Neonatology pp 595-604 | Cite as

Enteral Feeding of the Very-Low-Birth-Weight Infant

  • Johannes B. (Hans) van GoudoeverEmail author
Reference work entry


Enteral nutrition is the natural way of feeding infants. There have been concerns that preterm infants have limited digestive capacity; however, there is evidence that digestive enzymes are present in fetal life. Minimal enteral nutrition should be started as soon as possible because enteral feeding itself may induce the maturation process of digestion and absorption, enhance tolerance to larger volumes of enteral nutrition, and avoid the complications of parenteral nutrition. Adequate oral feeding is possible from 32 weeks onwards, when an infant is capable of an adequate suck-swallow reflex. As oral feeding is not possible in VLBW infants, most frequently gastric tubes are used. The most important reason for withholding enteral feedings is the fear that enteral nutrition will enhance the development of necrotizing enterocolitis (NEC); however, there is no evidence that withholding enteral nutrition prevents NEC. Own mother’s human milk is the natural choice for infant feed, even for preterm infants. However, the concentrations of nutrients decline rapidly following birth and do not meet the requirements after approximately 2–4 weeks. Fortification is thus necessary; protein fortification has been shown to increase in-hospital weight gain and head circumference. More clinical trials are needed to improve the quality of the nutrient supply.


  1. Ballard O, Morrow AL (2013) Human milk composition: nutrients and bioactive factors. Pediatr Clin N Am 60(1):49–74CrossRefGoogle Scholar
  2. Berseth CL (1992) Effect of early feeding on maturation of the preterm infant’s small intestine. J Pediatr 120(6):947–953CrossRefGoogle Scholar
  3. Blondheim O, Abbasi S, Fox WW, Bhutani VK (1993) Effect of enteral gavage feeding rate on pulmonary functions of very low birth weight infants. J Pediatr 122(5 Pt 1):751–755CrossRefGoogle Scholar
  4. Boehm G, Lidestri M, Casetta P, Jelinek J, Negretti F, Stahl B et al (2002) Supplementation of a bovine milk formula with an oligosaccharide mixture increases counts of faecal bifidobacteria in preterm infants. Arch Dis Child Fetal Neonatal Ed 86(3):F178–F181CrossRefGoogle Scholar
  5. Brown JV, Embleton ND, Harding JE, McGuire W (2016) Multi-nutrient fortification of human milk for preterm infants. Cochrane Database Syst Rev 5:CD000343Google Scholar
  6. Burrin DG, Stoll B, Jiang R, Chang X, Hartmann B, Holst JJ et al (2000) Minimal enteral nutrient requirements for intestinal growth in neonatal piglets: how much is enough? Am J Clin Nutr 71(6):1603–1610CrossRefGoogle Scholar
  7. Burrin DG, Stoll B, Chang X, Van Goudoever JB, Fujii H, Hutson SM et al (2003) Parenteral nutrition results in impaired lactose digestion and hexose absorption when enteral feeding is initiated in infant pigs. Am J Clin Nutr 78(3):461–470CrossRefGoogle Scholar
  8. Casper C, Hascoet JM, Ertl T, Gadzinowski JS, Carnielli V, Rigo J et al (2016) Recombinant bile salt-stimulated lipase in preterm infant feeding: a randomized phase 3 study. PLoS One 11(5):e0156071CrossRefGoogle Scholar
  9. Chen CT, Wang LY, Wang YL, Lin BS (2017) Quantitative real-time assessment for feeding skill of preterm infants. J Med Syst 41(6):95CrossRefGoogle Scholar
  10. Cong X, Xu W, Janton S, Henderson WA, Matson A, McGrath JM et al (2016) Gut microbiome developmental patterns in early life of preterm infants: impacts of feeding and gender. PLoS One 11(4):e0152751CrossRefGoogle Scholar
  11. Corpeleijn WE, van Vliet I, de Gast-Bakker DA, van der Schoor SR, Alles MS, Hoijer M et al (2008) Effect of enteral IGF-1 supplementation on feeding tolerance, growth, and gut permeability in enterally fed premature neonates. J Pediatr Gastroenterol Nutr 46(2):184–190CrossRefGoogle Scholar
  12. Corpeleijn WE, Vermeulen MJ, van Vliet I, Kruger C, van Goudoever JB (2010) Human milk banking-facts and issues to resolve. Forum Nutr 2(7):762–769Google Scholar
  13. Corpeleijn WE, Kouwenhoven SM, Paap MC, van Vliet I, Scheerder I, Muizer Y et al (2012) Intake of own mother’s milk during the first days of life is associated with decreased morbidity and mortality in very low birth weight infants during the first 60 days of life. Neonatology 102(4):276–281CrossRefGoogle Scholar
  14. Corpeleijn WE, de Waard M, Christmann V, van Goudoever JB, Jansen-van der Weide MC, Kooi EM et al (2016) Effect of donor milk on severe infections and mortality in very low-birth-weight infants: the early nutrition study randomized clinical trial. JAMA Pediatr 170(7):654–661CrossRefGoogle Scholar
  15. Cristofalo EA, Schanler RJ, Blanco CL, Sullivan S, Trawoeger R, Kiechl-Kohlendorfer U et al (2013) Randomized trial of exclusive human milk versus preterm formula diets in extremely premature infants. J Pediatr 163(6):1592–5.e1CrossRefGoogle Scholar
  16. de Lucas C, Moreno M, Lopez-Herce J, Ruiz F, Perez-Palencia M, Carrillo A (2000) Transpyloric enteral nutrition reduces the complication rate and cost in the critically ill child. J Pediatr Gastroenterol Nutr 30(2):175–180CrossRefGoogle Scholar
  17. de Oliveira SC, Bellanger A, Menard O, Pladys P, Le Gouar Y, Dirson E et al (2017) Impact of human milk pasteurization on gastric digestion in preterm infants: a randomized controlled trial. Am J Clin Nutr 105(2):379–390CrossRefGoogle Scholar
  18. Dsilna A, Christensson K, Alfredsson L, Lagercrantz H, Blennow M (2005) Continuous feeding promotes gastrointestinal tolerance and growth in very low birth weight infants. J Pediatr 147(1):43–49CrossRefGoogle Scholar
  19. Dsilna A, Christensson K, Gustafsson AS, Lagercrantz H, Alfredsson L (2008) Behavioral stress is affected by the mode of tube feeding in very low birth weight infants. Clin J Pain 24(5):447–455CrossRefGoogle Scholar
  20. Eglin RP, Wilkinson AR (1987) HIV infection and pasteurisation of breast milk. Lancet 1(8541):1093CrossRefGoogle Scholar
  21. Ehrenkranz RA, Dusick AM, Vohr BR, Wright LL, Wrage LA, Poole WK (2006) Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants. Pediatrics 117(4):1253–1261CrossRefGoogle Scholar
  22. Erasmus HD, Ludwig-Auser HM, Paterson PG, Sun D, Sankaran K (2002) Enhanced weight gain in preterm infants receiving lactase-treated feeds: a randomized, double-blind, controlled trial. J Pediatr 141(4):532–537CrossRefGoogle Scholar
  23. Evans TJ, Ryley HC, Neale LM, Dodge JA, Lewarne VM (1978) Effect of storage and heat on antimicrobial proteins in human milk. Arch Dis Child 53(3):239–241CrossRefGoogle Scholar
  24. Ewer AK, Durbin GM, Morgan ME, Booth IW (1994) Gastric emptying in preterm infants. Arch Dis Child Fetal Neonatal Ed 71(1):F24–F27CrossRefGoogle Scholar
  25. Fewtrell MS, Cole TJ, Bishop NJ, Lucas A (2000) Neonatal factors predicting childhood height in preterm infants: evidence for a persisting effect of early metabolic bone disease? J Pediatr 137(5):668–673CrossRefGoogle Scholar
  26. Flint A, New K, Davies MW (2016) Cup feeding versus other forms of supplemental enteral feeding for newborn infants unable to fully breastfeed. Cochrane Database Syst Rev 8:CD005092Google Scholar
  27. Foster JP, Psaila K, Patterson T (2016) Non-nutritive sucking for increasing physiologic stability and nutrition in preterm infants. Cochrane Database Syst Rev 10:CD001071PubMedGoogle Scholar
  28. Fukatsu K, Zarzaur BL, Johnson CD, Lundberg AH, Hanna MK, Wilcox HG et al (2001a) Lack of enteral feeding increases expression of E-selectin after LPS challenge. J Surg Res 97(1):41–48CrossRefGoogle Scholar
  29. Fukatsu K, Kudsk KA, Zarzaur BL, Wu Y, Hanna MK, DeWitt RC (2001b) TPN decreases IL-4 and IL-10 mRNA expression in lipopolysaccharide stimulated intestinal lamina propria cells but glutamine supplementation preserves the expression. Shock 15(4):318–322CrossRefGoogle Scholar
  30. Greer FR, McCormick A (1988) Improved bone mineralization and growth in premature infants fed fortified own mother’s milk. J Pediatr 112(6):961–969CrossRefGoogle Scholar
  31. Greer FR, Marshall SP, Severson RR, Smith DA, Shearer MJ, Pace DG et al (1998) A new mixed micellar preparation for oral vitamin K prophylaxis: randomised controlled comparison with an intramuscular formulation in breast fed infants. Arch Dis Child 79(4):300–305CrossRefGoogle Scholar
  32. Hamprecht K, Maschmann J, Vochem M, Dietz K, Speer CP, Jahn G (2001) Epidemiology of transmission of cytomegalovirus from mother to preterm infant by breastfeeding. Lancet 357(9255):513–518CrossRefGoogle Scholar
  33. Harding JE, Johnston BM (1995) Nutrition and fetal growth. Reprod Fertil Dev 7(3):539–547CrossRefGoogle Scholar
  34. Harding R, Bocking AD, Sigger JN, Wickham PJ (1984) Composition and volume of fluid swallowed by fetal sheep. Q J Exp Physiol 69(3):487–495CrossRefGoogle Scholar
  35. Harding JE, Wilson J, Brown J (2017) Calcium and phosphorus supplementation of human milk for preterm infants. Cochrane Database Syst Rev 2:CD003310PubMedGoogle Scholar
  36. Hay WW, Jr., Myers SA, Sparks JW, Wilkening RB, Meschia G, Battaglia FC. Glucose and lactate oxidation rates in the fetal lamb. Proc Soc Exp Biol Med 1983;173(4):553-563CrossRefGoogle Scholar
  37. Heldt GP (1988) The effect of gavage feeding on the mechanics of the lung, chest wall, and diaphragm of preterm infants. Pediatr Res 24(1):55–58CrossRefGoogle Scholar
  38. Hulst J, Joosten K, Zimmermann L, Hop W, van Buuren S, Buller H et al (2004) Malnutrition in critically ill children: from admission to 6 months after discharge. Clin Nutr 23(2):223–232CrossRefGoogle Scholar
  39. Hutchens TW, Henry JF, Yip TT, Hachey DL, Schanler RJ, Motil KJ et al (1991) Origin of intact lactoferrin and its DNA-binding fragments found in the urine of human milk-fed preterm infants. Evaluation by stable isotopic enrichment. Pediatr Res 29(3):243–250CrossRefGoogle Scholar
  40. Isaacs EB, Fischl BR, Quinn BT, Chong WK, Gadian DG, Lucas A (2010) Impact of breast milk on intelligence quotient, brain size, and white matter development. Pediatr Res 67(4):357–362CrossRefGoogle Scholar
  41. Kamitsuka MD, Nervik PA, Nielsen SL, Clark RH (2017) Incidence of nasogastric and gastrostomy tube at discharge is reduced after implementing an oral feeding protocol in premature (<30 weeks) infants. Am J Perinatol 34(6):606–613CrossRefGoogle Scholar
  42. Kashyap S, Schulze KF, Forsyth M, Dell RB, Ramakrishnan R, Heird WC (1990) Growth, nutrient retention, and metabolic response of low-birth-weight infants fed supplemented and unsupplemented preterm human milk. Am J Clin Nutr 52(2):254–262CrossRefGoogle Scholar
  43. Latal-Hajnal B, von Siebenthal K, Kovari H, Bucher HU, Largo RH (2003) Postnatal growth in VLBW infants: significant association with neurodevelopmental outcome. J Pediatr 143(2):163–170CrossRefGoogle Scholar
  44. Lebenthal E, Leung YK (1988) Feeding the premature and compromised infant: gastrointestinal considerations. Pediatr Clin N Am 35(2):215–238CrossRefGoogle Scholar
  45. Lechner BE, Vohr BR (2017) Neurodevelopmental outcomes of preterm infants fed human milk: a systematic review. Clin Perinatol 44(1):69–83CrossRefGoogle Scholar
  46. Lemons JA, Adcock EW, 3rd, Jones MD, Jr., Naughton MA, Meschia G, Battaglia FC. Umbilical uptake of amino acids in the unstressed fetal lamb. J Clin Invest 1976;58(6):1428-1434CrossRefGoogle Scholar
  47. Lucas A, Bloom SR, Aynsley-Green A (1986) Gut hormones and ‘minimal enteral feeding’. Acta Paediatr Scand 75(5):719–723CrossRefGoogle Scholar
  48. Lucas A, Morley R, Cole TJ, Lister G, Leeson-Payne C (1992) Breast milk and subsequent intelligence quotient in children born preterm. Lancet 339(8788):261–264CrossRefGoogle Scholar
  49. Meetze WH, Valentine C, McGuigan JE, Conlon M, Sacks N, Neu J (1992) Gastrointestinal priming prior to full enteral nutrition in very low birth weight infants. J Pediatr Gastroenterol Nutr 15(2):163–170CrossRefGoogle Scholar
  50. Meier P, Patel A, Esquerra-Zwiers A (2017) Donor human milk update: evidence, mechanisms, and priorities for research and practice. J Pediatr 180:15–21CrossRefGoogle Scholar
  51. Mihatsch WA, Franz AR, Hogel J, Pohlandt F (2002) Hydrolyzed protein accelerates feeding advancement in very low birth weight infants. Pediatrics 110(6):1199–1203CrossRefGoogle Scholar
  52. Mooij MG, Schwarz UI, de Koning BA, Leeder JS, Gaedigk R, Samsom JN et al (2014) Ontogeny of human hepatic and intestinal transporter gene expression during childhood: age matters. Drug Metab Dispos 42(8):1268–1274CrossRefGoogle Scholar
  53. Morgan J, Bombell S, McGuire W (2013) Early trophic feeding versus enteral fasting for very preterm or very low birth weight infants. Cochrane Database Syst Rev 3:CD000504Google Scholar
  54. Morgan J, Young L, McGuire W (2014) Delayed introduction of progressive enteral feeds to prevent necrotising enterocolitis in very low birth weight infants. Cochrane Database Syst Rev 12:CD001970Google Scholar
  55. Neu J, Walker WA (2011) Necrotizing enterocolitis. N Engl J Med 364(3):255–264CrossRefGoogle Scholar
  56. Nutrition ECo, Arslanoglu S, Corpeleijn W, Moro G, Braegger C, Campoy C et al (2013) Donor human milk for preterm infants: current evidence and research directions. J Pediatr Gastroenterol Nutr 57(4):535–542CrossRefGoogle Scholar
  57. O’Connor DL, Gibbins S, Kiss A, Bando N, Brennan-Donnan J, Ng E et al (2016) Effect of supplemental donor human milk compared with preterm formula on neurodevelopment of very low-birth-weight infants at 18 months: a randomized clinical trial. JAMA 316(18):1897–1905CrossRefGoogle Scholar
  58. Partridge EA, Davey MG, Hornick MA, McGovern PE, Mejaddam AY, Vrecenak JD et al (2017) An extra-uterine system to physiologically support the extreme premature lamb. Nat Commun 8:15112CrossRefGoogle Scholar
  59. Pettifor JM, Rajah R, Venter A, Moodley GP, Opperman L, Cavaleros M et al (1989) Bone mineralization and mineral homeostasis in very low-birth-weight infants fed either human milk or fortified human milk. J Pediatr Gastroenterol Nutr 8(2):217–224CrossRefGoogle Scholar
  60. Pitkin RM, Reynolds WA (1975) Fetal ingestion and metabolism of amniotic fluid protein. Am J Obstet Gynecol 123(4):356–363CrossRefGoogle Scholar
  61. Polberger S, Raiha NC, Juvonen P, Moro GE, Minoli I, Warm A (1999) Individualized protein fortification of human milk for preterm infants: comparison of ultrafiltrated human milk protein and a bovine whey fortifier. J Pediatr Gastroenterol Nutr 29(3):332–338CrossRefGoogle Scholar
  62. Rigo J, Salle BL, Picaud JC, Putet G, Senterre J (1995) Nutritional evaluation of protein hydrolysate formulas. Eur J Clin Nutr 49(Suppl 1):S26–S38PubMedGoogle Scholar
  63. Rovekamp-Abels LW, Hogewind-Schoonenboom JE, de Wijs-Meijler DP, Maduro MD, Jansen-van der Weide MC, van Goudoever JB et al (2015) Intermittent bolus or semicontinuous feeding for preterm infants? J Pediatr Gastroenterol Nutr 61(6):659–664CrossRefGoogle Scholar
  64. Sangild PT, Elnif J (1996) Intestinal hydrolytic activity in young mink (Mustela Vison) develops slowly postnatally and exhibits late sensitivity to glucocorticoids. J Nutr 126(9):2061–2068CrossRefGoogle Scholar
  65. Schanler RJ, Shulman RJ, Lau C (1999) Feeding strategies for premature infants: beneficial outcomes of feeding fortified human milk versus preterm formula. Pediatrics 103(6 Pt 1):1150–1157CrossRefGoogle Scholar
  66. Shen RL, Thymann T, Ostergaard MV, Stoy AC, Krych L, Nielsen DS et al (2015) Early gradual feeding with bovine colostrum improves gut function and NEC resistance relative to infant formula in preterm pigs. Am J Physiol Gastrointest Liver Physiol. Scholar
  67. Shulman RJ, Schanler RJ, Lau C, Heitkemper M, Ou CN, Smith EO (1998) Early feeding, antenatal glucocorticoids, and human milk decrease intestinal permeability in preterm infants. Pediatr Res 44(4):519–523CrossRefGoogle Scholar
  68. Singhal A, Cole TJ, Lucas A (2001) Early nutrition in preterm infants and later blood pressure: two cohorts after randomised trials. Lancet 357(9254):413–419CrossRefGoogle Scholar
  69. Sohn AH, Garrett DO, Sinkowitz-Cochran RL, Grohskopf LA, Levine GL, Stover BH et al (2001) Prevalence of nosocomial infections in neonatal intensive care unit patients: results from the first national point-prevalence survey. J Pediatr 139(6):821–827CrossRefGoogle Scholar
  70. Sullivan S, Schanler RJ, Kim JH, Patel AL, Trawoger R, Kiechl-Kohlendorfer U et al (2010) An exclusively human milk-based diet is associated with a lower rate of necrotizing enterocolitis than a diet of human milk and bovine milk-based products. J Pediatr 156(4):562–7.e1CrossRefGoogle Scholar
  71. van den Akker CH, van Goudoever JB (2016) Defining protein requirements of preterm infants by using metabolic studies in fetuses and preterm infants. Nestle Nutr Inst Workshop Ser 86:139–149CrossRefGoogle Scholar
  72. Van den Akker CH, Schierbeek H, Rietveld T, Vermes A, Duvekot JJ, Steegers EA et al (2008) Human fetal albumin synthesis rates during different periods of gestation. Am J Clin Nutr 88(4):997–1003CrossRefGoogle Scholar
  73. Van den Akker CH, Schierbeek H, Dorst KY, Schoonderwaldt EM, Vermes A, Duvekot JJ et al (2009) Human fetal amino acid metabolism at term gestation. Am J Clin Nutr 89(1):153–160CrossRefGoogle Scholar
  74. van Goudoever JB, Stoll B, Hartmann B, Holst JJ, Reeds PJ, Burrin DG (2001) Secretion of trophic gut peptides is not different in bolus- and continuously fed piglets. J Nutr 131(3):729–732CrossRefGoogle Scholar
  75. Vlaardingerbroek H, Schierbeek H, Rook D, Vermeulen MJ, Dorst K, Vermes A et al (2016) Albumin synthesis in very low birth weight infants is enhanced by early parenteral lipid and high-dose amino acid administration. Clin Nutr 35(2):344–350CrossRefGoogle Scholar
  76. Vohr BR, Poindexter BB, Dusick AM, McKinley LT, Wright LL, Langer JC et al (2006) Beneficial effects of breast milk in the neonatal intensive care unit on the developmental outcome of extremely low birth weight infants at 18 months of age. Pediatrics 118(1):e115–e123CrossRefGoogle Scholar
  77. Walker WA (2017) Bacterial colonization of the newborn gut, immune development, and prevention of disease. Nestle Nutr Inst Workshop Ser 88:23–33CrossRefGoogle Scholar
  78. Watson J, McGuire W (2013) Transpyloric versus gastric tube feeding for preterm infants. Cochrane Database Syst Rev 2:CD003487Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PediatricsEmma Children’s Hospital – AMC and VU University Medical CenterAmsterdamThe Netherlands

Personalised recommendations