KELT: The Kilodegree Extremely Little Telescope, a Survey for Exoplanets Transiting Bright, Hot Stars

  • Joshua Pepper
  • Keivan G. Stassun
  • B. S. Gaudi
Living reference work entry


The KELT project was originally designed as a small-aperture, wide-field photometric survey that would be optimally sensitive to planets transiting bright (V∼8 to 10) stars. This magnitude range corresponded to the gap between the faint magnitude limit where radial velocity surveys were complete, and the bright magnitude limit for transiting planet hosts routinely found by dedicated ground-based transit surveys. Malmquist bias and other factors have also led the KELT survey to focus on discovering planets transiting relatively hot host stars. To date, the survey has discovered 22 transiting hot Jupiters, including some of the brightest transiting planet host stars known to date. Over half of these planets transit rapidly rotating stars with Teff > 6250 K, which had been largely eschewed by both radial velocity and transit surveys, due to the challenge of obtaining precision radial velocities for such stars. The KELT survey has developed a protocol and specialized software for confirming transiting planets around stars rotating as rapidly as ~200 km/s. This chapter reviews the KELT planet discoveries, describes their scientific value, and also briefly discusses the non-exoplanet science produced by the KELT project, especially long-timescale phenomena and preparations for the TESS mission.


  1. Alard C (2000) Image subtraction using a space-varying kernel. A&AS 144:363ADSCrossRefGoogle Scholar
  2. Alard C, Lupton RH (1998) A method for optimal image subtraction. ApJ 503:325ADSCrossRefGoogle Scholar
  3. Alonso R, Brown TM, Torres G et al (2004) TrES-1: the transiting planet of a bright K0 V star. ApJL 613:L153ADSCrossRefGoogle Scholar
  4. Alsubai KA, Parley NR, Bramich DM et al (2013) The Qatar exoplanet survey. ACTAA 63:465Google Scholar
  5. Ansdell M, Oelkers RJ, Rodriguez JE et al (2018) Identification of young stellar variables with KELT for K2 – II. The Upper Scorpius association. MNRAS 473:1231ADSCrossRefGoogle Scholar
  6. Bakos GA, Noyes RW, Kovacs G et al (2004) Wide-field Millimagnitude photometry with the HAT: a tool for extrasolar planet detection. PASP 116:266ADSCrossRefGoogle Scholar
  7. Beatty TG, Madhusudhan N, Pogge R et al (2017) The broadband and spectrally resolved H-band eclipse of KELT-1b and the role of surface gravity in stratospheric inversions in hot Jupiters. AJ 154:242ADSCrossRefGoogle Scholar
  8. Bieryla A, Collins K, Beatty TG et al (2015) KELT-7b: a hot Jupiter transiting a bright V = 8.54 rapidly rotating F-star. AJ 150:12ADSCrossRefGoogle Scholar
  9. Borucki WJ, Caldwell D, Koch DG et al (2001) The Vulcan photometer: a dedicated photometer for extrasolar planet searches. PASP 113:439ADSCrossRefGoogle Scholar
  10. Burke CJ, Depoy DL, Gaudi BS, Marshall JL (2003) Survey for transiting extrasolar planets in stellar systems (STEPSS): the frequency of planets in NGC 1245. Sci Front Res Extrasolar Planet 294:379ADSGoogle Scholar
  11. Cargile PA, James DJ, Pepper J et al (2014) Evaluating Gyrochronology on the zero-age-main-sequence: rotation periods in the southern open cluster Blanco 1 from the KELT-south survey. ApJ 782:29ADSCrossRefGoogle Scholar
  12. Charbonneau D, Brown TM, Latham DW, Mayor M (2000) Detection of planetary transits across a sun-like star. ApJ 529:45ADSCrossRefGoogle Scholar
  13. Collier Cameron A, Guenther E, Smalley B et al (2007) Line-profile tomography of exoplanet transits – II. A gas-giant planet transiting a rapidly rotating A5 star. MNRAS 407:507ADSCrossRefGoogle Scholar
  14. Collins K, Kielkopf J (2013) AstroImageJ: imageJ for astronomy. Astrophysics source code library, record ascl:1309.001Google Scholar
  15. Collins KA, Kielkopf JF, Stassun KG, Hessman FV (2017) AstroImageJ: image processing and photometric extraction for ultra-precise astronomical light curves. AJ 153:77ADSCrossRefGoogle Scholar
  16. Gaudi BS, Stassun KG, Collins KA et al (2017) A giant planet undergoing extreme-ultraviolet irradiation by its hot massive-star host. Nature 546:514ADSGoogle Scholar
  17. Goobar A, Kromer M, Siverd R et al (2015) Constraints on the origin of the first light from SN 2014J. ApJ 799:106ADSCrossRefGoogle Scholar
  18. Henry GW, Marcy GW, Butler RP, Vogt SS (2000) A transiting “51 Peg-like” planet. ApJ 529:41ADSCrossRefGoogle Scholar
  19. Jensen E (2013) Tapir: a web interface for transit/eclipse observability. Astrophysics source code library, record ascl:1306.007Google Scholar
  20. Johnson MC, Rodriguez JE, Zhou G et al (2018) KELT-21b: a hot Jupiter transiting the rapidly-rotating metal-poor late-a primary of a likely hierarchical triple system. AJ 155:100ADSCrossRefGoogle Scholar
  21. Kennedy GM, Kenworthy MA, Pepper J et al (2017) The transiting dust clumps in the evolved disc of the sun-like UXor RZ Psc. R Soc Open Sci 4:160652CrossRefGoogle Scholar
  22. Konacki M, Torres G, Jha S, Sasselov DD (2003) An extrasolar planet that transits the disk of its parent star. Nature 421:507ADSCrossRefGoogle Scholar
  23. Kovacs G, Zucker S, Mazeh T (2002) A box-fitting algorithm in the search for periodic transits. A&A 391:369ADSCrossRefGoogle Scholar
  24. Kovacs G, Bakos G, Noyes RW (2005) A trend filtering algorithm for wide-field variability surveys. MNRAS 356:557ADSCrossRefGoogle Scholar
  25. Kraft RP (1967) Studies of stellar rotation. V. The dependence of rotation on age among solar-type stars. ApJ 150:551ADSCrossRefGoogle Scholar
  26. Labadie-Bartz J, Pepper J, McSwain MV et al (2017) Photometric variability of the be star population. AJ 153:252ADSCrossRefGoogle Scholar
  27. Labadie-Bartz J, Chojnowski SD, Whelan DG et al (2018) Outbursts and disk variability in be stars. AJ 155:53ADSCrossRefGoogle Scholar
  28. Lund MB, Rodriguez JE, Zhou G et al (2017) KELT-20b: a giant planet with a period of P~3.5 days transiting the V~7.6 early a star HD 185603. AJ 154:194ADSCrossRefGoogle Scholar
  29. Mallen-Ornelas G, Seager S, Yee HKC et al (2003) The EXPLORE project. I. A deep search for transiting extrasolar planets. ApJ 582:1123ADSCrossRefGoogle Scholar
  30. McCullough PR, Stys JE, Valenti JA et al (2005) The XO project: searching for transiting extrasolar planet candidates. PASP 117:783ADSCrossRefGoogle Scholar
  31. Mochejska BJ, Stanek KZ, Sasselov DD, Szentgyorgyi AH et al (2002) Planets in stellar clusters extensive search. I. Discovery of 47 low-amplitude variables in the metal-rich cluster NGC 6791 with Millimagnitude image subtraction photometry. AJ 123:3460ADSCrossRefGoogle Scholar
  32. Oelkers RJ, Rodriguez JE, Stassun KG et al (2018) Variability properties of four million sources in the TESS input catalog observed with the Kilodegree extremely little telescope survey. AJ 155:39ADSCrossRefGoogle Scholar
  33. Osborn HP, Rodriguez JE, Kenworthy MA et al (2017) Periodic eclipses of the young star PDS 110 discovered with WASP and KELT photometry. MNRAS 471:740ADSCrossRefGoogle Scholar
  34. Pepper J, Gould A, Depoy DL (2003) Using all-sky surveys to find planetary transits. ACTAA 53:213Google Scholar
  35. Pepper J, Gould A, Depoy DL (2004) KELT: the Kilodegree extremely little telescope. Search Other Worlds 713:185ADSCrossRefGoogle Scholar
  36. Pepper J, Pogge R, Depoy DL et al (2007) Early results from the KELT transit survey. Transiting extrapolar planets workshop ASP conference series, vol 366, p 27Google Scholar
  37. Pepper J, Kuhn RB, Siverd R, James D, Stassun K (2012) The KELT-south telescope. PASP 124:230ADSCrossRefGoogle Scholar
  38. Pepper J, Rodriguez JE, Collins KA et al (2017) KELT-11b: a highly inflated sub-Saturn exoplanet transiting the V = 8 subgiant HD 93396. AJ 153:215ADSCrossRefGoogle Scholar
  39. Pollacco DL, Skillen I, Collier Cameron A et al (2006) The WASP project and the SuperWASP cameras. PASP 118:1407ADSCrossRefGoogle Scholar
  40. Rodriguez JE, Pepper J, Stassun K et al (2013) Occultation of the T Tauri star RW Aurigae A by its tidally disrupted disk. AJ 146:112ADSCrossRefGoogle Scholar
  41. Rodriguez JE, Reed PA, Siverd RJ et al (2016a) Recurring occultations of RW Aurigae by coagulated dust in the tidally disrupted circumstellar disk. AJ 151:29ADSCrossRefGoogle Scholar
  42. Rodriguez JE, Stassun KG, Cargile P et al (2016b) DM Ori: a young star occulted by a disturbance in its protoplanetary disk. ApJ 831:74ADSCrossRefGoogle Scholar
  43. Rodriguez JE, Stassun KG, Lund MB et al (2016c) An extreme analogue of ɛ Aurigae: an M-giant eclipsed every 69 years by a large opaque disk surrounding a small hot source. AJ 151:123ADSCrossRefGoogle Scholar
  44. Rodriguez JE, Ansdell M, Oelkers RJ et al (2017a) Identification of young stellar variables with KELT for K2. I. Taurus dippers and rotators. ApJ 848:97ADSCrossRefGoogle Scholar
  45. Rodriguez JE, Zhou G, Cargile PA et al (2017b) The mysterious Dimmings of the T Tauri star V1334 Tau. ApJ 836:209ADSCrossRefGoogle Scholar
  46. Siverd RJ, Beatty TG, Pepper J et al (2012) KELT-1b: a strongly irradiated, highly inflated, short period, 27 Jupiter-mass companion transiting a mid-F star. ApJ 761:123ADSCrossRefGoogle Scholar
  47. Siverd RJ, Goobar A, Stassun KG, Pepper J (2015) Observations of the M82 SN 2014J with the Kilodegree extremely little telescope. ApJ 799:105ADSCrossRefGoogle Scholar
  48. Siverd RJ, Collins KA, Zhou G et al (2018) KELT-19Ab: A P ∼ 4.6-day hot jupiter transiting a likely am star with a distant stellar companion. AJ 155:35ADSCrossRefGoogle Scholar
  49. Temple LY, Hellier C, Albrow MD et al (2017) WASP-167b/KELT-13b: joint discovery of a hot Jupiter transiting a rapidly rotating F1V star. MNRAS 471:2743ADSCrossRefGoogle Scholar
  50. Terrien RC, Mahadevan S, Deshpande R et al (2014) New red jewels in coma Berenices. ApJ 782:61ADSCrossRefGoogle Scholar
  51. Udalski A, Szymanski M, Kaluzny J, Kubiak M, Mateo M (1992) The optical gravitational lensing experiment. ACTAA 42:253Google Scholar
  52. Udalski A, Paczynski B, Zebrun K, Szymanski M et al (2002a) The optical gravitational lensing experiment. Search for planetary and low-luminosity object transits in the galactic disk. Results of 2001 campaign. AcA 52:1ADSGoogle Scholar
  53. Udalski A, Zebrun K, Szymanski M, Kubiak M et al (2002b) The optical gravitational lensing experiment. Search for planetary and low-luminosity object transits in the galactic disk. Results of 2001 campaign – supplement. AcA 42:115ADSGoogle Scholar
  54. Udalski A, Pietrzynski G, Szymanski M, et al (2003) The Optical Gravitational Lensing Experiment. Additional planetary and low-luminosity object transits from the OGLE 2001 and 2002 observational campaigns. AcA 53:133Google Scholar
  55. von Braun K, Lee B, Mallen-Ornelas G et al (2003) EXPLORE/OC: a search for planetary transits in the field of NGC 2660. ArXiv:astro-ph/0312217Google Scholar
  56. Wolszczan A, Frail DA (1992) A planetary system around the millisecond pulsar PSR1257 + 12. Nature 355:145ADSCrossRefGoogle Scholar
  57. Wright JT, Marcy GW, Howard AW, Johnson JA et al (2011) The frequency of hot Jupiters orbiting nearby solar-type stars. PASP 123:412ADSCrossRefGoogle Scholar
  58. Zhou G, Rodriguez JE, Collins KA et al (2016) KELT-17b: a hot-Jupiter transiting an A-star in a misaligned orbit detected with doppler tomography. AJ 152:136ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Joshua Pepper
    • 1
  • Keivan G. Stassun
    • 2
  • B. S. Gaudi
    • 3
  1. 1.Department of PhysicsLehigh UniversityBethlehemUSA
  2. 2.Department of Physics and AstronomyVanderbilt UniversityNashvilleUSA
  3. 3.Department of AstronomyThe Ohio State UniversityColumbusUSA

Section editors and affiliations

  • Norio Narita
    • 1
    • 2
    • 3
  1. 1.Graduate School of Science, Department of AstronomyUniversity of TokyoTokyoJapan
  2. 2.Exoplanet Detection Project OfficeNational Astronomical Observatory of JapanTokyoJapan
  3. 3.Exoplanet Detection Project OfficeAstrobiology CenterTokyoJapan

Personalised recommendations