Advertisement

PSR B1257+12 and the First Confirmed Planets Beyond the Solar System

  • Alexander Wolszczan
Living reference work entry

Abstract

We describe the survey and timing observations conducted in early 1990 with the Arecibo radio telescope, which have led to the discovery of the first confirmed extrasolar planetary system consisting of three low-mass planets, orbiting the 6.2-ms millisecond pulsar, PSR B1257+12. The existence of planets around a neutron star has carried with it a now fulfilled promise that planets should be common around the various types of stars. Furthermore, the architecture of the PSR B1257+12 system offered an early preview of the future discoveries of the very common compact systems of superEarth-mass planets by the Kepler telescope and ground-based radial velocity surveys.

Notes

Acknowledgements

The Center for Exoplanets and Habitable Worlds is supported by the Pennsylvania State University and the Eberly College of Science. The Arecibo Observatory is operated by the SRI International under a cooperative agreement with the National Science Foundation (AST-1100968) and in alliance with Ana G. Méndez-Universidad Metropolitana and the Universities Space Research Association.

References

  1. Alpar MA, Cheng AF, Ruderman MA et al (1982) A new class of radio pulsars. Nature 300:728ADSCrossRefGoogle Scholar
  2. Arzoumanian Z, Brazier A, Burke-Spolaor S et al (2016) The NANOGrav nine-year data set: limits on the isotropic stochastic gravitational wave background. ApJ 821:1ADSCrossRefGoogle Scholar
  3. Bailes M, Lyne AG, Shemar SL (1991) A planet orbiting the neutron star PSR1829-10. Nature 352:311ADSCrossRefGoogle Scholar
  4. Bailes M, Bates SD, Bhalerao V et al (2011) Transformation of a star into a planet in a millisecond pulsar binary. Science 333:1717ADSCrossRefGoogle Scholar
  5. Batalha NM (2014) Exploring exoplanet populations with NASAs Kepler Mission. PNAS 111:12647ADSCrossRefGoogle Scholar
  6. Blandford R, Teukolsky SA (1976) Arrival-time analysis for a pulsar in a binary system. ApJ 205:580ADSCrossRefGoogle Scholar
  7. Demiański M, Prószyński M (1979) Does PSR0329+54 have companions? Nature 282:383ADSCrossRefGoogle Scholar
  8. Dolginov AZ, Stepinski TF (1993) On quasiperiodic variations of pulsars’ periods – an alternative to the planetary interpretation of PSR1257+12. In: Phillips JA, Thorsett SE, Kulkarni SR (eds) Planets around pulsars. ASP conference series, vol 36. ASP, San Francisco, p 61Google Scholar
  9. Fonseca E, Stairs IH, Thorsett SE (2014) A comprehensive study of relativistic gravity using PSR B1534+12. ApJ 787:82ADSCrossRefGoogle Scholar
  10. Gil JA, Jessner A (1993) Are there really planets around PSR 1257+12? In: Phillips JA, Thorsett SE, Kulkarni SR (eds) Planets around pulsars. ASP conference series, vol 36. ASP, San Francisco, p 71Google Scholar
  11. Hansen BMS, Shih HY, Currie T (2009) A test case of terrestrial planet assembly. ApJ 691:382ADSCrossRefGoogle Scholar
  12. Heinke CO, Frail DA, Wolszczan A (1996) The position and proper motion of PSR B1257+12. BAAS 28:1368Google Scholar
  13. Hills JG (1970) Planetary companions of pulsars. Nature 226:730ADSCrossRefGoogle Scholar
  14. Hobbs G, Coles W, Manchester RN et al (2012) Development of a pulsar-based time-scale. MNRAS 427:2780Google Scholar
  15. Kerr M, Hobbs G, Johnston S, Shannon RM (2016) Periodic modulation in pulse arrival times from young pulsars: a renewed case for neutron star precession. MNRAS 455:1845ADSCrossRefGoogle Scholar
  16. Konacki M, Wolszczan A (2003) Masses and orbital inclinations of planets in the PSR B1257+12 system. ApJ 591:L147ADSCrossRefGoogle Scholar
  17. Konacki M, Maciejewski A, Wolszczan A (1999) Resonance in PSR B1257+12 planetary system. ApJ 513:471ADSCrossRefGoogle Scholar
  18. Kramer M (2011) Planets around pulsars. AIP conference series, Vol 1331. AIP Publishing, Melville, p 5Google Scholar
  19. Kulkarni SR, Narayan R (1988) Birthrates of low-mass binary pulsars and low-mass X-ray binaries. ApJ 335:755ADSCrossRefGoogle Scholar
  20. Lorimer DR, Kramer M (2005) Handbook of pulsar astronomy. Cambridge University Press, CambridgeGoogle Scholar
  21. Lyne AG, Bailes M (1992) No planet orbiting PSR1829-10. Nature 355:213ADSCrossRefGoogle Scholar
  22. Lyne AG, Pritchard RS, Shemar SL (1995) Timing noise and glitches. JApA 16:179ADSCrossRefGoogle Scholar
  23. Malhotra R (1993) Three-body effects in the PSR 1257+12 planetary system. ApJ 407:266ADSCrossRefGoogle Scholar
  24. Malhotra R, Black D, Eck A et al (1992) Resonant orbital evolution in the putative planetary system of PSR1257 + 12. Nature 356:583ADSCrossRefGoogle Scholar
  25. Manchester RN (2017) Millisecond pulsars, their evolution and applications. JApA 38:42Google Scholar
  26. Manchester RN, Lyne AG, Camilo F et al (2001) The Parkes multi-beam pulsar survey – I. Observing and data analysis systems, discovery and timing of 100 pulsars. MNRAS 328:17ADSCrossRefGoogle Scholar
  27. Margalit B, Metzger BD (2017) Merger of a white dwarf-neutron star binary to 1029 carat diamonds: origin of the pulsar planets. MNRAS 465:2790ADSCrossRefGoogle Scholar
  28. Martin RG, Livio M, Palaniswamy D (2016) Why are pulsar planets rare? ApJ 832:122ADSCrossRefGoogle Scholar
  29. Menou, K, Perna R, Hernquist L (2001) Stability and evolution of supernova fallback disks. ApJ 559:1032ADSCrossRefGoogle Scholar
  30. Michel FC (1970) Pulsar planetary systems. ApJ 159:L25ADSCrossRefGoogle Scholar
  31. Miller MC, Hamilton DP (2001) Implications of the PSR 1257+12 planetary system for isolated millisecond pulsars. ApJ 550:863ADSCrossRefGoogle Scholar
  32. Peale SJ (1993) On the verification of the planetary system around PSR 1257 + 12. AJ 105:1562Google Scholar
  33. Pletsch HJ, Guillemot L, Fehrmann H (2012) Binary millisecond pulsar discovery via gamma-ray pulsations. Science 338:1314Google Scholar
  34. Podsiadlowski P (1993) Planet formation scenarios. In: Phillips JA, Thorsett SE, Kulkarni SR (eds) Planets around pulsars. ASP conference series, vol 36. ASP, San Francisco, p 149Google Scholar
  35. Rasio FA, Nicholson PD, Shapiro SL et al (1992) An observational test for the existence of a planetary system orbiting PSR1257 + 12. Nature 355:325ADSCrossRefGoogle Scholar
  36. Richards DW, Pettengill GH, Counselman CC III et al (1970) Quasi-sinusoidal oscillation in arrival times of pulses from NP 0532. ApJ 160:L1ADSCrossRefGoogle Scholar
  37. Rickett BJ (1990) Radio propagation through the turbulent interstellar plasma. ARA&A 28:561ADSCrossRefGoogle Scholar
  38. Rivera R, Wolszczan A, Seymour A (2016) High-cadence timing observations of an exoplanet-pulsar system, PSR B1257+12. BAAS 227:241.08ADSGoogle Scholar
  39. Scherer K, Fichtner H, Anderson JD et al (1997) A pulsar, the heliosphere, and pioneer 10: probable mimicking of a planet of PSR B1257+12 by solar rotation. Science 278:1919ADSCrossRefGoogle Scholar
  40. Shannon RM, Cordes JM, Metcalfe TS et al (2013) An asteroid belt interpretation for the timing variations of the millisecond pulsar B1937+21. ApJ 766:5ADSCrossRefGoogle Scholar
  41. Sigurdsson S, Richer HB, Hansen BM et al (2003) A young white dwarf companion to pulsar b1620-26: evidence for early planet formation. Science 301:193ADSCrossRefGoogle Scholar
  42. Spiewak R, Bailes M, Barr ED (2017) PSR J23222650 a low-luminosity millisecond pulsar with a planetary-mass companion. arXiv 1712.04445Google Scholar
  43. Stovall K, Lynch RS, Ransom SM et al (2014) The green bank Northern celestial cap pulsar survey. I. survey description, data analysis, and initial results. ApJ 791:67ADSCrossRefGoogle Scholar
  44. Wolszczan A (1990) PSR 1257+12 and PSR 1534+12. IAU Circ 5073:1ADSGoogle Scholar
  45. Wolszczan A (1991) A nearby 37.9-ms radio pulsar in a relativistic binary system. Nature 350:668ADSCrossRefGoogle Scholar
  46. Wolszczan A (1994) Confirmation of Earth-Mass planets orbiting the millisecond pulsar PSR B1257+12. Science 264:538ADSCrossRefGoogle Scholar
  47. Wolszczan A (2012) Discovery of pulsar planets. New Astron Rev 56:2ADSCrossRefGoogle Scholar
  48. Wolszczan A, Frail DA (1992) A planetary system around the millisecond pulsar PSR1257+12. Nature 355:145ADSCrossRefGoogle Scholar
  49. Wolszczan A, Hoffman IM, Konacki M et al (2000) A 25.3 day periodicity in the timing of the pulsar PSR B1257+12: a planet or a heliospheric propagation effect? ApJ 540:L41ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Astronomy and Astrophysics, and Center for Exoplanets and Habitable WorldsThe Pennsylvania State UniversityUniversity ParkUSA

Section editors and affiliations

  • Tsevi Mazeh
    • 1
  1. 1.School of Physics and AstronomyTel Aviv UniversityTel AvivIsrael

Personalised recommendations