Microlensing Surveys for Exoplanet Research (MOA)

Living reference work entry

Abstract

The first 22 years of a search for exoplanets by gravitational microlensing that is being conducted by the Japan/NZ collaboration known as MOA are described. A range of techniques that was developed in association with other international collaborations is outlined, and these are typified by a chronological sequence of examples from the published literature. The detection of exoplanets in gravitational microlensing events of high and moderately high magnification is emphasized. Physical descriptions of these processes are given. Evidence for free-floating planets is also presented, and recent results on the mass-radius distribution of planets and on the planetary mass-function are given. Current plans for the near-term future of the international microlensing community are described, and also for the more distant future. The latter includes a survey of exoplanets that will be conducted by the WFIRST space telescope in the coming decade. Brief remarks are also made on early and current searches for dark matter by MOA.

References

  1. Abe F, Bond IA, Carter BS et al (1999) Observation of the halo of the edge-on galaxy IC5249. AJ 118:261–272. https://doi.org/10.1086/300907 ADSCrossRefGoogle Scholar
  2. Abe F, Airey C, Barnard E et al (2013) Extending the planetary mass function to earth mass by gravitational microlensing at moderately high magnification. MNRAS 431:2975–2985. https://doi.org/10.1093/mnras/stt318 ADSCrossRefGoogle Scholar
  3. Alcock C, Akerlof CW, Allsman RA et al (1993) Possible gravitational microlensing of a star in the large Magellanic cloud. Nature 365:621–623. https://doi.org/10.1038/365621a0 ADSCrossRefGoogle Scholar
  4. Alcock C, Allsman RA, Axelrod TS et al (1995) Probable gravitational microlensing towards the galactic bulge. ApJ 445:133–139. https://doi.org/10.1086/175678 ADSCrossRefGoogle Scholar
  5. Aubourg E, Bareyre P, Brehin S et al (1993) Evidence for gravitational microlensing by dark objects in the galactic halo. Nature 365:623–625. https://doi.org/10.1038/365623a0 ADSCrossRefGoogle Scholar
  6. Beaulieu J-P, Bennett DP, Batista V et al (2016) Revisiting the microlensing event OGLE-2012-BLG-0026: a solar mass star with two cold giant planets. ApJ 824:83. https://doi.org/10.3847/0004-637x/824/2/83 ADSCrossRefGoogle Scholar
  7. Bennett DP, Rhie SH (2002) Simulation of a space-based survey for terrestrial extra-solar planets. ApJ 574:985–1003. https://doi.org/10.1086/340977 ADSCrossRefGoogle Scholar
  8. Bennett DP, Anderson J, Bond IA et al (2006) Identification of the OGLE-2003-BLG235/MOA-2003-BLG-53 planetary host star. ApJ 647:L171–L174. https://doi.org/10.1086/507585 ADSCrossRefGoogle Scholar
  9. Bird S, Cholis I, Munoz JB et al (2016) Did LIGO detect dark matter? PRL 116:201301. https://doi.org/10.1103/PhysRevLett.116.201301 ADSCrossRefGoogle Scholar
  10. Bond IA, Rattenbury NJ, Skuljan J et al (2002) Study by MOA of extrasolar planets by gravitational microlensing at high magnification. MNRAS 333:71–83. https://doi.org/10.1046/j.1365-8711.2002.05380.x ADSCrossRefGoogle Scholar
  11. Bond IA, Udalski A, Jaroszynski M et al (2004) OGLE 2003-BLG-235/MOA 2003-BLG-52: a planetary microlensing event. ApJ 606:L155–L158. https://doi.org/10.1086/420928 ADSCrossRefGoogle Scholar
  12. Bond IA (2012) The first extrasolar planet detected via gravitational microlensing. New Astron Rev 56:25–32. https://doi.org/10.1016/j.newar.2011.06.004 ADSCrossRefGoogle Scholar
  13. Carr B, Kuhuel F, Sandstad M (2016) Primordial black holes as dark matter. PRD 94:083504. https://doi.org/10.1103/PhysRevD.94.083504 ADSCrossRefGoogle Scholar
  14. Cassan A, Kubas D, Beaulieu J-P et al (2012) One or more bound planets per milky way star from microlensing observations. Nature 481:167–169. https://doi.org/10.1038/nature10684 ADSCrossRefGoogle Scholar
  15. Freeman M, Philpott L, Abe F et al (2015) Can the masses of isolated planetary mass gravitational lenses be measured by terrestrial parallax? ApJ 799:181. https://doi.org/10.1088/0004-637X/799/2/181 ADSCrossRefGoogle Scholar
  16. Gould A (1992) Extending the MACHO search to about 106 solar masses. ApJ 392:442–451. https://doi.org/10.1086/171443 ADSCrossRefGoogle Scholar
  17. Gould A, Dong S, Gaudi BS et al (2010) Frequency of solar-like systems and of ice giants beyond the snow line from high magnification microlensing events in 2005–2008. ApJ 720:1073–1089. https://doi.org/10.1088/0004-637X/720/2/1073 ADSCrossRefGoogle Scholar
  18. Griest K, Safizadeh N (1998) The use of high-magnification microlensing events in detecting extrasolar planets. ApJ 500:37–50. https://doi.org/10.1086/305729 ADSCrossRefGoogle Scholar
  19. Han C, Kang YW (2003) Probing the spatial distribution of extrasolar planets with gravitational microlensing. ApJ 596:1320–1326. https://doi.org/10.1086/378191 ADSCrossRefGoogle Scholar
  20. Han C, Udalski A, Choi J-Y et al (2013) The second multiple planet system discovered by microlensing: OGLE-2012-BLG-0026Lb,c – a pair of Jovian mass planets beyond the snow line. ApJ 762:L28. https://doi.org/10.1088/2041–8205/762/2/L28 ADSCrossRefGoogle Scholar
  21. Hearnshaw JB, Abe F, Bond IA et al (2006) The MOA 1.8 metre alt-az wide-field survey telescope and the MOA project. In: Sutanyo W, Premadi P (eds) Proceedings of 9th Asian-Pacific IAU meeting July 2005, pp 272-273Google Scholar
  22. Henderson CB, Gaudi BS, Han C et al (2014) Optimal survey strategies and predicted planet yields for the Korean microlensing telescope network. ApJ 794:52. https://doi.org/10.1088/0004-637X/794/1/52 ADSCrossRefGoogle Scholar
  23. Henderson CB, Poleski R, Penny M et al (2016) Campaign 9 of the K2 mission: observational parameters, scientific drivers and communal involvement for a simultaneous space- and ground-based microlensing survey. Publ Astron Soc Pac 128:124401. https://doi.org/10.1088/1538-3873/128/970/124401 ADSCrossRefGoogle Scholar
  24. Kobara S, Ohmori K, Wada K, Takeuchi M (2012) Three topics from the MOA collaboration. 16th international microlensing conference, Pasadena (unpublished)Google Scholar
  25. Koshimoto N, Udalski A, Beaulieu J-P et al (2017) OGLE-2012-BLG-0950Lb: the first planet mass from only microlens parallax and lens flux. ApJ 153:1. https://doi.org/10.3847/1538-3881/153/1/1 CrossRefGoogle Scholar
  26. Liebes S (1964) Gravitational lenses. PR 133:B835–B844. https://doi.org/10.1103/PhysRev.133.B835 CrossRefMATHGoogle Scholar
  27. Mao S, Paczynski B (1991) Gravitational microlensing by double stars and planetary systems. ApJ 374:L37–L40. https://doi.org/10.1086/186066 ADSCrossRefGoogle Scholar
  28. Muraki Y, Han C, Bennett DP et al (2011) Discovery and mass measurement of a cold, 10-earth mass planet and its host star. ApJ 741:22. https://doi.org/10.1088/0004-637X/741/1/22 ADSCrossRefGoogle Scholar
  29. Paczynski B (1986) Gravitational microlensing by the galactic halo. ApJ 304:1–5. https://doi.org/10.1086/164140 ADSCrossRefGoogle Scholar
  30. Paczynski B (1996) Gravitational microlensing in the local group. ARAA 34:419–460. https://doi.org/10.1146/annurev.astro.34.1.419 ADSCrossRefGoogle Scholar
  31. Philpott L (2012) Gravity’s optics and other worlds. Griffith Observer:76(6):2–18Google Scholar
  32. Rattenbury NJ, Bond IA, Skuljan J, Yock PCM (2002) Planetary microlensing at high magnification. MNRAS 335:159–169. https://doi.org/10.1046/j.1365-8711.2002.05607.x ADSCrossRefGoogle Scholar
  33. Rhie S, Bennett DP, Becker AC et al (2000) On planetary companions to the MACHO 98-BLG-35 microlens star. ApJ 533:378–391. https://doi.org/10.1086/308634 ADSCrossRefGoogle Scholar
  34. Sako T, Sekiguchi T, Sasaki M et al (2008) MOA-cam 3: a widefield mosaic CCD camera for a gravitational microlensing survey from new Zealand. Exp Astron 22:51–66. https://doi.org/10.1007/s10686-007-9082-5 ADSCrossRefGoogle Scholar
  35. Schneider P, Weiss A (1986) The two-point-mass lens – detailed investigation of a special asymmetric gravitational lens. A&A 164:237–259ADSGoogle Scholar
  36. Shvartzvald Y, Maoz D, Udalski A et al (2016) The frequency of snowline region planets from four years of OGLE-MOA-wise second generation microlensing. MNRAS 457:4089–4113. https://doi.org/10.1093/mnras/stw191 ADSCrossRefGoogle Scholar
  37. Spergel D, Gehrels N, Baltay C et al (2015) Wide-field InfrarRed survey telescope-astrophysics focused telescope assets WFIRST-AFTA 2015 report. ArXiv:1503.03757Google Scholar
  38. Sumi T, Kamiya K, Udalski A et al (2011) Unbound or distant planetary mass population detected by gravitational Microlensing. Nature 473:349–352. https://doi.org/10.1038/nature10092 ADSCrossRefGoogle Scholar
  39. Sumi T, Udalski A, Bennett DP et al (2016) The first Neptune analog or super-earth with Neptune-like orbit: MOA-2013-BLG-605Lb. ApJ 825:112. https://doi.org/10.3847/0004-637X/825/2/112 ADSCrossRefGoogle Scholar
  40. Suzuki D, Bennett DP, Sumi T et al (2016) The exoplanet mass ratio function from the MOA-II survey: discovery of a break and likely peak at a Neptune-mass. ApJ 833:145. https://doi.org/10.3847/1538-4357/833/2/145 ADSCrossRefGoogle Scholar
  41. Udalski A, Szymanski M, Kaluzay J et al (1993) The optical gravitational microlensing experiment. Discovery of the first candidate microlensing event in the direction of the Galactic Bulge. Acta Astron 43:289–294ADSGoogle Scholar
  42. Yanagisawa T, Muraki Y, Matsubara Y et al (2000) Wide-field camera for gravitational microlensing survey: MOA-cam2. Exp Astron 10:519–535ADSCrossRefGoogle Scholar
  43. Yock P (2012) A quarter century of astrophysics with Japan. NZ Sci Rev 69(3):61–70Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of AucklandAucklandNew Zealand
  2. 2.Institute for Space-Earth Environment Research, Nagoya UniversityNagoyaJapan

Personalised recommendations