Neonatology pp 409-421 | Cite as

Early Detection of Neonatal Depression and Asphyxia

  • Paolo BibanEmail author
  • Davide Silvagni
Reference work entry


Neonatal depression is a general term to describe the condition of any newborn showing a prolonged transition from intrauterine to extrauterine life, in the immediate postnatal period. The variable degree of depression is inversely related to the Apgar score, with 1 min scores of 0–3 indicating the most severe forms, which may include perinatal asphyxia.

Despite major advances in obstetric and neonatal care, perinatal asphyxia remains a serious condition which may occur in the intrapartum, immediate postpartum, and early neonatal period.

Perinatal asphyxia can be associated either with an uneventful course or with significant mortality and long-term morbidity. Therefore, reliable diagnostic and prognostic indicators are essential for a prompt recognition and treatment of newborns at risk for subsequent negative outcome.

However, the early detection of perinatal asphyxia still constitutes a challenging target in neonatology.

Despite several biochemical markers of asphyxia are available nowadays, none of them have shown sufficient reliability in predicting long-term neurological outcome.

Electrophysiological and neuroimaging investigations, such as aEEG, diffusion weighted MRI, or magnetic resonance spectroscopy, may provide early valuable information, but may be not easily available. Further research is still needed to validate prediction models capable to identify neonates at risk of dismal outcome due to perinatal asphyxia, allowing an adequate and timely diagnosis, treatment, and counselling.


  1. American College of Obstetricians and Gynecologists Committee Opinion (1998) Inappropriate uses of the terms fetal distress and birth asphyxia. Int J Gynecol Obstet 61:309–310CrossRefGoogle Scholar
  2. American College of Obstetricians and Gynecologists, Task Force on Neonatal Encephalopathy and Cerebral Palsy, American Academy of Pediatrics (2003) Neonatal encephalopathy and cerebral palsy: defining the pathogenesis and pathophysiology. American College of Obstetricians and Gynecologists, Washington, DCGoogle Scholar
  3. American College of Obstetrics and Gynecology, Task Force on Neonatal Encephalopathy, American Academy of Pediatrics (2014) Neonatal encephalopathy and neurologic outcome, 2nd edn. American College of Obstetricians and Gynecologists, Washington, DCGoogle Scholar
  4. American College of Obstetrics and Gynecology, Committee on Obstetric practice, American Academy of Pediatrics (2015) The Apgar score. Committee opinion N. 644. Obstet Gynecol 126:e52–e55CrossRefGoogle Scholar
  5. Apgar V (1953) A proposal for a new method of evaluation of the newborn infant. Curr Res Anesth Analg 32:260–267CrossRefGoogle Scholar
  6. Aurora S, Snyder EY (1997) Perinatal asphyxia. In: Cloherty JP, Eichenwald EC, Stark AR (eds) Manual of neonatal care, 4th edn. Lippincott Williams & Wilkins, Philadephia, pp 536–555Google Scholar
  7. Barkovich AJ, Miller SP, Bartha A et al (2006) MR imaging, MR spectroscopy, and diffusion tensor imaging of sequential studies in neonates with encephalopathy. AJNR Am J Neuroradiol 27:533–547PubMedGoogle Scholar
  8. Belfort MA, Saade GR, Thom E et al (2015) A randomized trial of intrapartum fetal ECG ST-segment analysis. N Engl J Med 373:632–641CrossRefGoogle Scholar
  9. Bretscher J, Saling E (1967) pH values in the human fetus during labor. Am J Obstet Gynecol 97:906–911CrossRefGoogle Scholar
  10. Buonocore G, Perrone S, Gioia D et al (1999) Nucleated red blood cell count at birth as an index of perinatal brain damage. Am J Obstet Gynecol 181:1500–1505CrossRefGoogle Scholar
  11. Cahill AG, Roehl KA, Odibo AO et al (2012) Association and prediction of neonatal acidemia. Am J Obstet Gynecol 207:206.e1–206.e8CrossRefGoogle Scholar
  12. Carbonne B, Nguyen A (2008) Fetal scalp blood sampling for pH and lactate measurement during labour. J Gynecol Obstet Biol Reprod 375:S65–S71CrossRefGoogle Scholar
  13. Carter BS, McNabb F, Merenstein GB (1998) Prospective validation of a scoring system for predicting neonatal morbidity after acute perinatal asphyxia. J Pediatr 132:619–623CrossRefGoogle Scholar
  14. Chalak LF, Sanchez PJ, Adams-Huet B et al (2013) Biomarkers for severity of neonatal hypoxic–ischaemic encephalopathy and outcomes in newborns receiving hypothermia therapy. J Pediatr 164:468–474CrossRefGoogle Scholar
  15. Cheong JL, Coleman L, Hunt RW et al (2012) Prognostic utility of magnetic resonance imaging in neonatal hypoxic–ischaemic encephalopathy: substudy of a randomized trial. Arch Pediatr Adolesc Med 166:634–640CrossRefGoogle Scholar
  16. da Silva SD, Hennebert N, Denis R, Wayenberg JL (2000) Clinical value of single postnatal lactate measurement after intrapartum asphyxia. Acta Paediatr 89:320–323CrossRefGoogle Scholar
  17. de Vries LS, Hellstrom-Westas L (2005) Role of cerebral function monitoring in the newborn. Arch Dis Child Fetal Neonatal Ed 90:F201–F207CrossRefGoogle Scholar
  18. Deshpande SA, Ward Platt MP (1997) Association between blood lactate and acid base status and mortality in ventilated babies. Arch Dis Child Fetal Neonatal Ed 76:F15–F20CrossRefGoogle Scholar
  19. Ehrenstein V (2009) Association of Apgar scores with death and neurologic disability. Clin Epidemiol 1:45–53CrossRefGoogle Scholar
  20. Eken P, Toet MC, Groenendaal F et al (1995) Predictive value of early neuroimaging, pulsed Doppler and neurophysiology in full term infants with hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed 73:F75–F80CrossRefGoogle Scholar
  21. Fraser DD, Close TE, Rose KL et al (2011) Severe traumatic brain injury in children elevates glial fibrillary acidic protein in cerebrospinal fluid and serum. Pediatr Crit Care Med 12:319–324CrossRefGoogle Scholar
  22. Gazzolo D, Frigiola A, Bashir M et al (2009) Diagnostic accuracy of S100B urinary testing at birth in full-term asphyxiated newborns to predict neonatal death. PLoS One 4(2):e4298CrossRefGoogle Scholar
  23. Glantz JC, Woods JR (2004) Significance of amniotic fluid Meconium. In: Creasy RK, Resnik R, Iams JD (eds) Maternal-fetal medicine: principles and practice, 5th edn. WB Saunders, PhiladelphiaGoogle Scholar
  24. Gluckman PD, Wyatt JS, Azzopardi D et al (2005) Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial. Lancet 365:663–670CrossRefGoogle Scholar
  25. Goel M, Dwivedi R, Gohiya P, Hegde D (2013) Nucleated red blood cell in cord blood as a marker of perinatal asphyxia. J Clin Neonatol 2:179–182CrossRefGoogle Scholar
  26. Goodwin TM (1999) Clinical implications of perinatal depression. Obstet Gynecol Clin North Am 26:711–723CrossRefGoogle Scholar
  27. Goodwin TM, Belai I, Hernandez P et al (1992) Asphyxial complications in the term newborn with severe umbilical acidemia. Am J Obstet Gynecol 167:1506–1512CrossRefGoogle Scholar
  28. Graham EM, Ruis KA, Hartman AL et al (2008) A systematic review of the role of intrapartum hypoxia-ischaemia in the causation of neonatal encephalopathy. Am J Obstet Gynecol 199:587–595CrossRefGoogle Scholar
  29. Graham EM, Adami RR, McKenney SL et al (2014) Diagnostic accuracy of fetal heart rate monitoring in the identification of neonatal encephalopathy. Obstet Gynecol 124:507–513CrossRefGoogle Scholar
  30. Hegyi T, Carbone T, Anwar M et al (1998) The Apgar score and its components in the preterm infant. Pediatrics 101:77–81CrossRefGoogle Scholar
  31. Huang CC, Wang ST, Chang YC et al (1999) Measurement of the urinary lactate:creatinine ratio for the early identification of newborn infants at risk for hypoxic-ischaemic encephalopathy. N Engl J Med 341:328–335CrossRefGoogle Scholar
  32. Knutzen L, Svirko E, Impey L (2015) The significance of base deficit in acidemic term neonates. Am J Obstet Gynecol 213:373.e1–373.e7CrossRefGoogle Scholar
  33. Korst LM, Phelan JP, Ahn MO et al (1996) Nucleated red blood cells: an update on the marker for fetal asphyxia. Am J Obstet Gynecol 176:843–846CrossRefGoogle Scholar
  34. Kruger K, Kublickas M, Westgren M (1998) Lactate in scalp and cord blood from fetuses with ominous fetal heart rate patterns. Obstet Gynecol 92:918–922PubMedGoogle Scholar
  35. Kruger K, Hallberg B, Blennow M et al (1999) Predictive value of fetal scalp blood lactate concentration and pH as marker for neurologic disability. Am J Obstet Gynecol 181:1072–1078CrossRefGoogle Scholar
  36. Larma JD, Silva AM, Holcroft CJ et al (2007) Intrapartum electronic fetal heart rate monitoring and the identification of metabolic acidosis and hypoxic- ischaemic encephalopathy. Am J Obstet Gynecol 197:301.e1–301.e8CrossRefGoogle Scholar
  37. Lawn JE, Cousens S, Zupan J (2005) 4 million neonatal deaths: when? where? Why? Lancet 365:891–900CrossRefGoogle Scholar
  38. Levene ML, Kornberg J, Williams TH (1985) The incidence and severity of post-asphyxial encephalopathy in full-term infants. Early Hum Dev 11:21–26CrossRefGoogle Scholar
  39. Low JA (1997) Intrapartum fetal asphyxia: definition, diagnosis, and classification. Am J Obstet Gynecol 176:957–959CrossRefGoogle Scholar
  40. Low JA, Lindsay BG, Derrick EJ (1997) Threshold of metabolic acidosis associated with newborn complications. Am J Obstet Gynecol 177:1391–1394CrossRefGoogle Scholar
  41. MacLennan A (1999) A template for defining a causal relation between acute intrapartum events and cerebral palsy: international consensus statement. BMJ 319:1054–1059CrossRefGoogle Scholar
  42. Massaro AN, Jeromin A, Kadom N et al (2013) Serum bio-markers of MRI brain injury in neonatal hypoxic ischaemic encephalopathy treated with whole-body hypothermia: a pilot study. Pediatr Crit Care Med 14:310–317CrossRefGoogle Scholar
  43. McAdams RM, Juul SE (2016) Neonatal encephalopathy: update on therapeutic hypothermia and other novel therapeutics. Clin Perinatol 43:485–500CrossRefGoogle Scholar
  44. Merchant N, Azzopardi D (2015) Early predictors of outcome in infants treated with hypothermia for hypoxic–ischaemic encephalopathy. Dev Med Child Neurol 57(Suppl 3):8–16CrossRefGoogle Scholar
  45. Murray DM, Boylan GB, Fitzgerald AP (2008) Persistent lactic acidosis in neonatal hypoxic-ischaemic encephalopathy correlates with EEG grade and electrographic seizure burden. Arch Dis Child Fetal Neonatal Ed 93:F183–F186CrossRefGoogle Scholar
  46. Nagel HT, Vandenbussche FP, Oepkes D et al (1995) Follow-up of children born with an umbilical arterial blood pH < 7. Am J Obstet Gynecol 173:1758–1764CrossRefGoogle Scholar
  47. Nelson KB, Grether JK (1998) Potentially asphyxiating conditions and spastic cerebral palsy in infants of normal birth weight. Am J Obstet Gynecol 179:507–513CrossRefGoogle Scholar
  48. Nordstrom L (2004) Fetal scalp and cord blood lactate. Best Pract Res Clin Obstet Gynaecol 18:467–476CrossRefGoogle Scholar
  49. Perlman JM, Risser R (1993) Severe fetal acidemia: neonatal neurologic features and short term outcome. Pediatr Neurol 9:277–282CrossRefGoogle Scholar
  50. Perlman JM, Risser R (1996) Can asphyxiated infants at risk for neonatal seizures be rapidly identified by current high-risk markers. Pediatrics 97:456–462PubMedGoogle Scholar
  51. Phelan JP, Martin GI, Korst LM (2005) Birth asphyxia and cerebral palsy. Clin Perinatol 32:61–76CrossRefGoogle Scholar
  52. Rutherford M, Srinivasan L, Dyet L et al (2006) Magnetic resonance imaging in perinatal brain injury: clinical presentation, lesions and outcome. Pediatr Radiol 36:582–592CrossRefGoogle Scholar
  53. Sarnat HB, Sarnat MS (1976) Neonatal encephalopathy following fetal distress: a clinical and electroencephalographic study. Arch Neurol 33:696–705CrossRefGoogle Scholar
  54. Savman K, Blennow M, Gustafson K et al (1998) Cytokine response in cerebrospinal fluid after birth asphyxia. Pediatr Res 43:746–751CrossRefGoogle Scholar
  55. Shah PS, Raju NV, Beyene J, Perlman M (2003) Recovery of metabolic acidosis in term infants with postasphyxial hypoxic-ischaemic encephalopathy. Acta Paediatr 92:941–947CrossRefGoogle Scholar
  56. Shah S, Tracy M, Smyth J (2004a) Postnatal lactate as an early predictor of short-term outcome after intrapartum asphyxia. J Perinatol 24:16–20CrossRefGoogle Scholar
  57. Shah P, Riphagen S, Beyene J, Perlman M (2004b) Multiorgan dysfunction in infants with post-asphyxial hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed 89:F152–F155CrossRefGoogle Scholar
  58. Shah PS, Beyene J, To T et al (2006) Postasphyxial hypoxic-ischaemic encephalopathy in neonates: outcome prediction rule within 4 hours of birth. Arch Pediatr Adolesc Med 160:729–736CrossRefGoogle Scholar
  59. Shalak LF, Laptook AR, Velaphi SC, Perlman JM (2003) Amplitude-integrated electroencephalography coupled with an early neurologic examination enhances prediction of term infants at risk for persistent encephalopathy. Pediatrics 111:351–357CrossRefGoogle Scholar
  60. Shankaran S (2009) Neonatal encephalopathy: treatment with hypothermia. J Neurotrauma 26:437–443CrossRefGoogle Scholar
  61. The Task Force on Cerebral Palsy and Neonatal Asphyxia of the Society of Obstetricians and Gynecologists of Canada (1996) Policy statement (part I). J Soc Obstet Gynecol Can 18:1267–1279Google Scholar
  62. Tuuli MG, Stout MJ, Shanks A et al (2014) Umbilical cord arterial lactate compared with pH for predicting neonatal morbidity at term. Obstet Gynecol 124:756–761CrossRefGoogle Scholar
  63. Van Laerhoven H, de Haan TR, Offringa M et al (2013) Prognostic tests in term neonates with hypoxic–ischaemic encephalopathy: a systematic review. Pediatrics 131:88–98CrossRefGoogle Scholar
  64. Volpe JJ (2008) Hypoxic-ischaemic encephalopathy: clinical aspects. In: Volpe JJ (ed) Neurology of the newborn, 5th edn. WB Saunders, PhiladelphiaGoogle Scholar
  65. William OHW, Perritt R, Shankaran S et al (2008) Association between urinary lactate to creatinine ratio and neurodevelopmental outcome in term infants with hypoxic-ischemic encephalopathy. J Pediatr 153:375–378CrossRefGoogle Scholar
  66. Williams KP, Galerneau F (2003) Intrapartum fetal heart rate patterns in the prediction of neonatal acidemia. Am J Obstet Gynecol 188:820–823CrossRefGoogle Scholar
  67. World Health Organization (2005) The World health report 2005. Make every mother and child count.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Azienda Ospedaliera Universitaria Integrata VeronaVeronaItaly

Personalised recommendations