Skip to main content

Characterizing the Chemistry of Planetary Materials Around White Dwarf Stars

  • Living reference work entry
  • First Online:
Handbook of Exoplanets

Abstract

Planetary systems that orbit white dwarf stars can be studied via spectroscopic observations of the stars themselves. Numerous white dwarfs are seen to have accreted mostly rocky minor planets, the remnants of which are present in the stellar photospheres. The elemental abundances in the photospheres unveil the bulk compositions of the accreted parent bodies with a precision far greater than can be attained with any other technique currently available to astronomers. The most significant discovery, overall, is that rocky extrasolar planets have bulk elemental compositions similar to those of Earth and other rocky objects in our solar system. The white dwarf studies reveal that many extrasolar minor planets (asteroids) are differentiated, possessing analogs of terrestrial crust, mantle, and core; this finding has important implications for the origin of our own solar system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alcock C, Fristrom C, Siegelman R (1986) On the number of comets around other single stars. Astrophys J 302:462–476

    Article  ADS  Google Scholar 

  • Barber S, Patterson A, Kilic M et al (2012) The frequency of debris disks at white dwarfs. Astrophys J 760:26–36

    Article  ADS  Google Scholar 

  • Becklin E, Farihi J, Jura M et al (2005) A dusty disk around GD 362, a white dwarf with a uniquely high photospheric metal abundance. Astrophys J 632:L119–L122

    Article  ADS  Google Scholar 

  • Bond I, Udalski A, Jaroszynski M et al (2004) OGLE 2003-BLG-235/MOA 2003-BLG-53: a planetary microlensing event. Astrophys J 606:L155–L158

    Article  ADS  Google Scholar 

  • Cameron AGW, Truran JW (1977) Supernova trigger for formation of solar system. Icarus 30(3):447–461

    Article  ADS  Google Scholar 

  • Debes J, Sigurdsson S (2002) Are there unstable planetary systems around white dwarfs? Astrophys J 572:556–565

    Article  ADS  Google Scholar 

  • Debes J, Hoard D, Kilic M et al (2011) The WIRED survey. I. A bright IR excess due to dust around the heavily polluted white dwarf Galex J193156.8+011745. Astrophys J 729:4–9

    Article  ADS  Google Scholar 

  • Farihi J (2016) Circumstellar debris and pollution at white dwarf stars. New Astron Rev 71:9–34

    Article  ADS  Google Scholar 

  • Farihi J, Becklin E, Zuckerman B (2008) Spitzer IRAC observations of white dwarfs. II. Massive planetary and cold brown dwarf companions to young and old degenerates. Astrophys J 681:1470–1483

    Article  ADS  Google Scholar 

  • Farihi J, Jura M, Zuckerman B (2009) Infrared signatures of disrupted minor planets at white dwarfs. Astrophys J 694:805–819

    Article  ADS  Google Scholar 

  • Farihi J, Barstow M, Redfield S et al (2010) Rocky planetesimals as the origin of metals in DZ stars. MNRAS 404:2123–2135

    ADS  Google Scholar 

  • Farihi J, Gänsicke B, Koester D (2013) Evidence for water in the rocky debris of a disrupted extrasolar minor planet. Science 342:218–220

    Article  ADS  Google Scholar 

  • Gänsicke B, Marsh T, Southworth J, Rebassa-Mansergas A (2006) A gaseous metal disk around a white dwarf. Science 314:1908–1910

    Article  ADS  Google Scholar 

  • Gänsicke B, Koester D, Farihi J et al (2012) The chemical diversity of exo-terrestrial planetary debris around white dwarfs. MNRAS 424:333–347

    Article  ADS  Google Scholar 

  • Gary B, Rappaport S, Kaye T et al (2017) WD 1145+017 photometric observations during eight months of high activity. MNRAS 465:3267–3280

    Article  ADS  Google Scholar 

  • Gentile Fusillo N, Gänsicke B, Farihi J et al (2017) Trace hydrogen in helium atmosphere white dwarfs as a possible signature of water accretion. MNRAS 468:971–980

    Article  ADS  Google Scholar 

  • Graham J, Matthews K, Neugebauer G, Soifer BT (1990) The infrared excess of G29-38 – a brown dwarf or dust? Astrophys J 357:216–223

    Article  ADS  Google Scholar 

  • Jura M (2003) A tidally disrupted asteroid around the white dwarf G29-38. Astrophys J 584:L91–L94

    Article  ADS  Google Scholar 

  • Jura M (2006) Carbon deficiency in externally polluted white dwarfs: evidence for accretion of asteroids. Astrophys J 653:613–620

    Article  ADS  Google Scholar 

  • Jura M (2008) Pollution of single white dwarfs by accretion of many small asteroids. Astron J 135:1785–1792

    Article  ADS  Google Scholar 

  • Jura M, Xu S (2010) The survival of water within extrasolar minor planets. Astron J 140:1129–1136

    Article  ADS  Google Scholar 

  • Jura M, Xu S (2012) Water fractions in extrasolar planetesimals. Astron J 143:6

    Article  ADS  Google Scholar 

  • Jura M, Young E (2014) Extrasolar cosmochemistry. Annu Rev Earth Planet Sci 42:45–67

    Article  ADS  Google Scholar 

  • Jura M, Farihi J, Zuckerman B (2009) Six white dwarfs with circumstellar silicates. Astron J 137:3191–3197

    Article  ADS  Google Scholar 

  • Jura M, Xu S, Young ED (2013) 26Al in the early solar system: not so unusual after all. Astrophys J Lett 775:L41–L44

    Article  ADS  Google Scholar 

  • Jura M, Klein B, Xu S, Young E (2014) A pilot search for evidence of extrasolar earth-analog plate tectonics. Astrophys J 791:L29–L33

    Article  ADS  Google Scholar 

  • Jura M, Dufour P, Xu S, Zuckerman B, Klein B, Young ED, Melis C (2015) Evidence for an anhydrous carbonaceous extrasolar minor planet. Astrophys J 799:109

    Article  ADS  Google Scholar 

  • Kawka A, Vennes S (2006) Spectroscopic identification of cool white dwarfs in the solar neighborhood. Astrophys J 643:402–415

    Article  ADS  Google Scholar 

  • Kilic M, von Hippel T, Leggett S, Winget D (2005) Excess infrared radiation from the massive DAZ white dwarf GD 362: a debris disk? Astrophys J 632:L115–L118

    Article  ADS  Google Scholar 

  • Kilic M, von Hippel T, Leggett S, Winget D (2006) Debris disks around white dwarfs: the DAZ connection. Astrophys J 646:474–479

    Article  ADS  Google Scholar 

  • Kilic M, Gould A, Koester D (2009) Limits on unresolved planetary companions to white dwarf remnants of 14 intermediate-mass stars. Astrophys J 705:1219–1225

    Article  ADS  Google Scholar 

  • Klein B, Jura M, Koester D et al (2010) Chemical abundances in the externally polluted white dwarf GD 40: evidence of a rocky extrasolar minor planet. Astrophys J 709:950–962

    Article  ADS  Google Scholar 

  • Klein B, Jura M, Koester D, Zuckerman B (2011) Rocky extrasolar planetary compositions derived from externally polluted white dwarfs. Astrophys J 741:64–81

    Article  ADS  Google Scholar 

  • Koester D (2009) Accretion and diffusion in white dwarfs. New diffusion timescales and applications to GD 362 and G 29–38. Astron Astrophys 498:517–525

    Article  ADS  Google Scholar 

  • Koester D, Provencal J, Shipman H (1997) Metals in the variable DA G29-38. Astron Astrophys 320:L57–L59

    ADS  Google Scholar 

  • Koester D, Gänsicke B, Farihi J (2014) The frequency of planetary debris around young white dwarfs. Astron Astrophys 566:A34–A53

    Article  ADS  Google Scholar 

  • Lacombe P, Wesemael F, Fontaine G, Liebert J (1983) G74-7 – a true DA,F (DAZ) white dwarf. Astrophys J 272:660–664

    Article  ADS  Google Scholar 

  • Liebes S (1964) Gravitational lenses. Phys Rev 133:835–844

    Article  ADS  MATH  Google Scholar 

  • Lodders K (2003) Solar system abundances and condensation temperatures of the elements. Astrophys J 591:1220–1247

    Article  ADS  Google Scholar 

  • Luhman K, Burgasser A, Bochanski J (2011) Discovery of a candidate for the coolest known brown dwarf. Astrophys J 730:L9–L12

    Article  ADS  Google Scholar 

  • van Maanen A (1917) Two faint stars with large proper motion. Publ Astron Soc Pac 29:258–259

    Article  ADS  Google Scholar 

  • van Maanen A (1919a) A very faint star of spectral type F. Publ Astron Soc Pac 31:42–43

    Article  ADS  Google Scholar 

  • van Maanen A (1919b) Stellar parallaxes derived from photographs made with the 60-inch reflector of the Mount Wilson Observatory. Astron J 32:86–88

    Article  ADS  Google Scholar 

  • Malamud U, Perets H (2016) Post-main sequence evolution of icy minor planets: implications for water retention and white dwarf pollution. Astrophys J 832:160–172

    Article  ADS  Google Scholar 

  • Malamud U, Perets H (2017) Post-main-sequence evolution of icy minor planets. II. Water retention and white dwarf pollution around massive progenitor stars. Astrophys J 842:67–75

    Article  ADS  Google Scholar 

  • Manser C, Gaensicke B, Marsh T et al (2016) Doppler imaging of the planetary debris disc at the white dwarf SDSS J122859.93+104032.9. MNRAS 455:4467–4478

    Article  ADS  Google Scholar 

  • Marois C, Zuckerman B, Konopacky Q, Macintosh B, Barman T (2010) Images of a fourth planet orbiting HR 8799. Nature 468:1080–1083

    Article  ADS  Google Scholar 

  • Melis C, Dufour P (2017) Does a differentiated, carbonate-rich, rocky object pollute the white dwarf SDSS J104341.53+085558.2? Astrophys J 834:1–9

    Article  ADS  Google Scholar 

  • Melis C, Jura M, Albert L et al (2010) Echoes of a decaying planetary system: the gaseous and dusty disks surrounding three white dwarfs. Astrophys J 722:1078–1091

    Article  ADS  Google Scholar 

  • Melis C, Farihi J, Dufour P (2011) Accretion of a terrestrial-like minor planet by a white dwarf. Astrophys J 732:90–98

    Article  ADS  Google Scholar 

  • Metzger B, Rafikov R, Bochkarev K (2012) Global models of runaway accretion in white dwarf debris discs. MNRAS 423:505–528

    Article  ADS  Google Scholar 

  • Mullally F, Kilic M, Reach W et al (2007) A Spitzer white dwarf infrared survey. Astrophys J Suppl 171:206–218

    Article  ADS  Google Scholar 

  • Naoz S (2016) The eccentric Kozai–Lidov effect and its applications. ARAA 54:441–489

    Article  ADS  Google Scholar 

  • Rafikov R (2011a) Metal accretion onto white dwarfs caused by Poynting–Robertson drag on their debris disks. Astrophys J 732:L3–L7

    Article  ADS  Google Scholar 

  • Rafikov R (2011b) Runaway accretion of metals from compact discs of debris on to white dwarfs. MNRAS 416:L55–L59

    Article  ADS  Google Scholar 

  • Schatzman E (1945) Théorie du débit d’énergie des naines blanches. Ann d’Astrophys 8:143–209

    ADS  Google Scholar 

  • Stephan A, Naoz S, Zuckerman B (2017) Throwing icebergs at white dwarfs. Astrophys J Lett 844:L16–L23

    Article  ADS  Google Scholar 

  • Vanderburg A, Johnson J, Rappaport S et al (2015) A disintegrating minor planet transiting a white dwarf. Nature 526:546–549

    Article  ADS  Google Scholar 

  • Vennes S, Kawka A, Nemeth P (2010) The heavily polluted atmosphere of the DAZ white dwarf GALEX J193156.8+011745. MNRAS 404:L40–L44

    Article  ADS  Google Scholar 

  • Vennes S, Kawka A, Nemeth P (2011) Pressure shifts and abundance gradients in the atmosphere of the DAZ white dwarf GALEX J193156.8+011745. MNRAS 413:2545–2553

    Article  ADS  Google Scholar 

  • Veras D (2016) Post-main-sequence planetary system evolution. R Soc Open Sci 3:150571

    Article  MathSciNet  Google Scholar 

  • Veras D, Gaensicke B (2015) Detectable close-in planets around white dwarfs through late unpacking. MNRAS 447:1049–1058

    Article  ADS  Google Scholar 

  • Veras D, Leinhardt Z, Bonsor A, Gänsicke B (2014a) Formation of planetary debris discs around white dwarfs – I. Tidal disruption of an extremely eccentric asteroid. MNRAS 445:2244–2255

    Article  ADS  Google Scholar 

  • Veras D, Jacobson S, Gaensicke B (2014b) Post-main-sequence debris from rotation-induced YORP break-up of small bodies. MNRAS 445:2794–2799

    Article  ADS  Google Scholar 

  • Veras D, Carter P, Leinhardt Z, Gänsicke B (2017) Explaining the variability of WD 1145+017 with simulations of asteroid tidal disruption. MNRAS 465:1008–1022

    Article  ADS  Google Scholar 

  • Wilson DJ, Gänsicke BT, Koester D, Toloza O, Pala AF, Breedt E, Parsons SG (2015) The composition of a disrupted extrasolar planetesimal at SDSS J0845+2257 (Ton 345). MNRAS 451:3237–3248

    Article  ADS  Google Scholar 

  • Wilson DJ, Gänsicke BT, Farihi J, Koester D (2016) Carbon to oxygen ratios in extrasolar planetesimals. MNRAS 459:3282–3286

    Article  ADS  Google Scholar 

  • Xu S, Jura M, Klein B, Koester D, Zuckerman B (2013) Two beyond-primitive extrasolar planetesimals. Astrophys J 766:132–145

    Article  ADS  Google Scholar 

  • Xu S, Jura M, Dufour P, Zuckerman B (2016) Evidence for gas from a disintegrating extrasolar asteroid. Astrophys J 816:L22–L27

    Article  ADS  Google Scholar 

  • Xu S, Zuckerman B, Dufour P et al (2017) The chemical composition of an extrasolar Kuiper-Belt-Object. Astrophys J Lett 836:L7. https://doi.org/10.3847/2041-8213/836/1/L7

    Article  ADS  Google Scholar 

  • Young ED (2014) Inheritance of solar short- and long-lived radionuclides from molecular clouds and the unexceptional nature of the solar system. Earth Planet Sci Lett 392:16–27

    Article  ADS  Google Scholar 

  • Young ED (2016) Bayes’ theorem and early solar short-lived radionuclides: the case for an unexceptional origin for the solar system. Astrophys J 826:129–134

    Article  ADS  Google Scholar 

  • Zuckerman B (2014) The occurrence of wide-orbit planets in binary star systems. Astrophys J Lett 791:L27–L31

    Article  ADS  Google Scholar 

  • Zuckerman B (2015) Recognition of the first observational evidence of an extrasolar planetary system. In: Dufour P, Bergeron P, Fontaine G (eds) 19th European workshop on white dwarfs. ASP conference series, vol 493, Montreal, pp 291–293

    Google Scholar 

  • Zuckerman B, Becklin E (1987) Excess infrared radiation from a white dwarf – an orbiting brown dwarf? Nature 330:138–140

    Article  ADS  Google Scholar 

  • Zuckerman B, Koester D, Reid IN, Hünsch M (2003) Metal lines in DA white dwarfs. Astrophys J 596:477–495

    Article  ADS  Google Scholar 

  • Zuckerman B, Koester D, Melis C et al (2007) The chemical composition of an extrasolar minor planet. Astrophys J 671:872–877

    Article  ADS  Google Scholar 

  • Zuckerman B, Melis C, Klein B et al (2010) Ancient planetary systems are orbiting a large fraction of white dwarf stars. Astrophys J 722:725–736

    Article  ADS  Google Scholar 

  • Zuckerman B, Koester D, Dufour P et al (2011) An aluminum/calcium-rich, iron-poor, white dwarf star: evidence for an extrasolar planetary lithosphere? Astrophys J 739:101–110

    Article  ADS  Google Scholar 

Download references

Dedication

UCLA Professor Michael Jura was a pioneer in the use of polluted white dwarfs as uniquely remarkable probes of extrasolar planetary systems; his creative ideas and contributions enlightened the field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Zuckerman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Zuckerman, B., Young, E.D. (2017). Characterizing the Chemistry of Planetary Materials Around White Dwarf Stars. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-30648-3_14-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30648-3_14-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30648-3

  • Online ISBN: 978-3-319-30648-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics