Skip to main content

Guided Wave Testing

  • Living reference work entry
  • First Online:

Abstract

Guided waves can propagate long distances in thin-walled structures, such as pipelines or plates. This allows for the efficient monitoring and testing of large structures and for the detection of hidden or inaccessible defects. Guided wave propagation is dispersive and multi-modal, requiring a thorough understanding of the wave propagation and scattering phenomena from simulations. Guided wave dispersion diagrams, mode shapes, and typical signals are illustrated for the example of isotropic plates. Both low and high frequency guided waves have been used for the testing of plate structures, with different wave modes and applications including tomography and arrays for the detection and localization of defects. For multilayered and anisotropic structures, guided wave propagation becomes more complex, and often the fundamental guided wave modes are employed for defect detection. For pipelines different commercially available testing systems have been developed and long propagation distances up to 100 m have been achieved. Careful selection of guided wave mode and excitation frequency allows the minimization of attenuation due to viscoelastic coatings and in buried pipelines. Synthetic focusing using non-axisymmetric modes improves defect imaging and localization. Experimental methods differ from standard ultrasonic testing, as good control of the excited guided wave mode shape and signal are required to achieve improved sensitivity for small defects. In addition to contact piezoelectric transducers, electromagnetic and laser techniques allow for noncontact measurements. Finite Element Analysis is one of the numerical simulation techniques used to obtain a better understanding of guided wave testing and to improve defect characterization.

This is a preview of subscription content, log in via an institution.

References

  • Achenbach JD (1973) Wave propagation in elastic solids. Elsevier Science, Amsterdam

    MATH  Google Scholar 

  • Alleyne D, Cawley P (1991) A 2-dimensional Fourier-transform method for the measurement of propagating multimode signals. J Acoust Soc Am 89(3):1159–1168

    Google Scholar 

  • Alleyne D, Jones R, Vogt T (2017) GW test an introduction to long-range screening using guided waves. Mater Eval 75(10):1206–1213

    Google Scholar 

  • Attarian VA, Cegla FB, Cawley P (2014) Long-term stability of guided wave structural health monitoring using distributed adhesively bonded piezoelectric transducers. Struct Health Monitor 13(3):265–280

    Article  Google Scholar 

  • Auld BA (1973) Acoustic fields and waves in solids. Hoboken. Wiley, New York

    Google Scholar 

  • Bai H, Shah AH, Popplewell N, Datta SK (2001) Scattering of guided waves by circumferential cracks in steel pipes. J Appl Mech Trans ASME 68(4):619–631

    Article  MATH  Google Scholar 

  • Barshinger JN, Rose JL (2004) Guided wave propagation in an elastic hollow cylinder coated with a viscoelastic material. IEEE Trans Ultrason Ferroelectr Freq Control 51(11):1547–1556

    Article  Google Scholar 

  • Bartoli I, Marzani A, Lanza di Scalea F, Viola E (2006) Modeling wave propagation in damped waveguides of arbitrary cross-section. J Sound Vib 295(3–5):685–707

    Article  Google Scholar 

  • Brath AJ, Simonetti F, Nagy PB, Instanes G (2017) Guided wave tomography of pipe bends. IEEE Trans Ultrason Ferroelectr Freq Control 64(5):847–858

    Article  Google Scholar 

  • Castaings M, Hosten B (2003) Guided waves propagating in sandwich structures made of anisotropic, viscoelastic, composite materials. J Acoust Soc Am 113(5):2622–2634

    Article  Google Scholar 

  • Castaings M, Hosten B (2008) Ultrasonic guided waves for health monitoring of high-pressure composite tanks. NDT & E Int 41(8):648–655

    Article  Google Scholar 

  • Castaings M, Lowe M (2008) Finite element model for waves guided along solid systems of arbitrary section coupled to infinite solid media. J Acoust Soc Am 123(2):696–708

    Article  Google Scholar 

  • Castaings M, Singh D, Viot P (2012) Sizing of impact damages in composite materials using ultrasonic guided waves. NDT & E Int 46:22–31

    Article  Google Scholar 

  • Cawley P, Lowe MJS, Alleyne DN, Pavlakovic B, Wilcox PD (2003) Practical long range guided wave testing: applications to pipes and rail. Mater Eval 61(1):66–74

    Google Scholar 

  • Chakrapani SK, Padiyar MJ, Balasubramaniam K (2012) Crack detection in full size Cz-silicon wafers using Lamb wave air coupled ultrasonic testing (LAC-UT). J Nondestruct Eval 31(1):46–55

    Article  Google Scholar 

  • Chan H, Masserey B, Fromme P (2015) High frequency guided ultrasonic waves for hidden fatigue crack growth monitoring in multi-layer model aerospace structures. Smart Mater Struct 24(2), 025037

    Google Scholar 

  • Chang ZS, Mal A (1999) Scattering of Lamb waves from a rivet hole with edge cracks. Mech Mater 31(3):197–204

    Article  Google Scholar 

  • Chapuis B, Terrien N, Royer D (2010) Excitation and focusing of Lamb waves in a multilayered anisotropic plate. J Acoust Soc Am 127(1):198–203

    Article  Google Scholar 

  • Chen X, Michaels JE, Lee SJ, Michaels TE (2012) Load-differential imaging for detection and localization of fatigue cracks using Lamb waves. NDT & E Int 51:142–149

    Article  Google Scholar 

  • Cho H, Lissenden CJ (2012) Structural health monitoring of fatigue crack growth in plate structures with ultrasonic guided waves. Struct Health Monitor 11(4):393–404

    Article  Google Scholar 

  • Cho YH, Hongerholt DD, Rose JL (1997) Lamb wave scattering analysis for reflector characterization. IEEE Trans Ultrason Ferroelectr Freq Control 44(1):44–52

    Article  Google Scholar 

  • Cho YH, Rose JL (1996) A boundary element solution for a mode conversion study on the edge reflection of Lamb waves. J Acoust Soc Am 99(4):2097–2109

    Google Scholar 

  • Croxford AJ, Moll J, Wilcox PD, Michaels JE (2010) Efficient temperature compensation strategies for guided wave structural health monitoring. Ultrasonics 50(4–5):517–528

    Article  Google Scholar 

  • Dalton RP, Cawley P, Lowe MJS (2001) The potential of guided waves for monitoring large areas of metallic aircraft fuselage structure. J Nondestruct Eval 20(1):29–46

    Article  Google Scholar 

  • Damljanovic V, Weaver RL (2004) Propagating and evanescent elastic waves in cylindrical waveguides of arbitrary cross section. J Acoust Soc Am 115(4):1572–1581

    Article  Google Scholar 

  • Datta SK, Shah AH (2009) Elastic waves in composite media and structures with applications to ultrasonic nondestructive evaluation introduction. In: Elastic waves in composite media and structures: with applications to ultrasonic nondestructive evaluation. CRC Press, Boca Raton, pp 1–9

    MATH  Google Scholar 

  • Davies J, Cawley P (2009) The application of synthetic focusing for imaging crack-like defects in pipelines using guided waves. IEEE Trans Ultrason Ferroelectr Freq Control 56(4):759–771

    Article  Google Scholar 

  • Demma A, Cawley P, Lowe M (2003) Scattering of the fundamental shear horizontal mode from steps and notches in plates. J Acoust Soc Am 113(4):1880–1891

    Article  Google Scholar 

  • Di Scalea FL, Matt H, Bartoli I, Coccia S, Park G, Farrar C (2007) Health monitoring of UAV wing skin-to-spar joints using guided waves and macro fiber composite transducers. J Intell Mater Syst Struct 18(4):373–388

    Article  Google Scholar 

  • Diamanti K, Hodgkinson JM, Soutis C (2004) Detection of low-velocity impact damage in composite plates using Lamb waves. Struct Health Monitor 3(1):33–41

    Article  Google Scholar 

  • Diligent O, Grahn T, Bostrom A, Cawley P, Lowe MJS (2002) The low-frequency reflection and scattering of the S-0 Lamb mode from a circular through-thickness hole in a plate: finite element, analytical and experimental studies. J Acoust Soc Am 112(6):2589–2601

    Article  Google Scholar 

  • Dixon S, Jaques D, Palmer SB, Rowlands G (2004) The measurement of shear and compression waves in curing epoxy adhesives using ultrasonic reflection and transmission techniques simultaneously. Meas Sci Technol 15(5):939–947

    Article  Google Scholar 

  • Doherty C, Chiu WK (2012) Scattering of ultrasonic-guided waves for health monitoring of fuel weep holes. Struct Health Monitor 11(1):27–42

    Article  Google Scholar 

  • Drozdz M, Moreau L, Castaings M, Lowe MJS, Cawley P (2006). Efficient numerical modelling of absorbing regions for boundaries of guided waves problems. In: Thompson DO, Chimenti DE (eds) Review of progress in quantitative nondestructive evaluation, vols 25a and 25b, vol 820. American Institute of Physics, Melville, pp 126–133

    Google Scholar 

  • Fan Z, Castaings M, Lowe MJS, Biateau C, Fromme P (2013) Feature-guided waves for monitoring adhesive shear modulus in bonded stiffeners. NDT & E Int 54:96–102

    Article  Google Scholar 

  • Fan Z, Lowe MJS (2009) Elastic waves guided by a welded joint in a plate. Proc R Soc Math Phys Eng Sci 465(2107):2053–2068

    Article  MATH  Google Scholar 

  • Fellinger P, Marklein R, Langenberg KJ, Klaholz S (1995) Numerical modeling of elastic-wave propagation and scattering with efit - elastodynamic finite integration technique. Wave Motion 21(1):47–66

    Article  MATH  Google Scholar 

  • Flynn EB, Todd MD, Wilcox PD, Drinkwater BW, Croxford AJ (2011) Maximum-likelihood estimation of damage location in guided-wave structural health monitoring. Proc R Soc Math Phys Eng Sci 467(2133):2575–2596

    Google Scholar 

  • Freemantle RJ, Challis RE (1998) Combined compression and shear wave ultrasonic measurements on curing adhesive. Meas Sci Technol 9(8):1291–1302

    Article  Google Scholar 

  • Fromme P, Pizzolato M, Robyr JL, Masserey B (2018) Lamb wave propagation in monocrystalline silicon wafers. J Acoust Soc Am 143(1):287–295

    Article  Google Scholar 

  • Fromme P, Rouge C (2011) Directivity of guided ultrasonic wave scattering at notches and cracks C3. J Phys Conf Ser 269:1

    Article  Google Scholar 

  • Fromme P, Sayir MB (2002a) Detection of cracks at rivet holes using guided waves. Ultrasonics 40(1–8):199–203

    Article  Google Scholar 

  • Fromme P, Sayir MB (2002b) Measurement of the scattering of a Lamb wave by a through hole in a plate. J Acoust Soc Am 111(3):1165–1170

    Article  Google Scholar 

  • Fromme P, Wilcox PD, Lowe MJS, Cawley P (2006) On the development and testing of a guided ultrasonic wave array for structural integrity monitoring. IEEE Trans Ultrason Ferroelectr Freq Control 53(4):777–784

    Article  Google Scholar 

  • Giurgiutiu V, Zagrai A, Bao JJ (2002) Piezoelectric wafer embedded active sensors for aging aircraft structural health monitoring. Struct Health Monitor 1(1):41–61

    Article  Google Scholar 

  • Graff KF (1975) Wave motion in elastic solids. Oxford University Press, New York

    MATH  Google Scholar 

  • Greve DW, Zheng P, Oppenheim IJ (2008) The transition from Lamb waves to longitudinal waves in plates. Smart Mater Struct 17(3), 035029

    Google Scholar 

  • Gridin D, Craster RV, Fong J, Lowe MJS, Beard M (2003) The high-frequency asymptotic analysis of guided waves in a circular elastic annulus. Wave Motion 38(1):67–90

    Article  MathSciNet  MATH  Google Scholar 

  • Grondel S, Paget C, Delebarre C, Assaad J, Levin K (2002) Design of optimal configuration for generating a(0) Lamb mode in a composite plate using piezoceramic transducers. J Acoust Soc Am 112(1):84–90

    Article  Google Scholar 

  • Guo N, Cawley P (1993) The interaction of Lamb waves with delaminations in composite laminates. J Acoust Soc Am 94(4):2240–2246

    Article  Google Scholar 

  • Guy P, Jayet Y, Goujon L (2003) Guided waves interaction with complex delaminations. Application to damage detection in composite structures. In: Kundu T (ed) Smart nondestructive evaluation and health monitoring of structural and biological systems II. SPIE 5047, pp 25–33

    Google Scholar 

  • Hafezi MH, Alebrahim R, Kundu T (2017) Peri-ultrasound for modeling linear and nonlinear ultrasonic response. Ultrasonics 80:47–57

    Article  Google Scholar 

  • Hall JS, Fromme P, Michaels JE (2014) Guided wave damage characterization via minimum variance imaging with a distributed Array of ultrasonic sensors. J Nondestruct Eval 33(3):299–308

    Article  Google Scholar 

  • Harker AH (1984) Numerical modelling of the scattering of elastic waves in plates. J Nondestruct Eval 4(2):89–106

    Article  Google Scholar 

  • Hayashi T, Kawashima K, Sun ZQ, Rose JL (2005) Guided wave focusing mechanics in pipe. J Pressure Vessel Technol-Trans ASME 127(3):317–321

    Article  Google Scholar 

  • Hayashi T, Song WJ, Rose JL (2003) Guided wave dispersion curves for a bar with an arbitrary cross-section, a rod and rail example. Ultrasonics 41(3):175–183

    Article  Google Scholar 

  • Herdovics B, Cegla F (2018) Structural health monitoring using torsional guided wave electromagnetic acoustic transducers. Struct Health Monitor 17(1):24–38

    Article  Google Scholar 

  • Hirao M, Ogi H (2017) Brief instruction to build EMATs. Electromagnetic acoustic transducers: noncontacting ultrasonic measurements using Emats, 2nd edn. Springer, Tokyo, pp 69–79

    Google Scholar 

  • Hosten B, Castaings M (1993) Transfer-matrix of multilayered absorbing and anisotropic media - measurements and simulations of ultrasonic wave-propagation through composite-materials. J Acoust Soc Am 94(3):1488–1495

    Article  Google Scholar 

  • Howard R, Cegla F (2017) Detectability of corrosion damage with circumferential guided waves in reflection and transmission. NDT & E Int 91:108–119

    Article  Google Scholar 

  • Huthwaite P (2014) Accelerated finite element elastodynamic simulations using the GPU. J Comput Phys 257:687–707

    Article  MathSciNet  MATH  Google Scholar 

  • Jezzine K, Imperiale A, Demaldent E, Le Bourdais F, Calmon P, Dominguez N (2018) Modeling approaches for the simulation of ultrasonic inspections of anisotropic composite structures in the CIVA software platform. In: Chimenti DE, Bond LJ (eds) 44th annual review of progress in quantitative nondestructive evaluation, vol 37, American Institute of Physics, Melville, 1949

    Google Scholar 

  • Jian X, Dixon S, Edwards RS, Morrison J (2006) Coupling mechanism of an EMAT. Ultrasonics 44:E653–E656

    Article  Google Scholar 

  • Kawashima K (1976) Experiments with 2 types of electromagnetic ultrasonic transducers. J Acoust Soc Am 60(2):365–373

    Article  Google Scholar 

  • Kazys R, Demcenko A, Zukauskas E, Mazeika L (2006) Air-coupled ultrasonic investigation of multi-layered composite materials. Ultrasonics 44:E819–E822

    Article  Google Scholar 

  • Khalili P, Cawley P (2016) Excitation of single-mode Lamb waves at high-frequency-thickness products. IEEE Trans Ultrason Ferroelectr Freq Control 63(2):303–312

    Article  Google Scholar 

  • Konstantinidis G, Drinkwater BW, Wilcox PD (2006) The temperature stability of guided wave structural health monitoring systems. Smart Mater Struct 15(4):967–976

    Article  Google Scholar 

  • Kostson E, Fromme P (2009) Fatigue crack growth monitoring in multi-layered structures using guided ultrasonic waves. J Phys Conf Ser 195

    Google Scholar 

  • Kundu T, Das S, Martin SA, Jata KV (2008) Locating point of impact in anisotropic fiber reinforced composite plates. Ultrasonics 48(3):193–201

    Article  Google Scholar 

  • Le Crom B, Castaings M (2010) Shear horizontal guided wave modes to infer the shear stiffness of adhesive bond layers. J Acoust Soc Am 127(4):2220–2230

    Article  Google Scholar 

  • Leckey CAC, Rogge MD, Parker FR (2014) Guided waves in anisotropic and quasi-isotropic aerospace composites: three-dimensional simulation and experiment. Ultrasonics 54(1):385–394

    Article  Google Scholar 

  • Leckey CAC, Wheeler KR, Hafiychuk VN, Hafiychuk H, Timucin DA (2018) Simulation of guided-wave ultrasound propagation in composite laminates: benchmark comparisons of numerical codes and experiment. Ultrasonics 84:187–200

    Article  Google Scholar 

  • Lee BC, Staszewski WJ (2007) Lamb wave propagation modelling for damage detection: II. Damage monitoring strategy. Smart Mater Struct 16(2):260–274

    Article  Google Scholar 

  • Leinov E, Lowe MJS, Cawley P (2015) Investigation of guided wave propagation and attenuation in pipe buried in sand. J Sound Vib 347:96–114

    Article  Google Scholar 

  • Leleux A, Micheau P, Castaings M (2013) Long range detection of defects in composite plates using Lamb waves generated and detected by ultrasonic phased array probes. J Nondestruct Eval 32(2):200–214

    Google Scholar 

  • Leonard KR, Malyarenko EV, Hinders MK (2002) Ultrasonic Lamb wave tomography. Inverse Problem 18(6):1795–1808

    Google Scholar 

  • Levine RM, Michaels JE (2013) Model-based imaging of damage with Lamb waves via sparse reconstruction. J Acoust Soc Am 133(3):1525–1534

    Article  Google Scholar 

  • Li J, Rose JL (2001) Implementing guided wave mode control by use of a phased transducer array. IEEE Trans Ultrason Ferroelectr Freq Control 48(3):761–768

    Article  Google Scholar 

  • Lindgren E, Aldrin JC, Jata K, Scholes B, Knopp J (2007) Ultrasonic plate waves for fatigue crack detection in multi-layered metallic structures. In: Kundu T (eds) Health monitoring of structural and biological systems 2007. Proceedings of SPIE 6532

    Google Scholar 

  • Liu GL, Qu JM (1998) Guided circumferential waves in a circular annulus. J Appl Mech-Trans ASME 65(2):424–430

    Article  Google Scholar 

  • Loveday PW (2012) Guided wave inspection and monitoring of railway track. J Nondestruct Eval 31(4):303–309

    Article  Google Scholar 

  • Lovstad A, Cawley P (2012) The reflection of the fundamental torsional mode from pit clusters in pipes. NDT & E Int 46:83–93

    Article  Google Scholar 

  • Lowe MJS, Alleyne DN, Cawley P (1998) The mode conversion of a guided wave by a part-circumferential notch in a pipe. J Appl Mech-Trans ASME 65(3):649–656

    Article  Google Scholar 

  • Lowe MJS, Cawley P (1994) The applicability of plate wave techniques for the inspection of adhesive and diffusion bonded joints. J Nondestruct Eval 13(4):185–200

    Article  Google Scholar 

  • Lowe MJS, Diligent O (2002) Low-frequency reflection characteristics of the s(0) Lamb wave from a rectangular notch in a plate. J Acoust Soc Am 111(1):64–74

    Article  Google Scholar 

  • Lu Y, Michaels JE (2009) Feature extraction and sensor fusion for ultrasonic structural health monitoring under changing environmental conditions. IEEE Sensors J 9(11):1462–1471

    Article  Google Scholar 

  • Madariaga R (1976) Dynamics of an expanding circular fault. Bull Seismol Soc Am 66(3):639–666

    Google Scholar 

  • Mal AK, Xu PC, Bar Cohen Y (1989) Analysis of leaky Lamb waves in bonded plates. Int J Eng Sci 27(7):779–791

    Google Scholar 

  • Malyarenko EV, Hinders MK (2000) Fan beam and double crosshole Lamb wave tomography for mapping flaws in aging aircraft structures. J Acoust Soc Am 108(4):1631–1639

    Article  Google Scholar 

  • Masserey B, Fromme P (2017) Analysis of high frequency guided wave scattering at a fastener hole with a view to fatigue crack detection. Ultrasonics 76:78–86

    Article  Google Scholar 

  • McKeon JCP, Hinders MK (1999) Lamb wave scattering from a through hole. J Sound Vib 224(5):843–862

    Article  Google Scholar 

  • Mesnil O, Leckey CAC, Ruzzene M (2014) Instantaneous wavenumber estimation for damage quantification in layered plate structures. In: Kundu T (ed) Health monitoring of structural and biological systems 2014. Proceedings of SPIE 9064

    Google Scholar 

  • Michaels JE (2008) Detection, localization and characterization of damage in plates with an in situ array of spatially distributed ultrasonic sensors. Smart Mater Struct 17(3), 17 035035

    Google Scholar 

  • Michaels JE, Lee SJ, Croxford AJ, Wilcox PD (2013) Chirp excitation of ultrasonic guided waves. Ultrasonics 53(1):265–270

    Article  Google Scholar 

  • Mudge PJ (2001) Field application of the Teletest (R) long-range ultrasonic testing technique. Insight 43(2):74–77

    Google Scholar 

  • Murat BIS, Khalili P, Fromme P (2016) Scattering of guided waves at delaminations in composite plates. J Acoust Soc Am 139(6):3044–3052

    Article  Google Scholar 

  • Nagy PB, Adler L (1989) Nondestructive evaluation of adhesive joints by guided-waves. J Appl Phys 66(10):4658–4663

    Article  Google Scholar 

  • Ng C-T, Veidt M (2011) Scattering of the fundamental anti-symmetric Lamb wave at delaminations in composite laminates. J Acoust Soc Am 129(3):1288–1296

    Article  Google Scholar 

  • Ng CT, Veidt M, Rose LRF, Wang CH (2012) Analytical and finite element prediction of Lamb wave scattering at delaminations in quasi-isotropic composite laminates. J Sound Vib 331(22):4870–4883

    Article  Google Scholar 

  • Ostachowicz W, Kudela P, Krawczuk M, Zak A (2012) Guided waves in structures for SHM: the time-domain spectral element method. Blackwell Science Publ, Oxford

    Book  MATH  Google Scholar 

  • Pao YH, Chao CC (1964) Diffractions of flexural waves by a cavity in an elastic plate. AIAA J 2(11):2004–2010

    Article  Google Scholar 

  • Park B, An YK, Sohn H (2014) Visualization of hidden delamination and debonding in composites through noncontact laser ultrasonic scanning. Compos Sci Technol 100:10–18

    Article  Google Scholar 

  • Paskaramoorthy R, Shah AH, Datta SK (1989) Scattering of flexural waves by cavities in a plate. Int J Solids Struct 25(10):1177–1191

    Article  MATH  Google Scholar 

  • Pavlakovic, B., M. Lowe, D. Alleyne and P. Cawley (1997). “DISPERSE: A general purpose program for creating dispersion curves,” in Review of Progress in Quantitative NDE, edited by D. O. Thompson and D. E. Chimenti (Plenum, New York), Vol. 16, pp. 185–192

    Google Scholar 

  • Pol CB, Banerjee S (2013) Modeling and analysis of propagating guided wave modes in a laminated composite plate subject to transient surface excitations. Wave Motion 50(5):964–978

    Article  MathSciNet  Google Scholar 

  • Potel C, Baly S, de Belleval JF, Lowe M, Gatignol P (2005) Deviation of a monochromatic Lamb wave beam in anisotropic multilayered media: asymptotic analysis, numerical and experimental results. IEEE Trans Ultrason Ferroelectr Freq Control 52(6):987–1001

    Article  Google Scholar 

  • Prada C, Clorennec D, Murray TW, Royer D (2009) Influence of the anisotropy on zero-group velocity Lamb modes. J Acoust Soc Am 126(2):620–625

    Article  Google Scholar 

  • Predoi MV, Castaings M, Hosten B, Bacon C (2007) Wave propagation along transversely periodic structures. J Acoust Soc Am 121(4):1935–1944

    Article  Google Scholar 

  • Puthillath P, Rose JL (2010) Ultrasonic guided wave inspection of a titanium repair patch bonded to an aluminum aircraft skin. Int J Adhes Adhes 30(7):566–573

    Article  Google Scholar 

  • Quarry MJ (2004) Guided wave inspection of multi-layered structures. In: Quantitative nondestructive evaluation. AIP conference proceedings, vol 700, pp 246–253

    Google Scholar 

  • Rajagopal P, Drozdz M, Skelton EA, Lowe MJS, Craster RV (2012) On the use of absorbing layers to simulate the propagation of elastic waves in unbounded isotropic media using commercially available finite element packages. NDT & E Int 51:30–40

    Article  Google Scholar 

  • Rakow A, Chang F-K (2012) A structural health monitoring fastener for tracking fatigue crack growth in bolted metallic joints. Struct Health Monitor 11(3):253–267

    Article  Google Scholar 

  • Ramadas C, Balasubramaniam K, Joshi M, Krishnamurthy CV (2010) Interaction of guided Lamb waves with an asymmetrically located delamination in a laminated composite plate. Smart Mater Struct 19(6), 065009

    Google Scholar 

  • Ratassepp M, Fletcher S, Lowe MJS (2010) Scattering of the fundamental torsional mode at an axial crack in a pipe. J Acoust Soc Am 127(2):730–740

    Article  Google Scholar 

  • Ratnam D, Balasubramaniam K, Maxfield BW (2012) Generation and detection of higher-order mode clusters of guided waves (HOMC-GW) using meander-coil EMATs. IEEE Trans Ultrason Ferroelectr Freq Control 59(4):727–737

    Article  Google Scholar 

  • Rokhlin SI, Hefets M, Rosen M (1981) An ultrasonic interface-wave method for predicting the strength of adhesive bonds. J Appl Phys 52(4):2847–2851

    Article  Google Scholar 

  • Rose JL (2002a) A baseline and vision of ultrasonic guided wave inspection potential. J PresVessel Technol Tran ASME 124(3):273–282

    Google Scholar 

  • Rose JL (2002b) Standing on the shoulders of giants: an example of guided wave inspection. Mater Eval 60(1):53–59

    Google Scholar 

  • Rose JL (2014) Ultrasonic guided waves in solid media. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rose JL (2017) Aspects of a hybrid analytical finite element method approach for ultrasonic guided wave inspection design. J Nondestruct Eval Diagnos Prognos Eng Syst 1(1):011001

    Article  Google Scholar 

  • Rose JL, Zhang L, Avioli MJ, Mudge PJ (2005) A natural focusing low frequency guided wave experiment for the detection of defects beyond elbows. J Press Vessel Technol-Trans ASME 127(3):310–316

    Article  Google Scholar 

  • Salas KI, Cesnik CES (2009) Guided wave excitation by a CLoVER transducer for structural health monitoring: theory and experiments. Smart Mater Struct 18(7):1–27

    Article  Google Scholar 

  • Sanderson RM, Hutchins DA, Billson DR, Mudge PJ (2013) The investigation of guided wave propagation around a pipe bend using an analytical modeling approach. J Acoust Soc Am 133(3):1404–1414

    Article  Google Scholar 

  • Sargent JP (2006) Corrosion detection in welds and heat-affected zones using ultrasonic Lamb waves. Insight 48(3):160–167

    Article  Google Scholar 

  • Seifried R, Jacobs LJ, Qu JM (2002) Propagation of guided waves in adhesive bonded components. NDT & E Int 35(5):317–328

    Article  Google Scholar 

  • Shen YF, Cesnik CES (2016) Hybrid local FEM/global LISA modeling of damped guided wave propagation in complex composite structures. Smart Mater Struct 25(9):20

    Article  Google Scholar 

  • Shen YF, Giurgiutiu V (2015) Effective non-reflective boundary for Lamb waves: Theory, finite element implementation, and applications. Wave Motion 58:22–41

    Article  MathSciNet  Google Scholar 

  • Staszewski WJ, Lee BC, Traynor R (2007) Fatigue crack detection in metallic structures with Lamb waves and 3D laser vibrometry. Meas Sci Technol 18(3):727–739

    Article  Google Scholar 

  • Su Z, Ye L, Lu Y (2006) Guided Lamb waves for identification of damage in composite structures: a review. J Sound Vib 295(3–5):753–780

    Article  Google Scholar 

  • Terrien N, Osmont D, Royer D, Lepoutre F, Deom A (2007) A combined finite element and modal decomposition method to study the interaction of Lamb modes with micro-defects. Ultrasonics 46(1):74–88

    Article  Google Scholar 

  • Thompson RB, Thompson DO (1991) Past experiences in the development of tests for adhesive bond strength. J Adhes Sci Technol 5(8):583–599

    Article  Google Scholar 

  • Van Velsor JK, Rose JL, Nestleroth JB (2009) Enhanced coating disbond detection capabilities in pipe using circumferential shear horizontal guided waves. Mater Eval 67(10):1179–1188

    Google Scholar 

  • Veidt M, Sachse W (1994) Ultrasonic point-source point-receiver measurements in thin specimens. J Acoust Soc Am 96(4):2318–2326

    Article  Google Scholar 

  • Velichko A, Wilcox PD (2008) Guided wave arrays for high resolution inspection. J Acoust Soc Am 123(1):186–196

    Article  Google Scholar 

  • Viktorov IA (1967) Rayleigh and Lamb waves - physical theory and applications. Plenum, New York

    Google Scholar 

  • Vinogradov S, Eason T, Lozev M (2018) Evaluation of magnetostrictive transducers for guided wave monitoring of pressurized pipe at 200 degrees C. J Pres Vessel Technol-Tran ASME 140(2):7

    Google Scholar 

  • Virieux J (1986) P-SV-wave propagation in heterogeneous media – velocity-stress finite-difference method. Geophysics 51(4):889–901

    Article  Google Scholar 

  • Wang CH, Rose JT, Chang FK (2004) A synthetic time-reversal imaging method for structural health monitoring. Smart Mater Struct 13(2):415–423

    Article  Google Scholar 

  • Wilcox PD (2003) A rapid signal processing technique to remove the effect of dispersion from guided wave signals. IEEE Trans Ultrason Ferroelectr Freq Control 50(4):419–427

    Article  Google Scholar 

  • Wilcox PD, Lowe M, Cawley P (2005) Omnidirectional guided wave inspection of large metallic plate structures using an EMAT array. IEEE Trans Ultrason Ferroelectr Freq Control 52(4):653–665

    Article  Google Scholar 

  • Yu L, Giurgiutiu V (2012) Piezoelectric wafer active sensors in Lamb wave-based structural health monitoring. JOM 64(7):814–822

    Article  Google Scholar 

  • Zhang F, Krishnaswamy S, Lilley CM (2006) Bulk-wave and guided-wave photoacoustic evaluation of the mechanical properties of aluminum/silicon nitride double-layer thin films. Ultrasonics 45(1–4):66–76

    Article  Google Scholar 

  • Zhao X, Royer RL, Owens SE, Rose JL (2011) Ultrasonic Lamb wave tomography in structural health monitoring. Smart Mater Struct 20(10):10

    Google Scholar 

  • Zhao XL, Rose JL (2004a) Guided circumferential shear horizontal waves in an isotropic hollow cylinder. J Acoust Soc Am 115(5):1912–1916

    Article  Google Scholar 

  • Zhao, X. L. and J. L. Rose (2004b). Three-dimensional defect in a plate boundary element modeling for guided wave scattering. In: Lee SS, Yoon DJ, Lee JH, Lee S (eds) Advances in nondestructive evaluation, Pt 1–3. Trans Tech Publications, pp 270–273: 453–460

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Fromme .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Fromme, P. (2018). Guided Wave Testing. In: Ida, N., Meyendorf, N. (eds) Handbook of Advanced Non-Destructive Evaluation. Springer, Cham. https://doi.org/10.1007/978-3-319-30050-4_24-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30050-4_24-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30050-4

  • Online ISBN: 978-3-319-30050-4

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics