Skip to main content

Shearography

  • Living reference work entry
  • Latest version View entry history
  • First Online:

Abstract

This chapter provides a review of the developments of shearography and its applications in nondestructive testing (NDT) and evaluation (NDE). Shearography, or speckle pattern shearing interferometry, is an interferometric technique for full-field, non-contact measurement of the first derivative of surface deformation, which is strain information. It was originally developed to overcome several limitations of holography by eliminating the reference beam. Consequently, shearography is an interferometric technique that has very high measurement sensitivity but, through its direct measurement of strain information, is less sensitive to environmental disturbances. Therefore, it is a practical tool which can be used in field/factory settings. Furthermore, the self-reference system has a simple optical layout and balanced optical paths, which enables the construction of a very compact and practical shearographic sensor using a cost-economical diode-laser. In NDT, shearography reveals defects in an object by identifying defect-induced deformation anomalies through the display of strain concentrations (i.e., first derivatives of surface deformation). Shearography has already received considerable industry acceptance, in particular for nondestructive testing of such materials as composites and honeycomb structures. Another application of shearography is for strain measurement. This chapter focuses on the digital version of shearography for NDT. After discussion of the fundamentals of shearography, the recent developments and applications of shearography, as well as its potential and limitations, will be demonstrated through examples of NDT for different applications.

This is a preview of subscription content, log in via an institution.

References

  • ASTM E2581-14 (2014) Standard practice for Shearography of polymer matrix composites and sandwich Core materials in aerospace applications. ASTM Int, West Conshohocken

    Google Scholar 

  • Baldwin JM, Bauer DR (2008) Rubber oxidation and tire aging-a review. Rubber Chem Technol 81(2):338–358

    Article  Google Scholar 

  • Bhaduri B, Mohan NK, Kothiyal MP, Sirohi RS (2006) Use of spatial phase shifting technique in digital speckle pattern interferometry (DSPI) and digital shearography (DS). Opt Express 14(24):11598–11607

    Article  Google Scholar 

  • Bhaduri B, Mohan NK, Kothiyal MP (2007) Simultaneous measurement of out-of-plane displacement and slope using a multiaperture DSPI system and fast Fourier transform. Appl Opt 46(23):5680–5686

    Article  Google Scholar 

  • Burleigh DD (2002) Portable combined thermography/shearography NDT system for inspecting large composite structures. In: Thermosense XXIV, vol 4710. International Society for Optics and Photonics, the International Society for Optical Engineering, Bellingham, USA, pp 578–588

    Google Scholar 

  • Cartz L (1995) Nondestructive testing. ASM International. The Materials Information Society, Materials Park

    Google Scholar 

  • Clark MR, McCann DM, Forde MC (2003) Application of infrared thermography to the non-destructive testing of concrete and masonry bridges. NDT E Int 36(4):265–275

    Article  Google Scholar 

  • Creath K (1990) Phase-measurement techniques for nondestructive testing. In: Proceedings of SEM conference on hologram interferometry and speckle metrology, Baltimore, pp 473–478

    Google Scholar 

  • De Angelis G, Meo M, Almond DP, Pickering SG, Angioni SL (2012) A new technique to detect defect size and depth in composite structures using digital shearography and unconstrained optimization. NDT E Int 45(1):91–96

    Article  Google Scholar 

  • Dıaz FV, Kaufmann GH, Galizzi GE (2000) Determination of residual stresses using hole drilling and digital speckle pattern interferometry with automated data analysis. Opt Lasers Eng 33(1):39–48

    Article  Google Scholar 

  • Ettemeyer A (1991) Shearografie-ein optisches verfahren zur zer-stoerungsfreien werkstoffpruefung. Tm-Technisches Messen 58:247

    Article  Google Scholar 

  • Groves RM, James SW, Tatam RP (2004) Shape and slope measurement by source displacement in shearography. Opt Lasers Eng 41(4):621–634

    Article  Google Scholar 

  • Gryzagoridis J, Findeis D (2008) Benchmarking shearographic NDT for composites. Insight-Non-Destr Test Cond Monit 50(5):249–252

    Article  Google Scholar 

  • Hathaway RB, Hovanesian JD, Hung MYY (1997) Residual stress evaluation using shearography with large-shear displacements. Opt Lasers Eng 27(1):43–60

    Article  Google Scholar 

  • Hettwer A, Kranz J, Schwider J (2000) Three channel phase-shifting interferometer using polarization-optics and a diffraction grating. Opt Eng 39(4):960–967

    Article  Google Scholar 

  • Huang YH, Ng SP, Liu L, Li CL, Chen YS, Hung YY (2009) NDT&E using shearography with impulsive thermal stressing and clustering phase extraction. Opt Lasers Eng 47(7):774–781

    Article  Google Scholar 

  • Hung YY (1974) A speckle-shearing interferometer: a tool for measuring derivatives of surface displacements. Opt Commun 11(2):132–135

    Article  Google Scholar 

  • Hung YY (1982) Shearography: a new optical method for strain measurement and nondestructive testing. Opt Eng 21(3):213–395

    Article  Google Scholar 

  • Hung YY (1996) Shearography for non-destructive evaluation of composite structures. Opt Lasers Eng 24(2–3):161–182

    Article  Google Scholar 

  • Hung YY (1999) Applications of digital shearography for testing of composite structures. Compos Part B 30(7):765–773

    Article  Google Scholar 

  • Hung YY, Hovanesian JD (1982) Shearography-a new non-destructive testing method. Amer Soc Non-Destructive Test 40(3):A7–A8

    Google Scholar 

  • Hung YY, Hovanesian JD (1990) Fast detection of residual stresses in an industrial environment by thermoplastic-based shearography. In: 1990 SEM spring conference on experimental mechanics, Society for Experimental Mechanics, Albuquerque, USA, pp 769–775

    Google Scholar 

  • Hung YY, Shi D (1998) Technique for rapid inspection of hermetic seals of microelectronic packages using shearography. Opt Eng 37(5):1406–1410

    Article  Google Scholar 

  • Hung YY, Wang JQ (1996) Dual-beam phase shift shearography for measurement of in-plane strains. Opt Lasers Eng 24(5–6):403–413

    Article  Google Scholar 

  • Hung MYY, Long KW, Wang JQ (1997) Measurement of residual stress by phase shift shearography. Opt Lasers Eng 27(1):61–73

    Article  Google Scholar 

  • Hung MY, Shang HM, Yang L (2003) Unified approach for holography and shearography in surface deformation measurement and nondestructive testing. Opt Eng 42(5):1197–1207

    Article  Google Scholar 

  • Ibrahim JS, Petzing JN, Tyrer JR (2004) Deformation analysis of aircraft wheels using a speckle shearing interferometer. Proc Inst Mech Eng G 218(4):287–295

    Article  Google Scholar 

  • Jackson ME (2004) Research and development of portable self contained digital phase shifting shearography apparatus to measure material properties through optical methods. Doctoral dissertation, Oakland University

    Google Scholar 

  • Kalms M, Osten W (2003) Mobile shearography system for the inspection of aircraft and automotive components. Opt Eng 42(5):1188–1196

    Article  Google Scholar 

  • Kästle R, Hack E, Sennhauser U (1999) Multiwavelength shearography for quantitative measurements of two-dimensional strain distributions. Appl Opt 38(1):96–100

    Article  Google Scholar 

  • Krivtsov VV, Tananko DE, Davis TP (2002) Regression approach to tire reliability analysis. Reliab Eng Syst Saf 78(3):267–273

    Article  Google Scholar 

  • Lassahn GD, Lassahn JK, Taylor P, Deason VA (1994) Multiphase fringe analysis with unknown phase shifts. Opt Eng 33(6):2039–2045

    Article  Google Scholar 

  • Lee JR, Molimard J, Vautrin A, Surrel Y (2004) Digital phase-shifting grating shearography for experimental analysis of fabric composites under tension. Compos A: Appl Sci Manuf 35(7):849–859

    Article  Google Scholar 

  • Lee JR, Yoon DJ, Kim JS, Vautrin A (2008) Investigation of shear distance in Michelson interferometer-based shearography for mechanical characterization. Meas Sci Technol 19(11):115303

    Article  Google Scholar 

  • Leendertz JA, Butters JN (1973) An image-shearing speckle-pattern interferometer for measuring bending moments. J Phys E 6(11):1107

    Article  Google Scholar 

  • Li J, Xie X, Yang G, Zhang B, Siebert T, Yang L (2017a) Whole-field thickness strain measurement using multiple camera digital image correlation system. Opt Lasers Eng 90:19–25

    Article  Google Scholar 

  • Li J, Dan X, Xu W, Wang Y, Yang G, Yang L (2017b) 3D digital image correlation using single color camera pseudo-stereo system. Opt Laser Technol 95:1–7

    Article  Google Scholar 

  • Lobanov LM, Bychkov SA, Pivtorak VA, Derecha VY, Kuders’ kyi VO, Savyts’ ka OM, Kyyanets’ IV (2009) On-line monitoring of the quality of elements of aircraft structures by the method of electron shearography. Mater Sci 45(3):366–371

    Article  Google Scholar 

  • Løkberg OJ (1987) Electronic speckle pattern interferometry. In: Optical metrology. Springer, The Netherlands, Dordrecht, pp 542–572

    Google Scholar 

  • Macy WW (1983) Two-dimensional fringe-pattern analysis. Appl Opt 22(23):3898–3901

    Article  Google Scholar 

  • Pedrini G, Zou YL, Tiziani HJ (1996) Quantitative evaluation of digital shearing interferogram using the spatial carrier method. Pure Appl Opt 5(3):313

    Article  Google Scholar 

  • Růžek R, Běhal J (2009) Certification programme of airframe primary structure composite part with environmental simulation. Int J Fatigue 31(6):1073–1080

    Article  Google Scholar 

  • Shang HM, Hung YY, Luo WD, Chen F (2000) Surface profiling using shearography. Opt Eng 39(1):23–32

    Article  Google Scholar 

  • Sim CW, Chau FS, Toh SL (1995) Vibration analysis and non-destructive testing with real-time shearography. Opt Laser Technol 27(1):45–49

    Article  Google Scholar 

  • Sirohi RS (1984) Speckle shear interferometry. Opt Laser Technol 16(5):251–254

    Article  Google Scholar 

  • Steinchen W, Yang L (2003) Digital shearography: theory and application of digital speckle pattern shearing interferometry, vol 93. SPIE press, Bellingham

    Google Scholar 

  • Steinchen W, Yang LX, Schuth M, Kupfer G (1994) Electronic shearography (ESPSI) for direct measurement of strains. In: Optics for productivity in manufacturing. International Society for Optics and Photonics, the International Society for Optical Engineering, Frankfurt, Germany, pp 210–221

    Google Scholar 

  • Steinchen W, Yang LX, Kupfer G (1996) Vibration analysis by digital shearography. In: Second international conference on vibration measurements by laser techniques: advances and applications, vol 2868. International Society for Optics and Photonics, the International Society for Optical Engineering, Ancona, Italy, pp 426–438

    Google Scholar 

  • Steinchen W, Yang LX, Kupfer G, Mäckel P, Vössing F (1998a) Strain analysis by means of digital shearography: potential, limitations and demonstration. J Strain Anal Eng Des 33(2):171–182

    Article  Google Scholar 

  • Steinchen W, Yang L, Kupfer G, Mäckel P (1998b) Non-destructive testing of aerospace composite materials using digital shearography. Proc Inst Mech Eng G 212(1):21–30

    Article  Google Scholar 

  • Taillade F, Quiertant M, Benzarti K, Aubagnac C (2011) Shearography and pulsed stimulated infrared thermography applied to a nondestructive evaluation of FRP strengthening systems bonded on concrete structures. Constr Build Mater 25(2):568–574

    Article  Google Scholar 

  • Targowski P, Rouba B, Wojtkowski M, Kowalczyk A (2004) The application of optical coherence tomography to non-destructive examination of museum objects. Stud Conserv 49(2):107–114

    Article  Google Scholar 

  • Tesfamariam S, Goda K (eds) (2013) Handbook of seismic risk analysis and management of civil infrastructure systems. Woodhead publishing, Elsevier, Cambridge, UK

    Google Scholar 

  • Toh SL, Chau FS, Shim VPW, Tay CJ, Shang HM (1990) Application of shearography in nondestructive testing of composite plates. J Mater Process Technol 23(3):267–275

    Article  Google Scholar 

  • Toh SL, Tay CJ, Shang HM, Lin QY (1995) Time-average shearography in vibration analysis. Opt Laser Technol 27(1):51–55

    Article  Google Scholar 

  • Vest CM (1979) Holographic interferometry. Wiley, New York. 476 p

    Google Scholar 

  • Wang Y, Gao X, Xie X, Wu S, Liu Y, Yang L (2016) Simultaneous dual directional strain measurement using spatial phase-shift digital shearography. Opt Lasers Eng 87:197–203

    Article  Google Scholar 

  • Wu S, Zhu L, Feng Q, Yang L (2012) Digital shearography with in situ phase shift calibration. Opt Lasers Eng 50(9):1260–1266

    Article  Google Scholar 

  • Xie X, Xu N, Sun J, Wang Y, Yang L (2013a) Simultaneous measurement of deformation and the first derivative with spatial phase-shift digital shearography. Opt Commun 286:277–281

    Article  Google Scholar 

  • Xie X, Yang L, Xu N, Chen X (2013b) Michelson interferometer based spatial phase shift shearography. Appl Opt 52(17):4063–4071

    Article  Google Scholar 

  • Xie X, Chen X, Li J, Wang Y, Yang L (2015) Measurement of in-plane strain with dual beam spatial phase-shift digital shearography. Meas Sci Technol 26(11):115202

    Article  Google Scholar 

  • Yamaguchi I (2006) Phase-shifting digital holography. In: Digital holography and three-dimensional display. Springer, Boston, pp 145–171

    Chapter  Google Scholar 

  • Yang L (1998) Grundlagen und Anwendungen der Phasenschiebe-Shearografie zur Zerstorungsfreien Werkstoffprufung, Dehnungsmessung und Schwingungsanalyse. VDI Verlag, Düsseldorf

    Google Scholar 

  • Yang LX, Hung YY (2004) Digital shearography for nondestructive evaluation and application in automotive and aerospace industries. In: Proceedings of the 16 th WCNDT, Montreal

    Google Scholar 

  • Yang LX, Siebert T (2008) Digital speckle interferometry in engineering. In: New directions in holography and speckle. American Scientific, Stevenson Ranch, pp 405–440

    Google Scholar 

  • Yang LX, Steinchen W, Schuth M, Kupfer G (1995) Precision measurement and nondestructive testing by means of digital phase shifting speckle pattern and speckle pattern shearing interferometry. Measurement 16(3):149–160

    Article  Google Scholar 

  • Yang L, Steinchen W, Kupfer G, Mäckel P, Vössing F (1998) Vibration analysis by means of digital shearography. Opt Lasers Eng 30(2):199–212

    Article  Google Scholar 

  • Yang L, Chen F, Steinchen W, Hung MY (2004) Digital shearography for nondestructive testing: potentials, limitations, and applications. J Hologr Speckle 1(2):69–79

    Article  Google Scholar 

  • Zhang Y, Li T, Li Q (2013) Defect detection for tire laser shearography image using curvelet transform based edge detector. Opt Laser Technol 47:64–71

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianxiang Yang .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yang, L., Li, J. (2018). Shearography. In: Ida, N., Meyendorf, N. (eds) Handbook of Advanced Non-Destructive Evaluation. Springer, Cham. https://doi.org/10.1007/978-3-319-30050-4_3-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30050-4_3-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30050-4

  • Online ISBN: 978-3-319-30050-4

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Shearography
    Published:
    22 August 2018

    DOI: https://doi.org/10.1007/978-3-319-30050-4_3-2

  2. Original

    Shearography
    Published:
    02 July 2018

    DOI: https://doi.org/10.1007/978-3-319-30050-4_3-1