The HATNet and HATSouth Exoplanet Surveys

  • Gáspár Á. Bakos
Living reference work entry


The Hungarian-made Automated Telescope Network (HATNet) has been in operation since 2003, with the key science goal being the discovery and accurate characterization of transiting extrasolar planets (TEPs) around bright stars. Using six small, 11 cm aperture, fully automated telescopes in Arizona and Hawaii, as of March 2017, it has discovered and accurately characterized 67 such objects. The HATSouth network of telescopes has been in operation since 2009, using slightly larger, 18 cm diameter optical tubes. It was the first global network of telescopes using identical instrumentation. With three premier sites spread out in longitude (Chile, Namibia, Australia), the HATSouth network permits round-the-clock observations of a 128 square arcdegree swath of the sky at any given time, weather permitting. As of this writing, HATSouth has discovered 36 transiting exoplanets. Many of the altogether ∼100 HAT and HATSouth exoplanets were the first of their kind. They have been important contributors to the rapidly developing field of exoplanets, motivating and influencing observational techniques and theoretical studies and also actively shaping future instrumentation for the detection and characterization of such objects.


  1. Bakos GÁ, Lázár J, Papp I, Sári P Green EM (2002) System description and first light curves of the hungarian automated telescope, an autonomous observatory for variability search. PASP 114:974–987Google Scholar
  2. Bakos G, Noyes RW, Kovács G et al (2004) Wide-field millimagnitude photometry with the HAT: a tool for extrasolar planet detection. PASP 116:266–277Google Scholar
  3. Bakos GÁ, Kovács G, Torres G et al (2007) HD 147506b: a supermassive planet in an eccentric orbit transiting a bright star. ApJ 670:826–832Google Scholar
  4. Bakos GÁ, Howard AW, Noyes RW et al (2009) HAT-P-13b,c: a transiting hot Jupiter with a massive outer companion on an eccentric orbit. ApJ 707:446–456Google Scholar
  5. Bakos GÁ, Torres G, Pál A et al (2010) HAT-P-11b: a Super-Neptune planet transiting a bright K star in the Kepler field. ApJ 710:1724–1745Google Scholar
  6. Bakos GÁ et al (2013) HATSouth: a global network of fully automated identical wide-field telescopes. PASP 125:154Google Scholar
  7. Bakos GÁ, Hartman JD, Bhatti W et al (2015a) HAT-P-54b: a hot Jupiter transiting a 0.6 MŁ star in field 0 of the K2 mission. AJ 149:149Google Scholar
  8. Bakos GÁ, Penev K, Bayliss D et al (2015b) HATS-7b: a hot Super Neptune transiting a quiet K dwarf star. ApJ 813:111Google Scholar
  9. Bakos GÁ, Hartman JD, Torres G et al (2016) HAT-P-47b and HAT-P-48b: two low density sub-Saturn-mass transiting planets on the edge of the period–mass desert. ArXiv e-printsGoogle Scholar
  10. Batygin K, Bodenheimer P, Laughlin G (2009) Determination of the interior structure of transiting planets in multiple-planet systems. ApJ 704:L49–L53ADSCrossRefGoogle Scholar
  11. Bayliss D, Hartman JD, Bakos GÁ et al (2015) HATS-8b: a low-density transiting Super-Neptune. AJ 150:49ADSCrossRefGoogle Scholar
  12. Bieryla A, Hartman JD, Bakos GÁ et al (2014) HAT-P-49b: a 1.7 M J planet transiting a bright 1.5 M Ł F-star. AJ 147:84Google Scholar
  13. Boyajian TS, LaCourse DM, Rappaport SA et al (2016) Planet hunters IX. KIC 8462852 – where’s the flux? MNRAS 457:3988–4004ADSCrossRefGoogle Scholar
  14. Brahm R, Jordán A, Hartman JD et al (2015) HATS-9b and HATS-10b: two compact hot Jupiters in field 7 of the K2 mission. AJ 150:33ADSCrossRefGoogle Scholar
  15. Brahm R, Jordán A, Bakos GÁ et al (2016) HATS-17b: a transiting compact warm Jupiter in a 16.3 day circular orbit. AJ 151:89Google Scholar
  16. Buhler PB, Knutson HA, Batygin K et al (2016) Dynamical constraints on the core mass of hot Jupiter HAT-P-13b. ApJ 821:26ADSCrossRefGoogle Scholar
  17. Fraine J, Deming D, Benneke B et al (2014) Water vapour absorption in the clear atmosphere of a Neptune-sized exoplanet. Nature 513:526–529ADSCrossRefGoogle Scholar
  18. Hartman JD, Bakos GÁ (2016) VARTOOLS: A program for analyzing astronomical time-series data. Astron Comput 17:1–72ADSCrossRefGoogle Scholar
  19. Hartman JD, Bakos GÁ, Kipping DM et al (2011a) HAT-P-26b: a low-density Neptune-mass planet transiting a K star. ApJ 728:138ADSCrossRefGoogle Scholar
  20. Hartman JD, Bakos GÁ, Torres G et al (2011b) HAT-P-32b and HAT-P-33b: two highly inflated hot Jupiters transiting high-jitter stars. ApJ 742:59ADSCrossRefGoogle Scholar
  21. Hartman JD, Bakos GÁ, Torres G et al (2014) HAT-P-44b, HAT-P-45b, and HAT-P-46b: three transiting hot Jupiters in possible multi-planet systems. AJ 147:128ADSCrossRefGoogle Scholar
  22. Hartman JD, Bakos GÁ, Buchhave LA et al (2015a) HAT-P-57b: a short-period giant planet transiting a bright rapidly rotating A8V star confirmed via doppler tomography. AJ 150:197ADSCrossRefGoogle Scholar
  23. Hartman JD, Bayliss D, Brahm R et al (2015b) HATS-6b: a warm Saturn transiting an early M dwarf star, and a set of empirical relations for characterizing K and M dwarf planet hosts. AJ 149:166ADSCrossRefGoogle Scholar
  24. Howard AW, Bakos GÁ, Hartman J et al (2012) HAT-P-17b, c: a transiting, eccentric, hot Saturn and a long-period, cold Jupiter. ApJ 749:134ADSCrossRefGoogle Scholar
  25. Kovács G, Zucker S, Mazeh T (2002) A box-fitting algorithm in the search for periodic transits. A&A 391:369–377ADSCrossRefGoogle Scholar
  26. Kovács G, Bakos G, Noyes RW (2005) A trend filtering algorithm for wide-field variability surveys. MNRAS 356:557–567ADSCrossRefGoogle Scholar
  27. Kovács G, Bakos GÁ, Hartman JD et al (2010) HAT-P-15b: a 10.9 day extrasolar planet transiting a solar-type star. ApJ 724:866–877ADSCrossRefGoogle Scholar
  28. Mancini L, Hartman JD, Penev K et al (2015) HATS-13b and HATS-14b: two transiting hot Jupiters from the HATSouth survey. A&A 580:A63ADSCrossRefGoogle Scholar
  29. Narita N, Sato B, Hirano T, Tamura M (2009) First evidence of a retrograde orbit of a transiting exoplanet HAT-P-7b. PASJ 61:L35–L40ADSCrossRefGoogle Scholar
  30. Pál A (2012) FITSH- a software package for image processing. MNRAS 421:1825–1837ADSCrossRefGoogle Scholar
  31. Pál A, Bakos GÁ (2006) Astrometry in wide-field surveys. PASP 118:1474–1483ADSCrossRefGoogle Scholar
  32. Pál A, Bakos GÁ, Torres G et al (2008) HAT-P-7b: an extremely hot massive planet transiting a bright star in the Kepler field. ApJ 680:1450–1456ADSCrossRefGoogle Scholar
  33. Penev K, Hartman JD, Bakos GÁ et al (2016) HATS-18b: an extreme short-period massive transiting planet spinning up its star. AJ 152:127ADSCrossRefGoogle Scholar
  34. Pojmański G (1997) The all sky automated survey. Acta Astron 47:467–481ADSGoogle Scholar
  35. Stevenson KB, Bean JL, Seifahrt A et al (2016) A search for water in the atmosphere of HAT-P-26b using LDSS-3C. ApJ 817:141ADSCrossRefGoogle Scholar
  36. Tylenda R, Hajduk M, Kamiński T et al (2011) V1309 Scorpii: merger of a contact binary. A&A 528:A114ADSCrossRefGoogle Scholar
  37. Winn JN, Johnson JA, Albrecht S et al (2009) HAT-P-7: a retrograde or polar orbit, and a third body. ApJ 703:L99–L103ADSCrossRefGoogle Scholar
  38. Winn JN, Johnson JA, Howard AW et al (2010) The oblique orbit of the Super-Neptune HAT-P-11b. ApJ 723:L223–L227ADSCrossRefGoogle Scholar
  39. Zacharias N, Finch CT, Girard TM et al (2013) The fourth US naval observatory CCD astrograph catalog (UCAC4). AJ 145:44ADSCrossRefGoogle Scholar
  40. Zhang M, Bakos GÁ, Penev K et al (2016) Precision multiband photometry with a DSLR camera. PASP 128(3):035,001CrossRefGoogle Scholar
  41. Zhou G, Bayliss D, Hartman JD et al (2015) A high obliquity orbit for the hot-Jupiter HATS-14b transiting a 5400K star. ApJ 814:L16ADSCrossRefGoogle Scholar
  42. Zhou G, Bakos GÁ, Hartman JD et al (2017) HAT-P-67b: an extremely low density Saturn transiting an F-subgiant confirmed via Doppler tomography. AJ 153:211ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Astrophysical SciencesPrinceton UniversityPrincetonUSA

Section editors and affiliations

  • Norio Narita
    • 1
    • 2
    • 3
  1. 1.Graduate School of Science, Department of AstronomyUniversity of TokyoTokyoJapan
  2. 2.Exoplanet Detection Project OfficeNational Astronomical Observatory of JapanTokyoJapan
  3. 3.Exoplanet Detection Project OfficeAstrobiology CenterTokyoJapan

Personalised recommendations