Skip to main content

Nonlinear Acoustics

  • Living reference work entry
  • First Online:
  • 265 Accesses

Abstract

Early detection and continuous tracking of material micro-damages have been one of the most demanding techniques in industries. Due to the sensitivity of acoustic nonlinearity to micro-damage, the nonlinear ultrasonic technique has been explored as a promising tool for early detection of micro-damages. In this chapter, we breifly introduce the earlier efforts and recent development of the nonlinear acoustics and their applications for nondestructive testing and evaluation (NDT& E). Some advanced techniques based on measure of nonlinear acoustics for NDT& E are also introduced as potential and attractive means.

This is a preview of subscription content, log in via an institution.

References

  • Bentahar M, El Agra H, El Guerjouma R, Griffa M, Scalerandi M (2006) Hysteretic elasticity in damaged concrete: quantitative analysis of slow and fast dynamics. Phys Rev B 73(1):014116

    Article  Google Scholar 

  • Bermes C, Kim JY, Qu J, Jacobs LJ (2007) Experimental characterization of material nonlinearity using Lamb waves. Appl Phys Lett 90(2):1–4

    Article  Google Scholar 

  • Campos-Pozuelo C, Vanhille C, Gallego-Juárez JA (2006) Comparative study of the nonlinear behavior of fatigued and intact samples of metallic alloys. IEEE Trans Ultrason Ferroelectr Freq Control 53(1):175–184

    Article  Google Scholar 

  • Cantrell JH, Yost WT (2001) Nonlinear ultrasonic characterization of fatigue microstructures. Int J Fatigue 23:S487–S490

    Article  Google Scholar 

  • Chomas J, Dayton P, May D, Ferrara K (2002) Nondestructive subharmonic imaging. IEEE Trans Ultrason Ferroelectr Freq Control 49(7):883–893

    Article  Google Scholar 

  • Croxford AJ, Wilcox PD, Drinkwater BW, Nagy PB (2009) The use of non-collinear mixing for nonlinear ultrasonic detection of plasticity and fatigue. J Acoust Soc Am 126:117–122

    Article  Google Scholar 

  • de Lima WJN, Hamilton MF (2003) Finite-amplitude waves in isotropic elastic plates. J Sound Vib 265(4):819–839

    Article  Google Scholar 

  • Demcenko A, Akkerman R, Nagy PB (2012) Non-collinear wave mixing for nonlinear ultrasonic detection of physical ageing in PVC. NDT&E Int 49(1):34–39

    Article  Google Scholar 

  • Deng M (1999) Cumulative second-harmonic generation of Lamb-mode propagation in a solid plate. J Appl Phys 85(6):3051–3058

    Article  Google Scholar 

  • Deng M, Pei J (2007) Assessment of accumulated fatigue damage in solid plates using nonlinear Lamb wave approach. Appl Phys Lett 90:121902

    Article  Google Scholar 

  • Donskoy DM, Sutin AM (1998) Vibro-acoustic modulation nondestructive evaluation technique. J Intell Mater Syst Struct 9:765–771

    Article  Google Scholar 

  • Donskoy D, Sutin A, Ekimov A (2001) Nonlinear acoustic interaction on contact interfaces and its use for nondestructive testing. NDT & E Int 34(4):231–238

    Article  Google Scholar 

  • Eiras JN, Kundu T, Popovics J, Monzo J, Paya J (2014) Non-classical nonlinear feature extraction from standard resonance vibration data for damage detection. J Acoust Soc Am – Express Lett 135:EL82–EL87

    Article  Google Scholar 

  • Favrie N, Lombard B, Payan C (2015) Fast and slow dynamics in a nonlinear elastic bar excited by longitudinal vibrations. Wave Motion 56:221–238

    Article  MathSciNet  Google Scholar 

  • Goldberg ZA (1956) On the propagation of plane waves of finite amplitude. Sov Phys (Acoustics) 2:346–352

    Google Scholar 

  • Guyer RA, Johnson PA (1999) Nonlinear mesoscopic elasticity: evidence for a new class of materials. Phys Today 52(4):30–36

    Article  Google Scholar 

  • Guyer RA, McCall KR, Boitnott GN (1995) Hysteresis, discrete memory, and nonlinear wave propagation in rock. Phys Rev Lett 74:3491–3494

    Article  Google Scholar 

  • Guyer RA, McCall KR, Van Den Abeele K (1998) Slow elastic dynamics in a resonant bar of rock. Geophys Res Lett 25:1585–1588

    Article  Google Scholar 

  • Hamilton MF, Blackstock DT (1998) Nonlinear acoustics. Academic, London

    Google Scholar 

  • Herrmann J, Kim J, Jacobs LJ, Qu J, Littles JW, Savage M (2006a) Assessment of material damage in a nickel-base superalloy using nonlinear Rayleigh surface waves. J Appl Phys 99:124913

    Article  Google Scholar 

  • Herrmann J, Kim J, Jacobs LJ, Qu J, Littles JW (2006b) Assessment of material damage in a nickel-based superalloy using nonlinear Rayleigh surface wave. J Appl Phys 99(12):1497–1488

    Article  Google Scholar 

  • Hess P, Lomonosov AM, Mayer AP (2014) Laser based linear and nonlinear guided elastic waves at surfaces (2D) and wedges (1D). Ultrasonics 54:39–55

    Article  Google Scholar 

  • Hikata A, Elbaum C (1966) Generation of ultrasonic second and third harmonics due to dislocations. Phys Rev 144:469–477

    Article  Google Scholar 

  • Hilloulin B, Abraham O, Loukili A, Durand O, Tournat V (2014) Small crack detection in cementitious materials using nonlinear coda wave modulation. NDT & E Int 68:98–104

    Article  Google Scholar 

  • Hurley DC, Fortunko CM (1997) Determination of the nonlinear ultrasonic parameter using a Michelson interferometer. Meas Sci Technol 8:634–642

    Article  Google Scholar 

  • Jhang KY (2000) Applications of nonlinear ultrasonics to the NDE of material degradation. IEEE Trans Ultrason Ferroelectr Freq Control 47:540–548

    Article  Google Scholar 

  • Jhang KY, Kim KC (1999) Evaluation of material degradation using nonlinear acoustic effect. Ultrasonics 37:39–44

    Article  Google Scholar 

  • Jia X, de Billy M (1992) Observation of the dispersion behavior of surface acoustic waves in a wedge waveguide by laser ultrasonics. Appl Phys Lett 61:2970–2972

    Article  Google Scholar 

  • Johnson PA, Rasolofosaon PNJ (1996) Resonance and elastic nonlinear phenomena in rock. J Geophys Res 101(B5):553–564

    Article  Google Scholar 

  • Johnson PA, Sutin A (2005) Slow dynamics and anomalous nonlinear fast dynamics in diverse solids. J Acoust Soc Am 117:124–130

    Article  Google Scholar 

  • Kim J-Y, Baltazar A, Hu JW, Rokhlin SI (2006a) Hysteretic linear and nonlinear acoustic responses from pressed interfaces. Int J Solids Struct 43(21):6436–6452

    Article  Google Scholar 

  • Kim JY, Qu J, Jacobs LJ, Littles JW, Savage MF (2006b) Acoustic nonlinearity parameter due to microplasticity. J Nondestruct Eval 25:28–36

    Article  Google Scholar 

  • Klepa A, Staszewski WJ, Jenal RB, Szwedo M, Iwaniec J (2012) Nonlinear acoustics for fatigue crack detection – experimental investigations of vibro-acoustic wave modulations. Struct Health Monit 11:197–211

    Article  Google Scholar 

  • Kober J, Prevorovsky Z (2014) Theoretical investigation of nonlinear ultrasonic wave modulation spectroscopy at crack interface. NDT & E Int 61:10–15

    Article  Google Scholar 

  • Kuvshinov B, Smit T, Campman XH (2013) Nonlinear interaction of elastic waves in rocks. Geophys J Int 194:1920–1940

    Article  Google Scholar 

  • Landau LD, Lifshitz EM (1970) Theory of elasticity. Oxford: Oxford University Press

    Google Scholar 

  • Li W, Cho Y (2014) Thermal fatigue damage assessment in an isotropic pipe using nonlinear ultrasonic guided waves. Exp Mech 54(8):1309–1318

    Article  Google Scholar 

  • Li W, Cho Y (2016) Combination of nonlinear ultrasonics and guided wave tomography for imaging the micro-defects. Ultrasonics 65:87–95

    Article  Google Scholar 

  • Li W, Cho Y, Achenbach JD (2012a) Detection of thermal fatigue in composites by second harmonic Lamb waves. Smart Mater Struct 21(8):085019

    Article  Google Scholar 

  • Li W, Cho Y, Hyun S (2012b) Characteristics of ultrasonic nonlinearity by thermal fatigue. Int J Precis Eng Manuf 13(6):935–940

    Article  Google Scholar 

  • Li W, Cho Y, Achenbach JD (2013) Assessment of heat treated Inconel X-750 alloy by nonlinear ultrasonics. Exp Mech 53(5):775–781

    Article  Google Scholar 

  • Li W, Deng M, Xiang Y (2017) Review on the second harmonic generation of ultrasonic guided waves in solid media (I): theoretical analyses. Chin Phys B 26:114302

    Article  Google Scholar 

  • Liu Y, Khajeh E, Lissenden CJ, Rose JL (2013) Interaction of torsional and longitudinal guided waves in weakly nonlinear circular cylinders. J Acoust Soc Am 133:2541–2553

    Article  Google Scholar 

  • Liu P, Sohn H, Kundu T, Yang S (2014) Noncontact detection of fatigue cracks by laser nonlinear wave modulation spectroscopy (LNWMS). NDT & E Int 66:106–116

    Article  Google Scholar 

  • Matlack KH, Kim J, Jacobs LJ, Qu J (2015) Review of second harmonic generation measurement techniques for material sate determination in metals. J Nondestruct Eval 34:273

    Article  Google Scholar 

  • Moreau A (1995) Detection of acoustic second harmonics in solids using a heterodyne laser interferometer. J Acoust Soc Am 98:2745

    Article  Google Scholar 

  • Muller M, Sutin A, Guyer R, Talmant M, Laugier P, Johnson P (2005) Nonlinear resonant ultrasound spectroscopy (NRUS) applied to damage assessment in bone. J Acoust Soc Am 118(6):3946–3952

    Article  Google Scholar 

  • Nagy PB (1998) Fatigue damage assessment by nonlinear ultrasonic materials characterization. Ultrasonics 36(1–5):375–381

    Article  Google Scholar 

  • Nazarov VE, Radostin AV (2015) Nonlinear acoustic waves in micro-inhomogeneous solids. London: Wiley

    Google Scholar 

  • Nazarov VE, Radostin AV, Ostrovsky LA, Soustova IA (2003) Wave processes in media with hysteretic nonlinearity: part 2. Acoust Phys 49(4):444–448

    Article  Google Scholar 

  • Ohara Y, Mihara T, Sasaki R, Ogata T, Yamamoto S, Kishimoto Y, Yamanaka K (2007) Imaging of closed crack using nonlinear response of elastic waves at subharmonic frequency. Appl Phys Lett 90:011902

    Article  Google Scholar 

  • Ohara Y, Endo H, Mihara T, Yamanaka K (2009) Ultrasonic measurement of closed stress corrosion crack depth using subharmonic phased array. Jpn J Appl Phys 48:07GD01

    Google Scholar 

  • Padmore TC, Stegeman GI (1976) Surface-wave nonlinearities: nonlinear bulk wave generation by two oppositely directed collinear surface waves. J Appl Phys 47(4):1209–1228

    Article  Google Scholar 

  • Pecorari C, Mendelsohn DA (2014) Forced nonlinear vibrations of a one-dimensional bar with arbitrary distributions of hysteretic damage. J Nondestruct Eval 33(2):239–251

    Article  Google Scholar 

  • Pruell C, Kim JY, Qu J, Jacobs L (2007) Evaluation of plasticity driven material damage using Lamb waves. Appl Phys Lett 91:231911

    Article  Google Scholar 

  • Qu J, Jacobs LJ, Nagy PB (2011) On the acoustic-radiation-induced strain and stress in elastic solids with quadratic nonlinearity (L). J Acoust Soc Am 129(6):3449–3452

    Article  Google Scholar 

  • Read TA (1940) The internal friction of single metal crystals. Phys Rev 58:371–380

    Article  Google Scholar 

  • Rischbieter F (1967) Measurement of the nonlinear sound response of aluminum with the aid of Rayleigh waves. Acta Acoust United Acust 18(2):109–112

    Google Scholar 

  • Rushchitsky JJ (2014) Nonlinear elastic waves in materials. London: Springer

    Google Scholar 

  • Scruby CB, Drain LE (1990) Laser ultrasonics: techniques and applications. Adam Hilger, Bristol

    Google Scholar 

  • Solodov IY (1998) Ultrasonics of non-linear contacts: propagation, reflection and NDE-applications. Ultrasonics 36:383–390

    Article  Google Scholar 

  • Solodov IY, Korshak BA (2002) Instability, chaos, and “memory” in acoustic-wave-crack interaction. Phys Rev Lett 88:014303

    Article  Google Scholar 

  • Srivastava AF, di Scalea L (2009) On the existence of antisymmetric or symmetric Lamb waves at nonlinear higher harmonics. J Sound Vib 323:932–943

    Article  Google Scholar 

  • Stratoudaki T, Ellwood R, Sharples S, Clark M, Somekh MG (2011) Measurement of materials nonlinearity using surface acoustic wave parametric interaction and laser ultrasonics. J Acoust Soc Am 129:1721

    Article  Google Scholar 

  • Sugawara A, Jinno K, Ohara Y, Yamanaka K (2015) Closed-crack imaging and scattering behavior analysis using confocal subharmonic phased array. Jpn J Appl Phys 54:07HC08

    Article  Google Scholar 

  • Ten Cate JA, Shankl TJ (1996) Slow dynamics in the nonlinear elastic response of Berea sandstone. Geophys Res Lett 23:3019–3022

    Article  Google Scholar 

  • Van Den Abeele KE-A, Johnson PA, Sutin A (2000a) Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part I: nonlinear wave modulation spectroscopy (NWMS). Res Nondestruct Eval 12:17–30

    Article  Google Scholar 

  • Van Den Abeele KE, Carmeliet J, Ten Cate JA, Johnson PA (2000b) Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, part II: single-mode nonlinear resonance acoustic spectroscopy. Res Nondestruct Eval 12:31–42

    Article  Google Scholar 

  • Zarembo LK, Krasil’nikox VA, Shkol’nik IE (1989) Nonlinear acoustics in a problem of diagnosing the strength of solids. Probl Prochnosti 11:86–92

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younho Cho .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cho, Y., Li, W. (2018). Nonlinear Acoustics. In: Ida, N., Meyendorf, N. (eds) Handbook of Advanced Non-Destructive Evaluation. Springer, Cham. https://doi.org/10.1007/978-3-319-30050-4_36-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30050-4_36-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30050-4

  • Online ISBN: 978-3-319-30050-4

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics