Dust Evolution in Protoplanetary Disks

Living reference work entry

Abstract

The canonical model for the formation of terrestrial planets and giant planet cores implicitly relies on an early and efficient phase of planetesimal growth in a gas-rich circumstellar disk. But, as theorists have known for decades now, there are some formidable obstacles to meeting that requirement. Many of these problems, and potentially their solutions, are associated with the growth and migration of “pebbles” (∼mm/cm-sized solids) in the first few million years of a disk’s lifetime. That is especially fortuitous, since the thermal continuum emission from these particles in nearby disks can be readily detected and resolved with long-baseline radio interferometers. This chapter describes what is being learned about the early evolution of solids by comparing such data with sophisticated simulations. Specifically, the focus will be on the observable signatures of particle growth and migration and the mounting evidence that small-scale substructures in the (gas) disk play fundamental – and perhaps mandatory – roles in the planet formation process.

Keywords

Protoplanetary disks Dust Planet formation 

References

  1. Adachi I, Hayashi C, Nakazawa K (1976) The gas drag effect on the elliptical motion of a solid body in the primordial solar nebula. Prog Theor Phys 56:1756–1771ADSCrossRefGoogle Scholar
  2. ALMA Partnership, Brogan CL, Pérez LM et al (2015) The 2014 ALMA long baseline campaign: first results from high angular resolution observations toward the HL Tau region. ApJ 808:L3Google Scholar
  3. Andrews SM (2015) Observations of solids in protoplanetary disks. PASP 127:961–993Google Scholar
  4. Andrews SM, Wilner DJ, Hughes AM, Qi C, Dullemond CP (2009) Protoplanetary disk structures in ophiuchus. ApJ 700:1502–1523ADSCrossRefGoogle Scholar
  5. Andrews SM, Rosenfeld KA, Wilner DJ, Bremer M (2011a) A closer look at the LkCa 15 protoplanetary disk. ApJ 742:L5ADSCrossRefGoogle Scholar
  6. Andrews SM, Wilner DJ, Espaillat C et al (2011b) Resolved images of large cavities in protoplanetary transition disks. ApJ 732:42Google Scholar
  7. Andrews SM, Wilner DJ, Hughes AM et al (2012) The TW Hya disk at 870 μm: comparison of CO and dust radial structures. ApJ 744:162Google Scholar
  8. Andrews SM, Wilner DJ, Zhu Z et al (2016) Ringed substructure and a gap at 1 au in the nearest protoplanetary disk. ApJ 820:L40Google Scholar
  9. Beckwith SVW, Sargent AI, Chini RS, Guesten R (1990) A survey for circumstellar disks around young stellar objects. AJ 99:924–945ADSCrossRefGoogle Scholar
  10. Birnstiel T, Andrews SM (2014) On the outer edges of protoplanetary dust disks. ApJ 780:153ADSCrossRefGoogle Scholar
  11. Birnstiel T, Dullemond CP, Brauer F (2009) Dust retention in protoplanetary disks. A&A 503: L5–L8Google Scholar
  12. Birnstiel T, Dullemond CP, Brauer F (2010a) Gas- and dust evolution in protoplanetary disks. A&A 513:A79ADSCrossRefGoogle Scholar
  13. Birnstiel T, Ricci L, Trotta F et al (2010b) Testing the theory of grain growth and fragmentation by millimeter observations of protoplanetary disks. A&A 516:L14Google Scholar
  14. Birnstiel T, Klahr H, Ercolano B (2012) A simple model for the evolution of the dust population in protoplanetary disks. A&A 539:A148Google Scholar
  15. Birnstiel T, Dullemond CP, Pinilla P (2013) Lopsided dust rings in transition disks. A&A 550:L8ADSCrossRefGoogle Scholar
  16. Birnstiel T, Andrews SM, Pinilla P, Kama M (2015) Dust evolution can produce scattered light gaps in protoplanetary disks. ApJ 813:L14Google Scholar
  17. Birnstiel T, Fang M, Johansen A (2016) Dust evolution and the formation of planetesimals. Space Sci Rev 205:41–75Google Scholar
  18. Blum J, Wurm G (2008) The growth mechanisms of macroscopic bodies in protoplanetary disks. ARA&A 46:21–56Google Scholar
  19. Brauer F, Dullemond CP, Johansen A et al (2007) Survival of the mm-cm size grain population observed in protoplanetary disks. A&A 469:1169–1182ADSCrossRefGoogle Scholar
  20. Brauer F, Dullemond CP, Henning T (2008) Coagulation, fragmentation and radial motion of solid particles in protoplanetary disks. A&A 480:859–877Google Scholar
  21. Brown JM, Blake GA, Dullemond CP et al (2007) Cold disks: spitzer spectroscopy of disks around young stars with large gaps. ApJ 664:L107–L110Google Scholar
  22. Brown JM, Blake GA, Qi C, Dullemond CP, Wilner DJ (2008) LkHα 330: evidence for dust clearing through resolved submillimeter imaging. ApJ 675:L109–L112ADSCrossRefGoogle Scholar
  23. Casassus S, van der Plas G, Sebastian Perez M et al (2013) Flows of gas through a protoplanetary gap. Nature 493:191–194ADSCrossRefGoogle Scholar
  24. Chambers JE (2014) Giant planet formation with pebble accretion. Icarus 233:83–100Google Scholar
  25. Chiang E, Youdin AN (2010) Forming planetesimals in solar and extrasolar nebulae. Annu Rev Earth Planet Sci 38:493–522Google Scholar
  26. Cieza LA, Casassus S, Tobin J et al (2016) Imaging the water snow-line during a protostellar outburst. Nature 535:258–261Google Scholar
  27. D’Alessio P, Calvet N, Hartmann L, Franco-Hernández R, Servín H (2006) Effects of dust growth and settling in T Tauri disks. ApJ 638:314–335ADSCrossRefGoogle Scholar
  28. de Gregorio-Monsalvo I, Ménard F, Dent W et al (2013) Unveiling the gas-and-dust disk structure in HD 163296 using ALMA observations. A&A 557:A133Google Scholar
  29. de Juan Ovelar M, Min M, Dominik C et al (2013) Imaging diagnostics for transitional discs. A&A 560:A111ADSCrossRefGoogle Scholar
  30. Dong R, Rafikov R, Zhu Z et al (2012) The missing cavities in the SEEDS polarized scattered light images of transitional protoplanetary disks: a generic disk model. ApJ 750:161Google Scholar
  31. Draine BT (2006) On the submillimeter opacity of protoplanetary disks. ApJ 636:1114–1120Google Scholar
  32. Espaillat C, Muzerolle J, Najita J et al (2014) An observational perspective of transitional disks. In: Beuther H et al (eds) Protostars and planets VI. Lunar and Planetary Institute, Houston, pp 497–520Google Scholar
  33. Garaud P, Meru F, Galvagni M, Olczak C (2013) From dust to planetesimals: an improved model for collisional growth in protoplanetary disks. ApJ 764:146ADSCrossRefGoogle Scholar
  34. Gonzalez JF, Laibe G, Maddison ST, Pinte C, Ménard F (2015) The accumulation and trapping of grains at planet gaps: effects of grain growth and fragmentation. Planet Space Sci 116:48–56Google Scholar
  35. Grady CA, Muto T, Hashimoto J et al (2013) Spiral arms in the asymmetrically illuminated disk of MWC 758 and constraints on giant planets. ApJ 762:48Google Scholar
  36. Guidi G, Tazzari M, Testi L et al (2016) Dust properties across the CO snowline in the HD 163296 disk from ALMA and VLA observations. A&A 588:A112Google Scholar
  37. Guilloteau S, Dutrey A, Piétu V, Boehler Y (2011) A dual-frequency sub-arcsecond study of proto-planetary disks at mm wavelengths: first evidence for radial variations of the dust properties. A&A 529:A105ADSCrossRefGoogle Scholar
  38. Güttler C, Blum J, Zsom A, Ormel CW, Dullemond CP (2010) The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals?. I. Mapping the zoo of laboratory collision experiments. A&A 513:A56ADSCrossRefGoogle Scholar
  39. Huang J, Öberg KI, Andrews SM (2016) Evidence for a CO desorption front in the outer AS 209 disk. ApJ 823:L18ADSCrossRefGoogle Scholar
  40. Hubickyj O, Bodenheimer P, Lissauer JJ (2005) Accretion of the gaseous envelope of Jupiter around a 5–10 Earth-mass core. Icarus 179:415–431Google Scholar
  41. Hughes AM, Andrews SM, Espaillat C et al (2009) A spatially resolved inner hole in the disk around GM aurigae. ApJ 698:131–142ADSCrossRefGoogle Scholar
  42. Isella A, Carpenter JM, Sargent AI (2010) Investigating planet formation in circumstellar disks: CARMA observations of Ry Tau and Dg Tau. ApJ 714:1746–1761Google Scholar
  43. Isella A, Pérez LM, Carpenter JM et al (2013) An Azimuthal asymmetry in the LkHα 330 disk. ApJ 775:30ADSCrossRefGoogle Scholar
  44. Isella A, Guidi G, Testi L et al (2016) Ringed structures of the HD 163296 protoplanetary disk revealed by ALMA. Phys Rev Lett 117:251101Google Scholar
  45. Johansen A, Klahr H, Henning T (2006) Gravoturbulent formation of planetesimals. ApJ 636:1121–1134Google Scholar
  46. Johansen A, Oishi JS, Mac Low MM et al (2007) Rapid planetesimal formation in turbulent circumstellar disks. Nature 448:1022–1025ADSCrossRefGoogle Scholar
  47. Johansen A, Youdin A, Klahr H (2009) Zonal flows and long-lived axisymmetric pressure bumps in magnetorotational turbulence. ApJ 697:1269–1289ADSCrossRefGoogle Scholar
  48. Johansen A, Blum J, Tanaka H et al (2014) The multifaceted planetesimal formation process. In: Beuther H et al (eds) Protostars and planets VI. Lunar and Planetary Institute, Houston, pp 547–570Google Scholar
  49. Kataoka A, Okuzumi S, Tanaka H, Nomura H (2014) Opacity of fluffy dust aggregates. A&A 568:A42ADSCrossRefGoogle Scholar
  50. Krijt S, Ormel CW, Dominik C, Tielens AGGM (2015) Erosion and the limits to planetesimal growth. A&A 574:A83ADSCrossRefGoogle Scholar
  51. Kusaka T, Nakano T, Hayashi C (1970) Growth of solid particles in the primordial solar nebula. Prog Theor Phys 44:1580–1595ADSCrossRefGoogle Scholar
  52. Laibe G, Gonzalez JF, Maddison ST (2012) Revisiting the “radial-drift barrier” of planet formation and its relevance in observed protoplanetary discs. A&A 537:A61CrossRefGoogle Scholar
  53. Lambrechts M, Johansen A (2012) Rapid growth of gas-giant cores by pebble accretion. A&A 544:A32Google Scholar
  54. Lambrechts M, Johansen A (2014) Forming the cores of giant planets from the radial pebble flux in protoplanetary discs. A&A 572:A107ADSCrossRefGoogle Scholar
  55. Levison HF, Kretke KA, Duncan MJ (2015) Growing the gas-giant planets by the gradual accumulation of pebbles. Nature 524:322–324Google Scholar
  56. Loomis LW, Mundy LG, Welch WJ (2017) Unveiling the circumstellar envelope and disk: a subarcsecond survey of circumstellar structures. ApJ 529:477–498Google Scholar
  57. Menu J, van Boekel R, Henning T et al (2014) On the structure of the transition disk around TW Hydrae. A&A 564:A93Google Scholar
  58. Miyake K, Nakagawa Y (1993) Effects of particle size distribution on opacity curves of protoplanetary disks around T Tauri stars. Icarus 106:20Google Scholar
  59. Muto T, Grady CA, Hashimoto J et al (2012) Discovery of small-scale spiral structures in the disk of SAO 206462 (HD 135344B): implications for the physical state of the disk from spiral density wave theory. ApJ 748:L22Google Scholar
  60. Nakagawa Y, Sekiya M, Hayashi C (1986) Settling and growth of dust particles in a laminar phase of a low-mass solar nebula. Icarus 67:375–390ADSCrossRefGoogle Scholar
  61. Okuzumi S (2009) Electric charging of dust aggregates and its effect on dust coagulation in protoplanetary disks. ApJ 698:1122Google Scholar
  62. Okuzumi S, Tanaka H, Kobayashi H, Wada K (2012) Rapid coagulation of porous dust aggregates outside the snow line: a pathway to successful icy planetesimal formation. ApJ 752:106Google Scholar
  63. Paardekooper SJ, Mellema G (2004) Planets opening dust gaps in gas disks. A&A 425:L9–L12ADSCrossRefGoogle Scholar
  64. Panić O, Hogerheijde MR, Wilner D, Qi C (2009) A break in the gas and dust surface density of the disc around the T Tauri star IM Lupi. A&A 501:269–278ADSCrossRefGoogle Scholar
  65. Pérez LM, Carpenter JM, Chandler CJ et al (2012) Constraints on the radial variation of grain growth in the AS 209 circumstellar disk. ApJ 760:L17ADSCrossRefGoogle Scholar
  66. Pérez LM, Chandler CJ, Isella A et al (2015) Grain growth in the circumstellar disks of the young stars CY Tau and DoAr 25. ApJ 813:41Google Scholar
  67. Pérez LM, Carpenter JM, Andrews SM et al (2016) Spiral density waves in a young protoplanetary disk. Science 353:1519–1521ADSMathSciNetCrossRefGoogle Scholar
  68. Pinilla P, Benisty M, Birnstiel T (2012a) Ring shaped dust accumulation in transition disks. A&A 545:A81ADSCrossRefGoogle Scholar
  69. Pinilla P, Birnstiel T, Ricci L et al (2012b) Trapping dust particles in the outer regions of protoplanetary disks. A&A 538:A114Google Scholar
  70. Pinilla P, Benisty M, Birnstiel T et al (2014) Millimetre spectral indices of transition disks and their relation to the cavity radius. A&A 564:A51Google Scholar
  71. Pinilla P, de Boer J, Benisty M et al (2015a) Variability and dust filtration in the transition disk J160421.7-213028 observed in optical scattered light. A&A 584:L4Google Scholar
  72. Pinilla P, van der Marel N, Pérez LM et al (2015b) Testing particle trapping in transition disks with ALMA. A&A 584:A16Google Scholar
  73. Pohl A, Kataoka A, Pinilla P et al (2016) Investigating dust trapping in transition disks with millimeter-wave polarization. A&A 593:A12Google Scholar
  74. Pollack JB, Hubickyj O, Bodenheimer P et al (1996) Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124:62–85ADSCrossRefGoogle Scholar
  75. Rice WKM, Wood K, Armitage PJ, Whitney BA, Bjorkman JE (2003) Constraints on a planetary origin for the gap in the protoplanetary disc of GM Aurigae. MNRAS 342:79–85Google Scholar
  76. Rosenfeld KA, Qi C, Andrews SM et al (2012) Kinematics of the CO gas in the inner regions of the TW Hya disk. ApJ 757:129ADSCrossRefGoogle Scholar
  77. Rosenfeld KA, Andrews SM, Hughes AM, Wilner DJ, Qi C (2013) A spatially resolved vertical temperature gradient in the HD 163296 disk. ApJ 774:16ADSCrossRefGoogle Scholar
  78. Takeuchi T, Lin DNC (2002) Radial flow of dust particles in accretion disks. ApJ 581:1344–1355ADSCrossRefGoogle Scholar
  79. Takeuchi T, Lin DNC (2005) Attenuation of millimeter emission from circumstellar disks induced by the rapid dust accretion. ApJ 623:482–492Google Scholar
  80. Tazzari M, Testi L, Ercolano B et al (2016) Multiwavelength analysis for interferometric (sub-) mm observations of protoplanetary disks. Radial constraints on the dust properties and the disk structure. A&A 588:A53Google Scholar
  81. Testi L, Birnstiel T, Ricci L et al (2014) Dust evolution in protoplanetary disks. In: Beuther H et al (eds) Protostars and planets VI. Lunar and Planetary Institute, Houston, pp 339–361Google Scholar
  82. Tripathi A, Andrews SM, Birnstiel T, Wilner DJ (2017) A millimeter continuum size-luminosity relationship for protoplanetary disks. ApJ 845:44ADSCrossRefGoogle Scholar
  83. Tripathi A, Andrews SM, Birnstiel T et al (2018, under review) The millimeter continuum size–frequency relationship in the UZ Tau E disk. ApJGoogle Scholar
  84. Trotta F, Testi L, Natta A, Isella A, Ricci L (2013) Constraints on the radial distribution of the dust properties in the CQ Tauri protoplanetary disk. A&A 558:A64ADSCrossRefGoogle Scholar
  85. van der Marel N, van Dishoeck EF, Bruderer S et al (2013) A major asymmetric dust trap in a transition disk. Science 340:1199–1202ADSCrossRefGoogle Scholar
  86. van der Marel N, van Dishoeck EF, Bruderer S, Pérez L, Isella A (2015) Gas density drops inside dust cavities of transitional disks around young stars observed with ALMA. A&A 579:A106ADSCrossRefGoogle Scholar
  87. Walsh C, Juhász A, Pinilla P et al (2014) ALMA hints at the presence of two companions in the disk around HD 100546. ApJ 791:L6ADSCrossRefGoogle Scholar
  88. Weidenschilling SJ (1977) Aerodynamics of solid bodies in the solar nebula. MNRAS 180:57–70ADSCrossRefGoogle Scholar
  89. Weidenschilling SJ (2003) Radial drift of particles in the solar nebula: implications for planetesimal formation. Icarus 165:438–442ADSCrossRefGoogle Scholar
  90. Whipple FL (1972) On certain aerodynamic processes for asteroids and comets. In: Elvius A (ed) From plasma to planet. Almqvist & Wiksell, Stockholm, p 211Google Scholar
  91. Windmark F, Birnstiel T, Güttler C et al (2012a) Planetesimal formation by sweep-up: how the bouncing barrier can be beneficial to growth. A&A 540:A73ADSCrossRefGoogle Scholar
  92. Windmark F, Birnstiel T, Ormel CW, Dullemond CP (2012b) Breaking through: the effects of a velocity distribution on barriers to dust growth. A&A 544:L16ADSCrossRefGoogle Scholar
  93. Youdin AN, Shu FH (2002) Planetesimal formation by gravitational instability. ApJ 580:494–505ADSCrossRefGoogle Scholar
  94. Youdin AN, Goodman J (2005) Streaming instabilities in protoplanetary disks. ApJ 620:459–469ADSCrossRefGoogle Scholar
  95. Zhang K, Bergin EA, Blake GA et al (2016) On the commonality of 10–30 AU sized axisymmetric dust structures in protoplanetary disks. ApJ 818:L16ADSCrossRefGoogle Scholar
  96. Zsom A, Ormel CW, Güttler C, Blum J, Dullemond CP (2010) The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? II. Introducing the bouncing barrier. A&A 513:A57ADSCrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  1. 1.Harvard-Smithsonian Center for AstrophysicsCambridgeUSA
  2. 2.Faculty of Physics, Ludwig-Maximilians-Universität MünchenUniversity ObservatoryMunichGermany
  3. 3.Max Planck Institute for AstronomyHeidelbergGermany

Section editors and affiliations

  • Ralph Pudritz
    • 1
  1. 1.Origins InstituteMcMaster UniversityHamiltonCanada

Personalised recommendations