Neonatology pp 237-249 | Cite as

Early Markers of Poor Outcome in Neonatal Medicine

  • Fabrizio FerrariEmail author
  • Licia Lugli
  • Elisabetta Garetti
  • Isotta Guidotti
  • Marisa Pugliese
  • Laura Lucaccioni
Reference work entry


A major issue for neonatologists and developmental neurologists is the identification of those infants who are at risk of subsequent neurodevelopmental disability and who may benefit from neurological follow-up and early intervention strategies.

The incidence of major disabilities has decreased in very preterm and extremely preterm infants, although nearly half of the population suffers from minor disabilities as learning disabilities, cognitive defects, attention deficit/hyperactivity disorders, and behavioral problems, especially at school age. Neuroimaging needs to be accompanied by an accurate clinical assessment of the functional repertoire of the infant, which varies according to the stage of development.


  1. Arnaud C, Daubisse-Marliac L, White-Koning M, Pierrat V, Larroque B, Grandjean H, Alberge C, Marret S, Burguet A, Ancel PY, Supernant K, Kaminski M (2007) Prevalence and associated factors of minor neuromotor dysfunctions at age 5 years in prematurely born children: the EPIPAGE study. Arch Pediatr Adolesc Med 161:1053–1061CrossRefGoogle Scholar
  2. Arpi E, Ferrari F (2013) Preterm birth and behaviour problems in infants and preschool-age children: a review of the recent literature. Dev Med Child Neurol 55:788–796CrossRefGoogle Scholar
  3. Azzopardi D, Strohm B, Marlow N, Brocklehurst P, Deierl A, Eddama O et al (2014) Effects of hypothermia for perinatal asphyxia on childhood outcomes. N Engl J Med 371:140–149CrossRefGoogle Scholar
  4. Bax M, Goldstein M, Rosenbaum P et al (2005) Proposed definition and classification of cerebral palsy. Dev Med Child Neurol 47:571–576CrossRefGoogle Scholar
  5. Bosanquet M, Copeland L, Ware R, Boyd R (2013) A systematic review of tests to predict cerebral palsy in young children. Dev Med Child Neurol 55:418–426CrossRefGoogle Scholar
  6. Cheong JL, Thompson DK, Spittle AJ, Potter CR, Walsh JM, Burnett AC, Lee KJ, Chen J, Beare R, Matthews LG, Hunt RW, Anderson PJ, Doyle LW (2016) Brain Volumes at Term-Equivalent Age Are Associated with 2-Year Neurodevelopment in Moderate and Late Preterm Children. J Pediatr 174:91–97.e1CrossRefGoogle Scholar
  7. Dubowitz L, Mercuri E, Dubowitz V (1998) An optimality score for the neurologic examination of the term newborn. J Pediatr 133:406–416CrossRefGoogle Scholar
  8. Einspieler C, Cioni G, Paolicelli PB et al (2002) The early markers for later dyskinetic cerebral palsy are different from those for spastic cerebral palsy. Neuropediatrics 33:73–78CrossRefGoogle Scholar
  9. Einspieler C, Yang H, Bartl-Pokorny KD, Chi X, Zang FF, Marschik PB, Guzzetta A, Ferrari F, Bos AF, Cioni G (2015) Are sporadic fidgety movements as clinically relevant as is their absence? Early Hum Dev 91:247–252CrossRefGoogle Scholar
  10. Einspieler C, Bos AF, Libertus ME, Marschil PB (2016) The general movement assessment helps us to identify preterm infants at risk for cognitive dysfunction. Front Psychol 7:406CrossRefGoogle Scholar
  11. Ferrari F, Cioni G, Einspieler C et al (2002) Cramped synchronized general movements in preterm infants as an early marker for cerebral palsy. Arch Pediatr Adolesc Med 156:460–467CrossRefGoogle Scholar
  12. Ferrari F, Todeschini A, Guidotti I, Martinez-Biarge M, Roversi MF, Berardi A, Ranzi A, Cowan FM, Rutherford MA (2011) General movements in full-term infants with perinatal asphyxia are related to basal ganglia and thalamic lesions. J Pediatr 158:904–911CrossRefGoogle Scholar
  13. Ferrari F, Gallo C, Pugliese M, Guidotti I, Gavioli S, Coccolini E, Zagni P, Della Casa E, Rossi C, Lugli L, Todeschini A, Ori L, Bertoncelli N (2012) Preterm birth and developmental problems in the preschool age. Part I: minor motor problems. J Matern Fetal Neonatal Med 25:2154–2159. Scholar
  14. Guzzetta A, Mercuri E, Rapisardi G et al (2003) General movements detect early signs of hemiplegia in term infants with neonatal cerebral infarction. Neuropediatrics 34:61–66CrossRefGoogle Scholar
  15. Guzzetta A, Pizzardi A, Belmonti V, Boldrini A, Carotenuto M, D’Acunto G, Ferrari F, Fiori S, Gallo C, Ghirri P, Mercuri E, Romeo D, Roversi MF, Cioni G (2010) Hand movements at 3 month predict later hemiplegia in term infants with neonatal cerebral infarction. Dev Med Child Neurol 52:767–772CrossRefGoogle Scholar
  16. Johnson S, Strauss V, Gilmore C, Jaekel J, Marlow N, Wolke D (2016) Learning disabilities among extremely preterm children without neurosensory impairment: comorbidity, neuropsychological profiles and scholastic outcomes. Early Hum Dev 103:69–75CrossRefGoogle Scholar
  17. Kidokoro H, Anderson PJ, Doyle LW, Woodward LJ, Neil JJ, Inder TE (2014) Brain injury and altered brain growth in preterm infants: predictors and prognosis. Pediatrics 134:e444–e453CrossRefGoogle Scholar
  18. Kim H, Lepage C, Maheshwary R, Jeon S, Evans AC, Hess CP, Barkovich AJ, Xu D (2016) NEOCIVET: towards accurate morphometry of neonatal gyrification and clinical applications in preterm newborns. NeuroImage 138:28–42CrossRefGoogle Scholar
  19. Marlow N, Wolke D, Bracewell MA et al (2005) Neurologic and developmental disability at six years of age after extremely preterm birth. N Engl J Med 352:9–19CrossRefGoogle Scholar
  20. Mercuri E, Atkinson J, Braddick O et al (1997) Basal ganglia damage and impaired visual function in the newborn infant. Arch Dis Child Fetal Neonatal Ed 77:F111–F114CrossRefGoogle Scholar
  21. Olsen JE, Brown NC, Eeles AL, Einspieler C, Lee KJ, Thompson DK, Anderson PJ, Cheong JL, Doyle LW, Spittle AJ (2016) Early general movements and brain magnetic resonance imaging at term-equivalent age in infants born <30 weeks’ gestation. Early Hum Dev 101:63–68CrossRefGoogle Scholar
  22. Orasanu E, Melbourne A, Cardoso MJ, Lomabert H, Kendall GS, Robertson NJ, Marlow N, Ourselin S (2016) Cortical folding of the preterm brain: a longitudinal analysis of extremely preterm born neonates using spectral matching. Brain Behav 6:e00488CrossRefGoogle Scholar
  23. Palisano R, Rosenbaum P, Walter S et al (1997) Development and validation of a gross motor function classification system for children with cerebral palsy. Dev Med Child Neurol 39:214–223CrossRefGoogle Scholar
  24. Palisano RJ, Rosenbaum P, Bartlett D, Livingston MH (2008) Content validity of the expanded and revised gross motor function classification system. Dev Med Child Neurol 50:744–750CrossRefGoogle Scholar
  25. Picciolini O, Gianni ML, Vegni C, Fumagalli M, Mosca F (2006) Usefulness of an early neurofunctional assessment in predicting neurodevelopmental outcome in very low birthweight infants. Arch Dis Child Fetal Neonatal 91:F111–F117CrossRefGoogle Scholar
  26. Prechtl HF, Einspieler C, Cioni G et al (1997) An early marker for neurological deficits after perinatal brain lesions. Lancet 349:1361–1363CrossRefGoogle Scholar
  27. Ricci D, Guzzetta A, Cowan F et al (2006a) Sequential neurological examinations in infants with neonatal encephalopathy and low apgar scores: relationship with brain MRI. Neuropediatrics 37:148–153CrossRefGoogle Scholar
  28. Ricci D, Anker S, Cowan F et al (2006b) Thalamic atrophy in infants with PVL and cerebral visual impairment. Early Hum Dev 82:591–595CrossRefGoogle Scholar
  29. Romeo DM, Cioni M, Scoto M et al (2009) Prognostic value of a scorable neurological examination from 3 to 12 months post-term age in very preterm infants: a longitudinal study. Early Hum Dev 85:405–408CrossRefGoogle Scholar
  30. Rutherford MA, Pennock JM, Counsell SJ et al (1998) Abnormal magnetic resonance signal in the internal capsule predicts poor neurodevelopmental outcome in infants with hypoxic-ischemic encephalopathy. Pediatrics 102:323–328CrossRefGoogle Scholar
  31. Rutherford M, Srinivasan L, Dyet L, Ward P, Allsop J, Counsell S et al (2006) Magnetic resonance imaging in perinatal brain injury: clinical presentation, lesions and outcome. Pediatr Radiol 36:582–592CrossRefGoogle Scholar
  32. Santiago-Rodriguez E, Harmony T, Bernardino M et al (2005) Auditory steady-state responses in infants with perinatal brain injury. Pediatr Neurol 32:236–240CrossRefGoogle Scholar
  33. Shankaran S, Pappas A, McDonald SA, Vohr BR, Hintz SR, Yolton K et al (2012) Childhood outcomes after hypothermia for neonatal encephalopathy. N Engl J Med 366:2085–2092CrossRefGoogle Scholar
  34. Shankaran S, McDonald SA, Laptook AR, Hintz SR, Barnes PD, Das A, Pappas A, Higgins RD, on behalf of the Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network (2015) Neonatal Magnetic Resonance Imaging Pattern of Brain Injury as a Biomarker of Childhood Outcomes following a Trial of Hypothermia for Neonatal Hypoxic-Ischemic Encephalopathy. J Pediatr 167:987–993CrossRefGoogle Scholar
  35. Spittle AJ, Brown NC, Doyle LW, Boyd RN, Hunt RW, Bear M, Inder TE (2008) Quality of general movements is related to white matter pathology in very preterm infants. Pediatrics 121:e1184–e1189CrossRefGoogle Scholar
  36. World Health Organization (2001) International classification of functioning, disability and health. WHO, GenevaGoogle Scholar
  37. Xie K, Zheng H, Li H, Zhang C, Li H, Jin H, Ma B (2015) The study of effect for general movements assessment in the diagnosis of neurological development disorders: a meta-analysis. Clin Pediatr (Phila) 55:36–43CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Fabrizio Ferrari
    • 1
    Email author
  • Licia Lugli
    • 1
  • Elisabetta Garetti
    • 1
  • Isotta Guidotti
    • 1
  • Marisa Pugliese
    • 1
  • Laura Lucaccioni
    • 1
  1. 1.Neonatal Intensive Care Unit, Department of Medical and Surgical Sciences of the Mother, Children and AdultsUniversity of Modena and Reggio EmiliaModenaItaly

Personalised recommendations