR (1986) Density waves in the solar nebula – Differential Lindblad torque. Icarus 67: 164–180

    Article  ADS  Google Scholar 

  • Ward WR (1997) Protoplanet migration by nebula tides. Icarus 126:261–281

    Article  ADS  Google Scholar 

  • Weidenschilling SJ (1977) The distribution of mass in the planetary system and solar nebula. Ap&SS 51:153–158

    Google Scholar 

  • Weidenschilling SJ (1980) Dust to planetesimals – Settling and coagulation in the solar nebula. Icarus 44:172–189

    Article  ADS  Google Scholar 

  • Weidenschilling SJ, Marzari F (1996) Gravitational scattering as a possible origin for giant planets at small stellar distances. Nature 384:619–621

    Article  ADS  Google Scholar 

  • Weidenschilling SJ, Spaute D, Davis DR, Marzari F Ohtsuki K (1997) Accretional Evolution of a Planetesimal Swarm. Icarus 128:429–455

    Article  ADS  Google Scholar 

  • Weiss BP, Elkins-Tanton LT (2013) Differentiated planetesimals and the parent bodies of chondrites. Ann Rev Earth Planet Sci 41:529–560

    Article  ADS  Google Scholar 

  • Weiss LM, Marcy GW (2014) The Mass-radius relation for 65 exoplanets smaller than 4 Earth radii. ApJ 783:L6

    Article  ADS  Google Scholar 

  • Weiss LM, Marcy GW, Rowe JF et al (2013) The Mass of KOI-94d and a relation for planet radius, mass, and incident flux. ApJ 768:14

    Article  ADS  Google Scholar 

  • Weiss LM, Marcy GW, Petigura EA et al (2018) The California-Kepler survey. V. Peas in a pod: planets in a Kepler multi-planet system are similar in size and regularly spaced. AJ 155:48

    Article  ADS  Google Scholar 

  • Wetherill GW (1978) Accumulation of the terrestrial planets. In: Gehrels T (ed) IAU Colloq. 52: protostars and planets, University of Arizona Press, Tucson, pp 565–598

    Google Scholar 

  • Wetherill GW (1986) Accumulation of the terrestrial planets and implications concerning lunar origin. In: Hartmann WK, Phillips RJ, Taylor GJ (eds) Origin of the Moon. Lunar and Planetary Institute, Houston, pp 519–550

    Google Scholar 

  • Wetherill GW (1990) Formation of the Earth. Ann Rev Earth Planet Sci 18:205–256

    Article  ADS  Google Scholar 

  • Wetherill GW (1991) Why isn’t Mars as big as Earth? In: Lunar and planetary science conference, vol 22

    Google Scholar 

  • Wetherill GW (1996) The formation and habitability of extra-solar planets. Icarus 119:219–238

    Article  ADS  Google Scholar 

  • Wetherill GW, Stewart GR (1989) Accumulation of a swarm of small planetesimals. Icarus 77: 330–357

    Article  ADS  Google Scholar 

  • Wetherill GW, Stewart GR (1993) Formation of planetary embryos – effects of fragmentation, low relative velocity, and independent variation of eccentricity and inclination. Icarus 106:190

    Article  ADS  Google Scholar 

  • Whipple FL (1972) On certain aerodynamic processes for asteroids and comets. In: Elvius A (ed) From plasma to planet. p 211. http://adsabs.harvard.edu/abs/1972fpp..conf..211W

  • Williams JP, Cieza LA (2011) Protoplanetary disks and their evolution. ARA&A 49:67–117

    Article  ADS  Google Scholar 

  • Wilner DJ, D’Alessio P, Calvet N, Claussen MJ, Hartmann L (2005) Toward planetesimals in the disk around TW hydrae: 3.5 centimeter dust emission. ApJ 626:L109–L112

    Article  ADS  Google Scholar 

  • Windmark F, Birnstiel T, Güttler C et al (2012a) Planetesimal formation by sweep-up: how the bouncing barrier can be beneficial to growth. A&A 540:A73

    Article  ADS  Google Scholar 

  • Windmark F, Birnstiel T, Ormel CW, Dullemond CP (2012b) Breaking through: the effects of a velocity distribution on barriers to dust growth. A&A 544:L16

    Article  ADS  Google Scholar 

  • Wisdom J, Holman M (1991) Symplectic maps for the n-body problem. AJ 102:1528–1538

    Article  ADS  Google Scholar 

  • Wittenmyer RA, Butler RP, Tinney CG et al (2016) The Anglo-Australian planet search XXIV: the frequency of Jupiter analogs. ApJ 819:28

    Article  ADS  Google Scholar 

  • Wolfgang A, Rogers LA, Ford EB (2016) Probabilistic mass-radius relationship for sub-Neptune-sized planets. ApJ 825:19

    Article  ADS  Google Scholar 

  • Wright JT, Marcy GW, Howard AW et al (2012) The frequency of hot Jupiters orbiting nearby solar-type Stars. ApJ 753:160

    Article  ADS  Google Scholar 

  • Wurm G, Paraskov G, Krauss O (2005) Growth of planetesimals by impacts at 25 m/s. Icarus 178:253–263

    Article  ADS  Google Scholar 

  • Wyatt MC (2008) Evolution of debris disks. ARA&A 46:339–383

    Article  ADS  Google Scholar 

  • Xu Z, Bai XN, Murray-Clay RA (2017) Pebble accretion in turbulent protoplanetary disks. ApJ 847:52

    Article  ADS  Google Scholar 

  • Yin Q, Jacobsen SB, Yamashita K et al (2002) A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites. Nature 418:949–952

    Article  ADS  Google Scholar 

  • Youdin AN, Goodman J (2005) Streaming instabilities in protoplanetary disks. ApJ 620:459–469

    Article  ADS  Google Scholar 

  • Youdin AN, Shu FH (2002) Planetesimal formation by gravitational instability. ApJ 580:494–505

    Article  ADS  Google Scholar 

  • Zhang H, Zhou JL (2010) On the orbital evolution of a giant planet pair embedded in a gaseous disk. I. Jupiter-Saturn configuration. ApJ 714:532–548

    Google Scholar 

  • Zsom A, Ormel CW, Güttler C, Blum J, Dullemond CP (2010) The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? II. Introducing the bouncing barrier. A&A 513:A57

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge a large community of colleagues whose contributions made this review possible. A. I. thanks FAPESP (São Paulo Research Foundation) for support via grants 16/12686-2 and 16/19556-7. S. N. R. thanks the Agence Nationale pour la Recherche via grant ANR-13-BS05-0003-002 (MOJO). We thank Ralph Pudritz for the invitation to write this review. A. I. is also truly grateful to doctor Marcelo M. Sad for his dedication, calmness, and expertise during the treatment of a health problem manifested during the preparation of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Izidoro .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Izidoro, A., Raymond, S.N. (2018). Formation of Terrestrial Planets. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-30648-3_142-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30648-3_142-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30648-3

  • Online ISBN: 978-3-319-30648-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics