Neonatology pp 481-500 | Cite as

Oxygen Saturation Monitoring in Neonatal Period

  • Augusto SolaEmail author
  • Sergio GolombekEmail author
Reference work entry


Oxygen (O2) is a potent drug that is often used inappropriately in the clinical environment. Its administration needs to be improved in neonatal care. Healthcare providers never induce hypoxemia, and the same is not true for hyperoxemia. Clinical signs (cyanosis and tongue color) are of no value to detect hypoxemia and hyperoxemia. Pulse oximetry (SpO2) is the most important method for monitoring O2 saturation. The hazards of hyperoxemia and hyperoxia should be avoided or minimized. Undesired effects of maternal and fetal oxidative stress and short- and long-term O2 therapy involve every organ system and many genes. The SpO2 in normal newborns and in those who are treated with CPAP or assisted ventilation breathing room air (FiO2 0.21) is 95–100%. The intention to “target SpO2” in infants breathing supplemental O2 should not include values associated with potential hyperoxia nor possible hypoxia and also must aim to avoid recurring periods of hypoxemia-hyperoxemia-reperfusion. It is impossible to maintain newborn infants within narrow SpO2 target ranges all the time. Choosing wider intermediate SpO2 ranges for treatment allows for easier care and better compliance, and such ranges have been associated with a decreased rate of severe ROP, without an increased morbidity or mortality.


  1. Ahmed SJ, Rich W, Finer NN (2010) The effect of averaging time on oximetry values in the premature infant. Pediatrics 125:e115–e121CrossRefGoogle Scholar
  2. Arawiran J, Curry J, Welde L, Alpan G (2015) Sojourn in excessively high oxygen saturation ranges in individual, very low-birthweight neonates. Acta Paediatr 104(2):e51–e56CrossRefGoogle Scholar
  3. Askie LM, Henderson-Smart DJ, Irwig L, Simpson JM (2003) Oxygen-saturation targets and outcomes in extremely preterm infants. N Engl J Med 349(10):959–967CrossRefGoogle Scholar
  4. Bancalari E, Claure N (2012) Control of oxygenation during mechanical ventilation in the premature infant. Clin Perinatol 39:563–572CrossRefGoogle Scholar
  5. Baquero H, Alviz R, Castillo A, Neira F, Sola A (2011) Avoiding hyperoxemia during neonatal resuscitation: time to response of different SpO2 monitors. Acta Paediatr 100(4):515–518CrossRefGoogle Scholar
  6. Bizzarro MJ, Li FY, Katz K, Shabanova V, Ehrenkranz RA, Bhandari V (2014) Temporal quantification of oxygen saturation ranges: an effort to reduce hyperoxia in the neonatal intensive care unit. J Perinatol 34(1):33–38CrossRefGoogle Scholar
  7. Carlo WA, Finer NN, Walsh MC, SUPPORT Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research Network et al (2010) Target ranges of oxygen saturation in extremely preterm infants. N Engl J Med 362(21):1959–1969CrossRefGoogle Scholar
  8. Castillo A, Sola A, Baquero H et al (2008) Pulse oxygen saturation levels and arterial oxygen tension values in newborns receiving oxygen therapy in the neonatal intensive care unit: is 85% to 93% an acceptable range? Pediatrics 121(5):882–889CrossRefGoogle Scholar
  9. Castillo A, Deulofeut R, Critz A, Sola A (2011) Prevention of retinopathy of prematurity in preterm infants through changes in clinical practice and SpO2 technology. Acta Paediatr 100(2):188–192CrossRefGoogle Scholar
  10. Chow LC, Wright KW, Sola A, CSMC Oxygen Administration Study Group (2003) Can changes in clinical practice decrease the incidence of severe retinopathy of prematurity in very low birth weight infants? Pediatrics 111(2):339–345CrossRefGoogle Scholar
  11. Clarke A, Yeomans E, Elsayed K, Medhurst A, Berger P, Skuza E, Tan K (2015) A randomised crossover trial of clinical algorithm for oxygen saturation targeting in preterm infants with frequent desaturation episodes. Neonatology 107(2):130–136CrossRefGoogle Scholar
  12. Claure N, Bancalari E (2013) Role of automation in neonatal respiratory support. J Perinat Med 41(1):115–118CrossRefGoogle Scholar
  13. Claure N, Bancalari E (2015) Closed-loop control of inspired oxygen in premature infants. Semin Fetal Neonatal Med 20(3):198–204CrossRefGoogle Scholar
  14. Comroe JH Jr, Bahnson ER, Coates EO Jr (1950) Mental changes occurring in chronically anoxemic patients during oxygen therapy. J Am Med Assoc 143(12):1044–1048CrossRefGoogle Scholar
  15. Darlow BA, Marschner SL, Donoghoe M, Benefits Of Oxygen Saturation Targeting-New Zealand (BOOST-NZ) Collaborative Group et al (2014) Randomized controlled trial of oxygen saturation targets in very preterm infants: two year outcomes. J Pediatr 165(1):30–35, e2CrossRefGoogle Scholar
  16. Dawson JA, Kamlin CO, Vento M et al (2010) Defining the reference range for oxygen saturation for infants after birth. Pediatrics 125(6):e1340–e1347CrossRefGoogle Scholar
  17. Dawson JA, Vento M, Finer NN et al (2012) Managing oxygen therapy during delivery room stabilization of preterm infants. J Pediatr 160(1):158–161CrossRefGoogle Scholar
  18. de Wahl Granelli A, Wennergren M, Sandberg K, Mellander M, Bejlum C, Ingana L et al (2009) Impact of pulse oximetry screening on the detection of duct dependent congenital heart disease: a Swedish prospective screening study in 39,821 newborns. BMJ 338:a3037CrossRefGoogle Scholar
  19. Deulofeut R, Critz A, Adams-Chapman I, Sola A (2006) Avoiding hyperoxia in infants < or 1⁄4 1250 g is associated with improved short- and long-term outcomes. J Perinatol 26(11):700–705CrossRefGoogle Scholar
  20. Deulofeut R, Dudell G, Sola A (2007) Treatment-by-gender effect when aiming to avoid hyperoxia in preterm infants in the NICU. Acta Paediatr 96(7):990–994CrossRefGoogle Scholar
  21. Eghbalian F (2014) A comparison of supine and prone positioning on improves arterial oxygenation in premature neonates. J Neonatal Perinatal Med 7(4):273–277PubMedGoogle Scholar
  22. Ewer AK, Middleton LJ, Furmston AT, Bhoyar A, Daniels JP, Thangaratinam S et al (2011) Pulse oximetry screening for congenital heart defects in newborn infants (PulseOx): a test accuracy study. Lancet 378:785–794CrossRefGoogle Scholar
  23. Farrow KN, Lee KJ, Perez M et al (2012) Brief hyperoxia increases mitochondrial oxidation and increases phosphodiesterase 5 activity in fetal pulmonary artery smooth muscle cells. Antioxid Redox Signal 17(3):460–470CrossRefGoogle Scholar
  24. Hagadorn JI, Furey AM, Nghiem TH, AVIOx Study Group et al (2006) Achieved versus intended pulse oximeter saturation in infants born less than 28 weeks’ gestation: the AVIOx study. Pediatrics 118(4):1574–1582CrossRefGoogle Scholar
  25. Hamel MS, Anderson BL, Rouse DJ (2014) Oxygen for intrauterine resuscitation: of unproved benefit and potentially harmful. Am J Obstet Gynecol 211(2):124–127CrossRefGoogle Scholar
  26. Hassan MA, Mendler M, Maurer M, Waitz M, Huang L, Hummler HD (2015) Reliability of pulse oximetry during cardiopulmonary resuscitation in a piglet model of neonatal cardiac arrest. Neonatology 107(2):113–119CrossRefGoogle Scholar
  27. Hay WW Jr, Rodden DJ, Collins SM, Melara DL, Hale KA, Fashaw LM (2002) Reliability of conventional and new pulse oximetry in neonatal patients. J Perinatol 22(5):360–366CrossRefGoogle Scholar
  28. Kaindl AM, Sifringer M, Zabel C et al (2006) Acute and long-term proteome changes induced by oxidative stress in the developing brain. Cell Death Differ 13(7):1097–1109CrossRefGoogle Scholar
  29. Ketko AK, Martin CM, Nemshak MA, Niedner M, Vartanian RJ (2015) Balancing the tension between hyperoxia prevention and alarm fatigue in the NICU. Pediatrics 136(2):e496–e504CrossRefGoogle Scholar
  30. Klimova NG, Hanna N, Peltier MR (2013) Effect of oxygen tension on bacteria-stimulated cytokine production by fetal membranes. J Perinat Med 41(5):595–603CrossRefGoogle Scholar
  31. Klingel ML, Patel SV (2013) A meta-analysis of the effect of inspired oxygen concentration on the incidence of surgical site infection following cesarean section. Int J Obstet Anesth 22(2):104–112CrossRefGoogle Scholar
  32. Lakshminrusimha S, Manja V, Mathew B, Suresh GK (2015) Oxygen targeting in preterm infants: a physiological interpretation. J Perinatol 35(1):8–15CrossRefGoogle Scholar
  33. Laman M, Ripa P, Vince J, Tefuarani N (2005) Can clinical signs predict hypoxaemia in Papua New Guinean children with moderate and severe pneumonia? Ann Trop Paediatr 25:23–27CrossRefGoogle Scholar
  34. Lim K, Wheeler KI, Gale TJ et al (2014) Oxygen saturation targeting in preterm infants receiving continuous positive airway pressure. J Pediatr 164(4):730–736.e1CrossRefGoogle Scholar
  35. Lim K, Wheeler KI, Jackson HD, Sadeghi Fathabadi O, Gale TJ, Dargaville PA (2015) Lost without trace: oximetry signal dropout in preterm infants. Arch Dis Child Fetal Neonatal Ed 100(5):F436–F438CrossRefGoogle Scholar
  36. Lye P, Bloise E, Dunk C et al (2013) Effect of oxygen on multidrug resistance in the first trimester human placenta. Placenta 34(9):817–823CrossRefGoogle Scholar
  37. Manja V, Lakshminrusimha S, Cook DJ (2015) Oxygen saturation target range for extremely preterm infants: a systematic review and meta-analysis. JAMA Pediatr 169(4):332–340CrossRefGoogle Scholar
  38. Narayen IC, Smit M, van Zwet EW, Dawson JA, Blom NA, te Pas AB (2015) Low signal quality pulse oximetry measurements in newborn infants are reliable for oxygen saturation but underestimate heart rate. Acta Paediatr 104(4):e158–e163CrossRefGoogle Scholar
  39. Niermeyer S, Yang P, Shanmina D, Zhuang J, Moore LG (1995) Arterial oxygen saturation in Tibetan and Han infants born in Lhasa, Tibet. N Engl J Med 333:1248–1252CrossRefGoogle Scholar
  40. Noh EJ, Kim YH, Cho MK et al (2014) Comparison of oxidative stress markers in umbilical cord blood after vaginal and cesarean delivery. Obstet Gynecol Sci 57(2):109–114CrossRefGoogle Scholar
  41. Paul M (2015) Oxygen administration to preterm neonates in the delivery room: minimizing oxidative stress. Adv Neonatal Care 15(2):94–103CrossRefGoogle Scholar
  42. Phibbs RH (1977) Oxygen therapy: a continuing hazard to the premature infant. Anesthesiology 47(6):486–487CrossRefGoogle Scholar
  43. Polin RA, Bateman DA, Sahni R (2014) Pulse oximetry in very low birth weight infants. Clin Perinatol 41(4):1017–1032CrossRefGoogle Scholar
  44. Rabi Y, Rabi D, Yee W (2007) Room air resuscitation of the depressed newborn: a systematic review and meta-analysis. Resuscitation 72(3):353–363CrossRefGoogle Scholar
  45. Rawat M, Chandrasekharan PK, Williams A, Gugino S, Koenigsknecht C, Swartz D, Ma CX, Mathew B, Nair J, Lakshminrusimha S (2015) Oxygen saturation index and severity of hypoxic respiratory failure. Neonatology 107(3):161–166CrossRefGoogle Scholar
  46. Samiee-Zafarghandy S, Saugstad OD, Fusch C (2015) Do we have an answer when it comes to providing extremely preterm infants with optimal target oxygen saturation? Acta Paediatr 104(3):e130–e133CrossRefGoogle Scholar
  47. Saugstad OD (2007) Take a breath—but do not add oxygen (if not needed). Acta Paediatr 96(6):798–800CrossRefGoogle Scholar
  48. Saugstad OD, Aune D (2014) Optimal oxygenation of extremely low birth weight infants: a meta-analysis and systematic review of the oxygen saturation target studies. Neonatology 105(1):55–63CrossRefGoogle Scholar
  49. Saugstad OD, Aune D, Aguar M, Kapadia V, Finer N, Vento M (2014) Systematic review and meta-analysis of optimal initial fraction of oxygen levels in the delivery room at <32 weeks. Acta Paediatr 103(7):744–751PubMedGoogle Scholar
  50. Schmidt B, Whyte RK, Asztalos EV, Canadian Oxygen Trial (COT) Group et al (2013) Effects of targeting higher vs lower arterial oxygen saturations on death or disability in extremely preterm infants: a randomized clinical trial. JAMA 309(20):2111–2120CrossRefGoogle Scholar
  51. Schmidt B, Whyte RK, Roberts RS (2014a) Trade-off between lower or higher oxygen saturations for extremely preterm infants: the first benefits of oxygen saturation targeting (BOOST) II trial reports its primary outcome. J Pediatr 165(1):6–8CrossRefGoogle Scholar
  52. Schmidt B, Roberts RS, Whyte RK, Canadian Oxygen Trial Group et al (2014b) Impact of study oximeter masking algorithm on titration of oxygen therapy in the Canadian oxygen trial. J Pediatr 165(4):666–671, e2CrossRefGoogle Scholar
  53. Silverman WA (1980) Retrolental fibroplasia: a modern parable. Grune & Stratton, New YorkGoogle Scholar
  54. Sola A (2008) Oxygen in neonatal anesthesia: friend or foe? Curr Opin Anaesthesiol 21(3):332–339CrossRefGoogle Scholar
  55. Sola A (2015) Oxygen saturation in the newborn and the importance of avoiding hyperoxia-induced damage. NeoReviews 16:e393. Scholar
  56. Sola A, Zuluaga C (2013) Oxygen saturation targets and retinopathy of prematurity. J AAPOS 17:650–652CrossRefGoogle Scholar
  57. Sola A, Rogido MR, Deulofeut R (2007) Oxygen as a neonatal health hazard: call for détente in clinical practice. Acta Paediatr 96(6):801–812CrossRefGoogle Scholar
  58. Sola A, Saldeño YP, Favareto V (2008) Clinical practices in neonatal oxygenation: where have we failed? what can we do? J Perinatol 28(Suppl 1):S28–S34CrossRefGoogle Scholar
  59. Sola A, Golombek SG, Montes Bueno MT et al (2014) Safe oxygen saturation targeting and monitoring in preterm infants: can we avoid hypoxia and hyperoxia? Acta Paediatr 103(10):1009–1018CrossRefGoogle Scholar
  60. Spector LG, Klebanoff MA, Feusner JH, Georgieff MK, Ross JA (2005) Childhood cancer following neonatal oxygen supplementation. J Pediatr 147(1):27–31CrossRefGoogle Scholar
  61. Stenson BJ, Tarnow-Mordi WO, Darlow BA, BOOST II United Kingdom Collaborative Group; BOOST II Australia Collaborative Group; BOOST II New Zealand Collaborative Group et al (2013) Oxygen saturation and outcomes in preterm infants. N Engl J Med 368(22):2094–2104CrossRefGoogle Scholar
  62. Suwattanaphim S, Yodavuhd S, Puangsa-art SJ (2015) Time duration of oxygen adaptation immediately after birth; monitoring by pulse oximeter in perinatal period of the infants at Charoenkrung Pracharak Hospital. J Med Assoc Thai 98(7):656–663PubMedGoogle Scholar
  63. Synnes A, Miller SP (2015) Oxygen therapy for preterm neonates: the elusive optimal target. JAMA Pediatr 169(4):311–313CrossRefGoogle Scholar
  64. Terrill PI, Dakin C, Hughes I, Yuill M, Parsley C (2015) Nocturnal oxygen saturation profiles of healthy term infants. Arch Dis Child 100(1):18–23CrossRefGoogle Scholar
  65. Thomson L, Paton J (2014) Oxygen toxicity. Paediatr Respir Rev 15(2):120–123PubMedGoogle Scholar
  66. Vagedes J, Poets CF, Dietz K (2013) Averaging time, desaturation level, duration and extent. Arch Dis Child Fetal Neonatal Ed 98:F265–6CrossRefGoogle Scholar
  67. Van Den Brenk HA, Jamieson D (1962) Potentiation by anaesthetics of brain damage due to breathing high-pressure oxygen in mammals. Nature 194:777–778CrossRefGoogle Scholar
  68. van Kaam AH, Hummler HD, Wilinska M, Swietlinski J, Lal MK, te Pas AB, Lista G, Gupta S et al (2015) Automated versus manual oxygen control with different saturation targets and modes of respiratory support in preterm infants. J Pediatr 167(3):545–550.e1-2CrossRefGoogle Scholar
  69. Vento M (2014) Oxygen supplementation in the neonatal period: changing the paradigm. Neonatology 105(4):323–331CrossRefGoogle Scholar
  70. Vento M, Cubells E, Escobar JJ et al (2013) Oxygen saturation after birth in preterm infants treated with continuous positive airway pressure and air: assessment of gender differences and comparison with a published nomogram. Arch Dis Child Fetal Neonatal Ed 98(3):F228–F232CrossRefGoogle Scholar
  71. Wellmann S, Bührer C, Schmitz T (2014) Focal necrosis and disturbed myelination in the white matter of newborn infants: a tale of too much or too little oxygen. Front Pediatr 2(14):143PubMedGoogle Scholar
  72. Wollen EJ, Kwinta P, Bik-Multanowski M, Madetko-Talowska A, Sejersted Y, Wright MS et al (2014) Hypoxia-reoxygenation affects whole-genome expression in the newborn eye. Invest Ophthalmol Vis Sci 55(3):1393–1401CrossRefGoogle Scholar
  73. Yalcin S, Aydoğan H, Kucuk A et al (2013) Supplemental oxygen in elective cesarean section under spinal anesthesia: handle the sword with care [in Spanish]. Rev Bras Anestesiol 63(5):393–397CrossRefGoogle Scholar
  74. Zapata J, Gómez JJ, Araque Campo R, Matiz Rubio A, Sola A (2014) A randomised controlled trial of an automated oxygen delivery algorithm for preterm neonates receiving supplemental oxygen without mechanical ventilation. Acta Paediatr 103(9):928–33CrossRefGoogle Scholar
  75. Zhang L, Mendoza-Sassi R, Santos JC, Lau J (2011) Accuracy of symptoms and signs in predicting hypoxaemia among young children with acute respiratory infection: a meta-analysis. Int J Tuberc Lung Dis 15:317–325PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Ibero American Society of Neonatology (SIBEN)WellingtonUSA
  2. 2.New York Medical CollegeNew YorkUSA

Personalised recommendations