Advertisement

Transit Photometry as an Exoplanet Discovery Method

  • Hans J. Deeg
  • Roi Alonso
Living reference work entry

Abstract

Photometry with the transit method has arguably been the most successful exoplanet discovery method to date. A short overview about the rise of that method to its present status is given. The method’s strength is the rich set of parameters that can be obtained from transiting planets, in particular in combination with radial velocity observations; the basic principles of these parameters are given. The method has however also drawbacks, which are the low probability that transits appear in randomly oriented planet systems and the presence of astrophysical phenomena that may mimic transits and give rise to false detection positives. In the second part, we outline the main factors that determine the design of transit surveys, such as the size of the survey sample, the temporal coverage, the detection precision, the sample brightness and the methods to extract transit events from observed light curves. Lastly, an overview over past, current, and future transit surveys is given. For these surveys we indicate their basic instrument configuration and their planet catch, including the ranges of planet sizes and stellar magnitudes that were encountered. Current and future transit detection experiments concentrate primarily on bright or special targets, and we expect that the transit method remains a principal driver of exoplanet science, through new discoveries to be made and through the development of new generations of instruments.

Notes

Acknowledgements

Financial support by the Spanish Secretary of State for R&D&i (MINECO) is acknowledged by HD under the grant ESP2015-65712-C5-4-R and by RA for the Ramón y Cajal program RYC-2010-06519 and the programs RETOS ESP2014-57495-C2-1-R and ESP2016-80435-C2-2-R. This contribution has benefited from the use of the NASA Exoplanet Archive and the Extrasolar Planets Encyclopaedia, and the authors acknowledge the people behind these tools.

References

  1. Aigrain S, Favata F Gilmore G (2004) Characterising stellar micro-variability for planetary transit searches. A&A 414:1139–1152ADSCrossRefGoogle Scholar
  2. Aigrain S, Pont F, Fressin F et al. (2009) Noise properties of the CoRoT data. A planet-finding perspective. A&A 506:425–429ADSCrossRefGoogle Scholar
  3. Almenara JM, Deeg HJ, Aigrain S et al. (2009) Rate and nature of false positives in the CoRoT exoplanet search. A&A 506:337–341ADSCrossRefGoogle Scholar
  4. Alonso R, Brown TM, Torres G et al. (2004a) TrES-1: The transiting planet of a bright K0 V star. ApJ 613:L153–L156ADSCrossRefGoogle Scholar
  5. Alonso R, Deeg HJ, Brown TM Belmonte JA (2004b) Strategies to recognize false alarms in transit experiments: experiences from the STARE project. In: Favata F, Aigrain S Wilson A (eds) Stellar structure and habitable Planet finding, vol 538. ESA Special Publication, Noordwijk, pp 255–259Google Scholar
  6. Alonso R, Auvergne M, Baglin A et al. (2008) Transiting exoplanets from the CoRoT space mission. II. CoRoT-Exo-2b: a transiting planet around an active G star. A&A 482:L21–L24ADSCrossRefGoogle Scholar
  7. Bakos GÁ, Csubry Z, Penev K et al. (2013) HATSouth: a global network of fully automated identical wide-field telescopes. PASP 125:154ADSCrossRefGoogle Scholar
  8. Barge P, Baglin A, Auvergne M et al. (2008) Transiting exoplanets from the CoRoT space mission. I. CoRoT-Exo-1b: a low-density short-period planet around a G0V star. A&A 482:L17–L20ADSCrossRefGoogle Scholar
  9. Batalha NM, Borucki WJ, Bryson ST et al. (2011) Kepler’s first rocky planet: Kepler-10b. ApJ 729:27ADSCrossRefGoogle Scholar
  10. Bayliss D, Gillen E, Eigmuller P et al. (2018) NGTS-1b: a hot Jupiter transiting an M-dwarf. MNRAS 475:4467–4475ADSCrossRefGoogle Scholar
  11. Beatty TG Gaudi BS (2008) Predicting the yields of photometric surveys for transiting extrasolar planets. ApJ 686:1302–1330ADSCrossRefGoogle Scholar
  12. Berta ZK, Irwin J, Charbonneau D, Burke CJ Falco EE (2012) Transit detection in the MEarth survey of nearby M dwarfs: bridging the clean-first, search-later divide. AJ 144:145ADSCrossRefGoogle Scholar
  13. Borucki WJ, Scargle JD Hudson HS (1985) Detectability of extrasolar planetary transits. ApJ 291:852–854ADSCrossRefGoogle Scholar
  14. Borucki WJ, Koch DG, Dunham EW Jenkins JM (1997) The Kepler mission: a mission to detennine the frequency of inner planets near the habitable zone for a wide range of stars. In: Soderblom D (ed) Planets beyond the solar system and the next generation of space missions. Astronomical Society of the Pacific conference series, vol 119. p 153Google Scholar
  15. Bouchy F, Udry S, Mayor M et al. (2005) ELODIE metallicity-biased search for transiting hot Jupiters. II. A very hot Jupiter transiting the bright K star HD 189733. A&A 444:L15–L19ADSCrossRefGoogle Scholar
  16. Brown TM (2003) Expected detection and false alarm rates for transiting Jovian planets. ApJ 593:L125–L128ADSCrossRefGoogle Scholar
  17. Cabrera J, Barros SCC, Armstrong D et al. (2017) Disproving the validated planets K2-78b, K2-82b, and K2-92b. The importance of independently confirming planetary candidates. A&A 606:A75ADSCrossRefGoogle Scholar
  18. Cameron AC (2016) Extrasolar planetary transits. In: Bozza V, Mancini L, Sozzetti A (eds) Methods of detecting exoplanets: 1st advanced school on exoplanetary science. Astrophysics and space science library, vol 428, p 89. https://doi.org/10.1007/978-3-319-27458-4_2 CrossRefGoogle Scholar
  19. Charbonneau D, Brown TM, Latham DW, Mayor M (2000) Detection of planetary transits across a sun-like star. ApJ 529:L45–L48ADSCrossRefGoogle Scholar
  20. Charbonneau D, Brown TM, Noyes RW, Gilliland RL (2002) Detection of an extrasolar planet atmosphere. ApJ 568:377–384ADSCrossRefGoogle Scholar
  21. Christian DJ, Pollacco DL, Skillen I et al. (2006) The SuperWASP wide-field exoplanetary transit survey: candidates from fields 23 h < RA < 03 h. MNRAS 372:1117–1128ADSCrossRefGoogle Scholar
  22. Collier Cameron A, Pollacco D, Street RA et al. (2006) A fast hybrid algorithm for exoplanetary transit searches. MNRAS 373:799–810ADSCrossRefGoogle Scholar
  23. Collier Cameron A, Guenther E, Smalley B et al (2010) Line-profile tomography of exoplanet transits – II. A gas-giant planet transiting a rapidly rotating A5 star. MNRAS 407:507–514ADSCrossRefGoogle Scholar
  24. Coughlin JL, Thompson SE, Bryson ST et al. (2014) Contamination in the Kepler field. Identification of 685 KOIs as false positives via ephemeris matching based on Q1–Q12 data. AJ 147:119ADSCrossRefGoogle Scholar
  25. Deeg HJ, Doyle LR, Kozhevnikov VP et al (1998) Near-term detectability of terrestrial extrasolar planets: TEP network observations of CM Draconis. A&A 338:479–490Google Scholar
  26. Deeg HJ, Garrido R Claret A (2001) Probing the stellar surface of HD 209458 from multicolor transit observations. New Astronomy 6:51–60ADSCrossRefGoogle Scholar
  27. Deeg HJ, Gillon M, Shporer A et al (2009) Ground-based photometry of space-based transit detections: photometric follow-up of the CoRoT mission. A&A 506:343–352ADSCrossRefGoogle Scholar
  28. Deeg HJ, Moutou C, Erikson A et al. (2010) A transiting giant planet with a temperature between 250K and 430K. Nature 464:384–387ADSCrossRefGoogle Scholar
  29. Deleuil M, Aigrain S, Moutou C et al (2018) Planets, candidates, and binaries from the corot/exoplanet program. A&A, in printGoogle Scholar
  30. Díaz RF, Almenara JM, Santerne A et al (2014) PASTIS: Bayesian extrasolar planet validation – I. General framework, models, and performance. MNRAS 441:983–1004Google Scholar
  31. Dittmann JA, Irwin JM, Charbonneau D et al (2017) A temperate rocky super-earth transiting a nearby cool star. Nature 544:333–336ADSCrossRefGoogle Scholar
  32. Doyle LR, Deeg HJ, Kozhevnikov VP et al. (2000) Observational limits on terrestrial-sized inner planets around the CM Draconis system using the photometric transit method with a matched-filter algorithm. ApJ 535:338–349ADSCrossRefGoogle Scholar
  33. Elachi C, Angel R, Beichman CA et al (1996) A road map for the exploration of neighboring planetary systems (ExNPS). Jet Propulsion Laboratory report, NASAGoogle Scholar
  34. Gilliland RL, Brown TM, Guhathakurta P et al (2000) A lack of planets in 47 Tucanae from a hubble space telescope search. ApJ 545:L47–L51ADSCrossRefGoogle Scholar
  35. Gilliland RL, Chaplin WJ, Dunham EW et al (2011) Kepler mission stellar and instrument noise properties. ApJS 197:6ADSCrossRefGoogle Scholar
  36. Gillon M, Triaud AHMJ, Demory BO et al (2017) Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542:456–460ADSCrossRefGoogle Scholar
  37. Giménez A (2006) Equations for the analysis of the light curves of extra-solar planetary transits. A&A 450:1231–1237ADSCrossRefGoogle Scholar
  38. Günther MN, Queloz D, Demory BO, Bouchy F (2017a) A new yield simulator for transiting planets and false positives: application to the next generation transit survey. MNRAS 465: 3379–3389ADSCrossRefGoogle Scholar
  39. Günther MN, Queloz D, Gillen E et al (2017b) Centroid vetting of transiting planet candidates from the next generation transit survey. MNRAS 472:295–307ADSCrossRefGoogle Scholar
  40. Guterman P, Mazeh T, Faigler S (2015) Exposure-based algorithm for removing systematics out of the CoRoT light curves. In: Martins F, Boissier S, Buat V, Cambrésy L, Petit P (eds) SF2A-2015: proceedings of the annual meeting of the French society of astronomy and astrophysics, pp 277–281Google Scholar
  41. Haswell CA (2010) Transiting exoplanets. Cambridge University Press, Cambridge. ISBN:9780521139380Google Scholar
  42. Henry GW, Marcy GW, Butler RP, Vogt SS (2000) A transiting “51 Peg-like” planet. ApJ 529: L41–L44ADSCrossRefGoogle Scholar
  43. Horne K (2003) Status and prospects of planetary transit searches: hot Jupiters galore. In: Deming D, Seager S (eds) Scientific frontiers in research on extrasolar planets. Astronomical Society of the Pacific conference series, vol 294. pp 361–370Google Scholar
  44. Howell SB, Sobeck C, Haas M et al (2014) The K2 mission: characterization and early results. PASP 126:398ADSCrossRefGoogle Scholar
  45. Jehin E, Opitom C, Manfroid J, Hutsemékers D, Gillon M (2014) The TRAPPIST comet survey. In: Muinonen K, Penttilä A, Granvik M et al. (eds) Asteroids, comets, meteors 2014: Proceedings of the conference held 30 June – 4 July, 2014 in Helsinki, FinlandGoogle Scholar
  46. Jenkins JM (2002) The impact of solar-like variability on the detectability of transiting terrestrial planets. ApJ 575:493–505ADSCrossRefGoogle Scholar
  47. Jenkins JM, Doyle LR, Cullers DK (1996) A matched filter method for ground-based sub-noise detection of terrestrial extrasolar planets in eclipsing binaries: application to CM Draconis. Icarus 119:244–260ADSCrossRefGoogle Scholar
  48. Jenkins JM, Caldwell DA, Chandrasekaran H et al (2010a) Initial characteristics of Kepler long cadence data for detecting transiting planets. ApJ 713:L120–L125ADSCrossRefGoogle Scholar
  49. Jenkins JM, Chandrasekaran H, McCauliff SD et al (2010b) Transiting planet search in the Kepler pipeline. In: Software and cyberinfrastructure for astronomy. Proceeding of SPIE, vol 7740, p 77400D. https://doi.org/10.1117/12.856764
  50. Jha S, Charbonneau D, Garnavich PM et al. (2000) Multicolor observations of a planetary transit of HD 209458. ApJ 540:L45–L48ADSCrossRefGoogle Scholar
  51. Kipping DM, Bastien FA, Stassun KG et al (2014) Flicker as a tool for characterizing planets through asterodensity profiling. ApJ 785:L32ADSCrossRefGoogle Scholar
  52. Koch D, Borucki W, Cullers K et al (1996) System design of a mission to detect earth-sized planets in the inner orbits of solar-like stars. J Geophys Res 101:9297–9302ADSCrossRefGoogle Scholar
  53. Konacki M, Torres G, Jha S, Sasselov DD (2003) An extrasolar planet that transits the disk of its parent star. Nature 421:507–509ADSCrossRefGoogle Scholar
  54. Kovács G, Zucker S, Mazeh T (2002) A box-fitting algorithm in the search for periodic transits. A&A 391:369–377ADSCrossRefGoogle Scholar
  55. Kovács G, Bakos G, Noyes RW (2005) A trend filtering algorithm for wide-field variability surveys. MNRAS 356:557–567ADSCrossRefGoogle Scholar
  56. Latham DW (2003) Spectroscopic follow-up observations of planetary transit candidates identified by project vulcan. In: Deming D Seager S (eds) Scientific frontiers in research on extrasolar planets. Astronomical Society of the Pacific conference series, vol 294. pp 409–412Google Scholar
  57. Latham DW (2007) Spectroscopic and photometric follow-up observations. In: Afonso C, Weldrake D, Henning T (eds) Transiting extrapolar planets workshop. Astronomical Society of the Pacific conference series, vol 366, p 203Google Scholar
  58. Latham DW (2008) Characterization of terrestrial planets identified by the Kepler mission. Physica Scripta 130(1):014034CrossRefGoogle Scholar
  59. Léger A, Rouan D, Schneider J et al (2009) Transiting exoplanets from the CoRoT space mission. VIII. CoRoT-7b: the first super-earth with measured radius. A&A 506:287–302ADSCrossRefGoogle Scholar
  60. Lissauer JJ, Fabrycky DC, Ford EB et al (2011) A closely packed system of low-mass, low-density planets transiting Kepler-11. Nature 470:53–58ADSCrossRefGoogle Scholar
  61. Lissauer JJ, Marcy GW, Rowe JF et al (2012) Almost all of Kepler’s multiple-planet candidates are planets. ApJ 750:112ADSCrossRefGoogle Scholar
  62. Lissauer JJ, Marcy GW, Bryson ST et al (2014) Validation of Kepler’s multiple planet candidates. II: refined statistical framework and descriptions of systems of special interest. ApJ 784, 44Google Scholar
  63. Mandel K, Agol E (2002) Analytic light curves for planetary transit searches. ApJ 580:L171–L175ADSCrossRefGoogle Scholar
  64. Mayor M, Marmier M, Lovis C et al (2011) The HARPS search for southern extra-solar planets XXXIV. Occurrence, mass distribution and orbital properties of super-earths and Neptune-mass planets. ArXiv:11092497Google Scholar
  65. McArthur BE, Endl M, Cochran WD et al (2004) Detection of a Neptune-Mass planet in the ρ 1 Cancri system using the hobby-eberly telescope. ApJ 614:L81–L84ADSCrossRefGoogle Scholar
  66. Morton TD (2012) An efficient automated validation procedure for exoplanet transit candidates. ApJ 761:6ADSCrossRefGoogle Scholar
  67. Morton TD, Bryson ST, Coughlin JL et al (2016) False positive probabilities for all Kepler objects of interest: 1284 newly validated planets and 428 likely false positives. ApJ 822:86ADSCrossRefGoogle Scholar
  68. Moutou C, Deleuil M, Guillot T et al (2013) CoRoT: harvest of the exoplanet program. Icarus 226:1625–1634ADSCrossRefGoogle Scholar
  69. O’Donovan FT (2008) The detection and exploration of planets from the Trans-atlantic Exoplanet Survey. PhD thesis, California Institute of TechnologyGoogle Scholar
  70. O’Donovan FT, Charbonneau D, Mandushev G et al (2006) TrES-2: the first transiting planet in the Kepler field. ApJ 651:L61–L64ADSCrossRefGoogle Scholar
  71. Parviainen H, Deeg HJ, Belmonte JA (2013) Secondary eclipses in the CoRoT light curves. A homogeneous search based on Bayesian model selection. A&A 550:A67ADSCrossRefGoogle Scholar
  72. Pollacco DL, Skillen I, Collier Cameron A et al (2006) The WASP project and the SuperWASP cameras. PASP 118:1407–1418ADSCrossRefGoogle Scholar
  73. Pont F, Zucker S, Queloz D (2006) The effect of red noise on planetary transit detection. MNRAS 373:231–242ADSCrossRefGoogle Scholar
  74. Queloz D, Eggenberger A, Mayor M et al (2000) Detection of a spectroscopic transit by the planet orbiting the star HD209458. A&A 359:L13–L17ADSGoogle Scholar
  75. Rauer H, Catala C, Aerts C et al (2014) The PLATO 2.0 mission. Exp Astron 38:249–330ADSCrossRefGoogle Scholar
  76. Régulo C, Almenara JM, Alonso R, Deeg H, Roca Cortés T (2007) TRUFAS, a wavelet-based algorithm for the rapid detection of planetary transits. A&A 467:1345–1352ADSCrossRefGoogle Scholar
  77. Ricker GR, Winn JN, Vanderspek R et al (2015) Transiting exoplanet survey satellite (TESS). J Astron Telesc Instrum Syst 1(1):014003CrossRefGoogle Scholar
  78. Rowe JF, Bryson ST, Marcy GW et al (2014) Validation of Kepler’s multiple planet candidates. III. Light curve analysis and announcement of hundreds of new multi-planet systems. ApJ 784:45ADSCrossRefGoogle Scholar
  79. Sahu KC, Casertano S, Bond HE et al (2006) Transiting extrasolar planetary candidates in the Galactic bulge. Nature 443:534–540ADSCrossRefGoogle Scholar
  80. Santerne A, Fressin F, Díaz RF et al (2013) The contribution of secondary eclipses as astrophysical false positives to exoplanet transit surveys. A&A 557:A139ADSCrossRefGoogle Scholar
  81. Scalo J, Kaltenegger L, Segura AG et al (2007) M stars as targets for terrestrial exoplanet searches and biosignature detection. Astrobiology 7:85–166ADSCrossRefGoogle Scholar
  82. Seager S Mallén-Ornelas G (2003) A unique solution of planet and star parameters from an extrasolar planet transit light curve. ApJ 585:1038–1055ADSCrossRefGoogle Scholar
  83. Shporer A, Zhou G, Vanderburg A et al (2017) Three statistically validated K2 transiting warm Jupiter exoplanets confirmed as low-mass stars. ApJ 847:L18ADSCrossRefGoogle Scholar
  84. Smith AMS WASP Consortium (2014) The SuperWASP exoplanet transit survey. Contributions of the Astronomical Observatory Skalnate Pleso 43:500–512ADSGoogle Scholar
  85. Smith AMS, Collier Cameron A, Christian DJ et al (2006) The impact of correlated noise on SuperWASP detection rates for transiting extrasolar planets. MNRAS 373:1151–1158ADSCrossRefGoogle Scholar
  86. Snellen IAG (2004) A new method for probing the atmospheres of transiting exoplanets. MNRAS 353:L1–L6ADSCrossRefGoogle Scholar
  87. Struve O (1952) Proposal for a project of high-precision stellar radial velocity work. Observatory 72:199–200ADSGoogle Scholar
  88. Tamuz O, Mazeh T Zucker S (2005) Correcting systematic effects in a large set of photometric light curves. MNRAS 356:1466–1470ADSCrossRefGoogle Scholar
  89. Tingley B, Bonomo AS Deeg HJ (2011) Using stellar densities to evaluate transiting exoplanetary candidates. ApJ 726:112ADSCrossRefGoogle Scholar
  90. Torres G, Fressin F, Batalha NM et al (2011) Modeling Kepler transit light curves as false positives: rejection of blend scenarios for Kepler-9, and validation of Kepler-9 d, a super-earth-size planet in a multiple system. ApJ 727:24ADSCrossRefGoogle Scholar
  91. Torres G, Kipping DM, Fressin F et al (2015) Validation of 12 small Kepler transiting planets in the habitable zone. ApJ 800:99ADSCrossRefGoogle Scholar
  92. Torres G, Kane SR, Rowe JF et al(2017) Validation of small Kepler transiting planet candidates in or near the habitable zone. AJ 154:264ADSCrossRefGoogle Scholar
  93. Udalski A (2003) The optical gravitational lensing experiment. Real time data analysis systems in the OGLE-III survey. Acta Astron 53:291–305ADSGoogle Scholar
  94. Wheatley PJ, Pollacco DL, Queloz D et al (2013) The next generation transit survey (NGTS). Eur Phys J Web Conf 47:13002.  https://doi.org/10.1051/epjconf/20134713002 CrossRefGoogle Scholar
  95. Wheatley PJ, West RG, Goad MR et al (2018) The next generation transit survey (NGTS). MNRAS 475, 4476–4493ADSCrossRefGoogle Scholar
  96. Winn JN (2010) Exoplanet transits and occultations. In: Seager S (ed) Exoplanets. University of Arizona Press, Tucson, pp 55–77. arXiv:1001.2010Google Scholar
  97. Winn JN, Matthews JM, Dawson RI et al (2011) A super-Earth transiting a naked-eye star. ApJ 737:L18ADSCrossRefGoogle Scholar
  98. Wright JT, Marcy GW, Howard AW et al (2012) The frequency of hot Jupiters orbiting nearby solar-type stars. ApJ 753:160ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Astrofísica de CanariasLa LagunaSpain
  2. 2.Departamento de AstrofísicaUniversidad de La LagunaLa LagunaSpain

Section editors and affiliations

  • Alexander Wolszczan
    • 1
  1. 1.Department of Astronomy &Astrophysics and Center for Exoplanets &Habitable WorldsThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations