Skip to main content

Secondary Metabolite Profile of Transgenic Centaury (Centaurium erythraea Rafn.) Plants, Potential Producers of Anticancer Compounds

  • Reference work entry
  • First Online:
Book cover Transgenesis and Secondary Metabolism

Abstract

The genus Centaurium includes about 50 plant species found throughout the northern hemisphere. Plant species Centaurium erythraea Rafn., commonly known as common centaury, has been used for centuries for medical purposes. Centaury is used to treat anemia, jaundice, and gout and to cure febrile conditions and regulate blood sugar. So far, centaury species were genetically transformed mostly using Agrobacterium rhizogenes. Only one report has described A. tumefaciens-mediated gene delivery for the production of transgenic centaury plants. Genetic transformation of centaury using AtCKX genes did not influence the quality but influenced the quantity of xanthones in shoots and roots. The majority of AtCKX transformed centaury lines grown in vitro produced increased eustomin and/or demethyleustomin content than untransformed control plants. This work clearly demonstrates, for the first time, the effect of centaury secoiridoids and xanthones on colorectal cancer cell line (DLD1) and its resistant counterpart (DLD1-TxR). The xanthone eustomin showed the most significant cell growth inhibition effects. Since xanthones are increasingly being used for their pharmacological properties, AtCKX transgenic centaury plants could be used as a useful source of plant material for the production of novel drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CKX:

Cytokinin oxidase/dehydrogenase

HPLC:

High-pressure liquid chromatography

MS:

Mass spectrometry

MSM:

Murashige and Skoog medium

NMRS:

Nuclear magnetic resonance spectroscopy

SRB:

Sulforhodamine B

UVS:

Ultraviolet–visible spectroscopy

References

  1. Sridhar TM, Aswath CR (2014) Review on medicinal plants propagation: a comprehensive study on role of natural organic extracts in tissue culture medium. Am J Plant Sci 5:3073–3088

    Article  Google Scholar 

  2. Kumar N, Reddy MP (2011) In vitro plant propagation: a review. J For Sci 27:61–72

    Google Scholar 

  3. Karruppusamy S (2009) A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. J Med Plants Res 3:1222–1239

    Google Scholar 

  4. Naina NS, Gupta PK, Mascarenhas AF (1989) Genetic transformation and regeneration of transgenic neem (Azadirachta indica) plants using Agrobacterium tumefaciens. Curr Sci 58:184–187

    Google Scholar 

  5. Yun DJ, Hashimoto T, Yamada Y (1992) Metabolic engineering of medicinal plants: transgenic Atropa belladonna with an improved alkaloid composition. Proc Natl Acad Sci U S A 89:11799–11803

    Article  CAS  Google Scholar 

  6. Cucu N, Gabriela N, Gavrila L (2002) Genetically modified medicinal plants. II. Transfer and expression of a marker kanamycin resistance gene in Atropa belladonna plants. Rom Biotechnol Lett 7:869–874

    CAS  Google Scholar 

  7. Koroch AR, Kapteyn J, Juliani HR, Simon JE (2003) In vitro regeneration and Agrobacterium transformation of Echinacea purpurea leaf explants. Trends New Crop News 39:415–418

    Google Scholar 

  8. Siahsar B, Rahimi M, Tavassoli A, Raissi A (2011) Application of biotechnology in production of medicinal plants. Am Eurasian J Agric Environ Sci 11:439–444

    CAS  Google Scholar 

  9. Takhtajan AL (1980) Outline of the classification of flowering plants (Magnoliophyta). Bot Rev 46:225–359

    Article  Google Scholar 

  10. Chevallier A (2000) Encyclopedia of herbal medicine. Dorling Kindersley, London

    Google Scholar 

  11. Jägger E (1978) Centaurium hill. In: Meusel H (ed) Vergleichende Chrologie der Zentraleuropäischen, Flora, vol 2. Gustav Ficher, Jena, pp 352–353

    Google Scholar 

  12. Melderis A (1972) Centaurium. In: Flora Europea, vol 3. Cambridge University Press, Cambridge, UK, pp 56–59

    Google Scholar 

  13. Tucakov J (1990) Healing with plants – phytotherapy. Rad, Belgrade

    Google Scholar 

  14. Skrzypczak L, Wesolovska M, Skrzypczak E (1993) Gentiana species: in vitro culture, regeneration and production of secoiridoid glucosides. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 21, Medicinal and aromatic plants IV. Springer, Berlin/Hiedelberg, pp 172–186

    Google Scholar 

  15. Subotić A, Budimir S, Grubišić D, Momčilović I (2003/2004) Direct regeneration of shoots from hairy root cultures of Centaurium erythraea inoculated with Agrobacterium rhizogenes. Biol Plant 47:617–619

    Google Scholar 

  16. Subotić A, Janković T, Jevremović S, Grubišić D (2006) Plant tissue culture and secondary metabolites productions of Centaurium erythraea Rafn., a medical plant. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology: advances and topical issues, vol II, 1st edn. Global Science Books, London, pp 564–570

    Google Scholar 

  17. Subotić A, Jevremović S, Grubišić D, Janković T (2009) Spontaneous plant regeneration and production of secondary metabolites from hairy root cultures of Centaurium erythraea Rafn. In: Jain SM, Saxena PK (eds) Protocols for in vitro cultures and secondary metabolite analysis of aromatic and medicinal plants, vol 547, Methods in molecular biology. Springer, Berlin, pp 205–217

    Chapter  Google Scholar 

  18. Subotić A, Jevremović S, Grubišić D (2009) Influence of cytokinins on in vitro morphogenesis in root cultures of Centaurium erythraea – valuable medicinal plant. Sci Hortic 120:386–390

    Article  Google Scholar 

  19. Subotić A, Jevremović S, Trifunović M, Petrić M, Milošević S, Grubišić D (2009) The influence of gibberellic acid and paclobutrazol on induction of somatic embryogenesis in wild type and hairy root cultures of Centaurium erythraea Gillib. Afr J Biotechnol 8:3223–3228

    Google Scholar 

  20. Trifunović M, Tadić V, Petrić M, Jontulović D, Jevremović S, Subotić A (2014) Quantification of arabinogalactan proteins during in vitro morphogenesis induced by β-D-glucosyl Yariv reagent in Centaurium erythraea root culture. Acta Physiol Plant 36:1187–1195

    Article  Google Scholar 

  21. Filipović BK, Simonović AD, Trifunović MM, Dmitrović SS, Savić JM, Jevremović SB, Subotić AR (2015) Plant regeneration in leaf culture of Centaurium erythraea Rafn. Part 1: the role of antioxidant enzymes. Plant Cell Tiss Org Cult 121:703–719

    Article  Google Scholar 

  22. Simonović AD, Filipović BK, Trifunović MM, Malkov SN, Milinković VP, Jevremović SB, Subotić AR (2015) Plant regeneration in leaf culture of Centaurium erythraea Rafn. Part 2: the role of arabinogalactan proteins. Plant Cell Tiss Org Cult 21:721–739

    Article  Google Scholar 

  23. Trifunović-Momčilov M, Motyka V, Dragićević IČ, Petrić M, Jevremović S, Malbeck J, Holík J, Dobrev PI, Subotić A (2015) Endogenous phytohormones in spontaneously regenerated Centaurium erythraea Rafn. plants grown in vitro. J Plant Growth Regul. doi:10.1007/s00344-015-9558-x

    Google Scholar 

  24. Piatczak E, Krolicka A, Wysokinska H (2006) Genetic transformation of Centaurium erythraea Rafn by Agrobacterium rhizogenes and the production of secoiridoids. Plant Cell Rep 25:1308–1315

    Article  CAS  Google Scholar 

  25. Hosokawa K, Matsuki R, Oikawa Y, Yamamura S (1997) Genetic transformation of gentian wild-type Agrobacterium rhizogenes. Plant Cell Tiss Org Cult 51:137–140

    Article  Google Scholar 

  26. Deroles SC, Ledger SE, Miller RM, Davies KM, Given NK (1993) Transformation of Eustoma grandiflorum (Lisianthus). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry. Plant protoplasts and genetic engineering III, vol. 22. Springer-Verlag Berlin Heidelberg, pp 202–212

    Google Scholar 

  27. Vinterhalter B, Momčilović I, Vinterhalter D (2000) High biomass producing root cultures of Gentiana punctata L. Transformed with Agrobacterium tumefaciens C58C1 (pArA4b). Arch Biol Sci 52:85–90

    Google Scholar 

  28. Sun SB, Meng LS (2010) Genetic transformation of Gentiana dahurica Fisch. by Agrobacterium tumefaciens using zygotic embryo-derived callus. Acta Physiol Plant 32:629–634

    Article  CAS  Google Scholar 

  29. Trifunović M, Cingel A, Simonović A, Jevremović S, Petrić M, Dragićević IČ, Motyka V, Dobrev PI, Zahajská L, Subotić A (2013) Overexpression of Arabidopsis cytokinin oxidase/dehydrogenase genes AtCKX1 and AtCKX2 in transgenic Centaurium erythraea Rafn. Plant Cell Tiss Org Cult 115:139–150

    Article  Google Scholar 

  30. Suginuma C, Akihana T (1995) Transformation of gentian with Agrobacterium rhizogenes. Acta Hortic 392:153–160

    Article  CAS  Google Scholar 

  31. Momčilović I, Grubišić D, Kojić M, Nešković M (1997) Agrobacterium rhizogenes-mediated transformation and plant regeneration of four Gentiana species. Plant Cell Tiss Org Cult 50:1–6

    Article  Google Scholar 

  32. Hayta S, Gurel A, Akgun IH, Altan F, Ganzera M, Tanyolac B, Bedir E (2011) Induction of Gentiana cruciata hairy roots and their secondary metabolites. Biologia 66:618–625

    Article  CAS  Google Scholar 

  33. Vinterhalter B, Orbović V, Vinterhalter D (1999) Transgenic root cultures of Gentiana punctata L. Acta Soc Bot Pol 68:275–280

    Article  Google Scholar 

  34. Hosokawa K, Matsuki R, Oikawa Y, Yamamura S (2000) Production of transgenic gentian plants by particle bombardment of suspension-culture cells. Plant Cell Rep 19:454–458

    Article  CAS  Google Scholar 

  35. Mishiba K, Nishihara M, Abe Y, Nakatsuka T, Kawamura K, Komada K, Takesawa T, Abe J, Yamamura S (2006) Production of dwarf potted gentian using wild-type Agrobacterium rhizogenes. Plant Biotechnol 23:33–38

    Article  CAS  Google Scholar 

  36. Tiwari RK, Trivedi M, Gunag ZC, Guo GQ, Zheng GC (2007) Genetic transformation of Gentiana macrophylla with Agrobacterium rhizogenes: growth and production of secoiridoid glucoside gentiopicroside in transformed hairy root culture. Plant Cell Rep 26:199–210

    Article  CAS  Google Scholar 

  37. Zhang HL, Xue SH, Pu F, Tiwari RK, Wang XY (2010) Establishment of hairy root lines and analysis of gentiopicroside in the medicinal plant Gentiana macrophylla. Russ J Plant Physiol 57:110–117

    Article  CAS  Google Scholar 

  38. Vinterhalter B, Krstić-Milošević D, Janković T, Pljevljakušić D, Ninković S, Smigocki A, Vinterhalter D (2015) Gentiana dinarica Beck. hairy root cultures and evaluation of factors affecting growth and xanthone production. Plant Cell Tiss Org Cult 121:667–679

    Article  CAS  Google Scholar 

  39. Handa T (1992) Regeneration and characterization of prairie gentian (Eustoma grandiflorum) plants transformed by Agrobacterium rhizogenes. Plant Tissue Cult Lett 9:10–14

    Article  Google Scholar 

  40. Handa T, Sujimura T, Kato E, Kamada H, Takayanagi K (1995) Genetic transformation of Eustoma grandiflorum with rol genes. Acta Hortic 392:209–218

    Article  CAS  Google Scholar 

  41. Semeria L, Vaira AM, Accotto GP, Allavena A (1995) Genetic transformation of Eustoma grandiflorum Griseb. By microprojectile bombardment. Euphytica 85:125–130

    Article  Google Scholar 

  42. Giovannini A, Pecchioni N, Allavena A (1996) Genetic transformation of lisianthus (Eustoma grandiflorum Griseb) by Agrobacterium rhizogenes. J Genet Breed 50:35–39

    Google Scholar 

  43. Semeria L, Ruffoni B, Rabaglio M, Ganga A, Vaira AM, Accotto GP (1996) Genetic transformation of Eustoma grandiflorum by Agrobacterium tumefaciens. Plant Cell Tiss Org Cult 47:67–72

    Article  CAS  Google Scholar 

  44. Ledger SE, Deroles SC, Manson DG, Bradley JM, Gicen NK (1997) Transformation of lisianthus. Plant Cell Rep 16:853–858

    Article  CAS  Google Scholar 

  45. Schwinn KE, Davies KM, Deroles SC, Markham KR, Miller RM, Brdaley JM, Manson DG, Given NK (1997) Expression of an Antirrhinum majus UDP-glucose:flavonoid-3-o-glucosyltransferase transgene alters flavonoid glycosylation and acylation in lisianthus (Eustoma grandiflorum Grise.). Plant Sci 25:53–61

    Article  Google Scholar 

  46. Takahashi M, Nishihara M, Yamamura S, Nishizava S, Irifune K, Morikawa H (1998) Stable transformation of Eustoma grandiflorum by particle bombardment. Plant Cell Rep 17:504–507

    Article  CAS  Google Scholar 

  47. Ishimaru K, Sudo H, Satake M, Matsunaga Y, Takemoto S, Shimomura K (1990) Amarogentin, amaroswerin and four xanthones from root culture of Swertia japonica. Phytochemistry 29:1563–1565

    Article  CAS  Google Scholar 

  48. Freeman BC, Beattie GA (2008) An overview of plant defenses against pathogens and herbivores. Plant Health Instr. doi:10.1094/PHI-I-2008-0226-01

    Google Scholar 

  49. Oksman-Caldentey KM, Inzé D (2004) Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. Trends Plant Sci 9:433–440

    Article  CAS  Google Scholar 

  50. Rodriguez S, Marston A, Wolfender JL, Hostettmann K (1998) Iridoids and secoiridoids in the Gentianaceae. Curr Org Chem 2:627–648

    CAS  Google Scholar 

  51. Coscia CJ, Guarnaccia R (1968) Natural occurrence and biosynthesis of a cyclopentanoid monoterpene carboxylic acid. Chem Commun 3:138–140

    Google Scholar 

  52. Inouye H, Uesato S (1986) Biosynthesis of iridoids and secoiridoids. Prog Chem Org Nat Prod 50:169–236

    CAS  Google Scholar 

  53. Jensen SR (1991) Plant iridoids, their biosynthesis and distribution in angiosperms. In: Harborne JB, Tomas-Barbaran FA (eds) Ecological chemistry and biochemistry of plant terpenoids. Clarendon, Oxford, UK, pp 133–158

    Google Scholar 

  54. Jensen SR, Schripsema J (2002) Chemotaxonomy and pharmacology of Gentianaceae. In: Struve L, Albert V (eds) Gentianaceae – systematics and natural history. Cambridge University Press, Cambridge, UK, pp 573–631

    Google Scholar 

  55. Van der Sluis WG, Van der Nat JM, Spek ÁL, Ikeshiro Y, Labadie RP (1983) Secoiridoids and xanthones in the genus Centaurium. Part VI: gentiogenal, a conversion product of gentiopicrin (gentiopicroside). Planta Med 49:211–215

    Article  Google Scholar 

  56. Bhattacharya SK, Reddy PKSP, Ghosal S, Singh AK, Sharma P (1976) Chemical constituents of Gentianaceae. Indian J Pharm Sci 65:1547–1549

    Article  CAS  Google Scholar 

  57. Liang J, Han D, Li H, Yuan X (1982) Isolation and identification of swertiamarin, the active principle in Swertia patens Burk. Yaoxue Tongbao 17:242–243

    Google Scholar 

  58. Yamamura J, Kobayashi M, Matsuda H, Aoki S (1991) Anticholinergic action of Swertia japonica and an active constituent. J Ethnopharmacol 33:31–35

    Article  Google Scholar 

  59. Zhou J (1991) Bioactive glycosides from Chinese medicines. Mem Inst Oswaldo Cruz Rio J 86:231–234

    Article  Google Scholar 

  60. Kondo Y, Takano F, Hojo H (1994) Suppression of chemically and immunologically induced hepatic injuries by gentiopicroside in mice. Planta Med 60:414–416

    Article  CAS  Google Scholar 

  61. Kumarasamy Y, Nahar L, Cox PJ, Jaspars M, Sarker SD (2003) Bioactivity of secoiridoid glycosides from Centaurium erythraea. Phytomedicine 10:344–347

    Article  CAS  Google Scholar 

  62. Kumarasamy Y, Nahar L, Sarker SD (2003) Bioactivity of gentiopicroside from the aerial parts of Centaurium erythraea. Fitoterapia 74:151–154

    Article  CAS  Google Scholar 

  63. Martindale (1982) Bitters. In: Reynolda JEF (ed) The extra pharmacopoeia, 28th edn. The Pharmaceutical Press, London

    Google Scholar 

  64. Haloui M, Louedec L, Michel JB, Lyoussi B (2000) Experimental diuretic effect of Rosmarinus officinalis and Centaurium erythraea. J Ethnopharmacol 71:465–472

    Article  CAS  Google Scholar 

  65. Mandal S, Das PC, Joshi PC (1992) Naturally occurring xanthones from terrestrial flora. J Indian Chem Soc 69:611–636

    CAS  Google Scholar 

  66. Abd el Mawla AMA, Schmidt W, Beerhues L (2001) Cinnamic acid is a precursor of benzoic acids in cell cultures of Hypericum androsaemum L. but not in cell cultures of Centaurium erythraea Rafn. Planta 212:288–293

    Article  CAS  Google Scholar 

  67. Wang C-Z, Maier UH, Keil M, Zenk MH, Bacher A, Rondich F, Eisenreich W (2003) Phenylalanine-independent biosynthesis of 1,3,5,8-tetrahydroxyxanthone. Eur J Biochem 270:2950–2958

    Article  CAS  Google Scholar 

  68. Van der Sluis WG (1985) Secoiridoids and xanthones in the genus Centaurium Hill (Gentianaceae) – a pharmacognostical study. Drukkerij Elinkwijk bv, Utrecht

    Google Scholar 

  69. Van der Sluis WG (1985) Chemotaxonomical investigations of the Genera Blackstonia and Centaurium (Gentianaceae). Plant Syst Evol 149:253–286

    Article  Google Scholar 

  70. Janković T, Krstić D, Šavikin-Fodulović K, Menković N, Grubišić D (2000) Xanthone compounds of Centaurium erythraea grown in nature and cultured in vitro. Pharm Pharmacol Lett 10:23–25

    Google Scholar 

  71. Valentão P, Andrade PB, Silva E, Vincente A, Santos H, Bastos ML, Seabra R (2002) Methoxylated xanthones in the quality control of small centaury (Centaurium erythraea) flowering tops. J Agric Food Chem 50:460–463

    Article  Google Scholar 

  72. Krstić D, Janković T, Šavikin-Fodulović K, Menković N, Grubišić D (2003) Secoiridoids and xanthones in the shoots and roots of Centaurium pulchellum cultured in vitro. In Vitro Cell Dev Biol Plant 39:203–207

    Article  Google Scholar 

  73. Jiang DJ, Dai Z, Li YJ (2004) Pharmacological effects of xanthones as cardiovascular protective agents. Cardiovasc Drug Rev 22:91–102

    Article  CAS  Google Scholar 

  74. Saxena S, Pant S, Jain DC, Bhakuni RS (2003) Antimalarial agents from plant sources. Curr Sci 85:1314–1329

    CAS  Google Scholar 

  75. Rukachaisirikul V, Kamkaew M, Sukavisit D, Phongpaichit S, Sawangchote P, Taylor WC (2003) Antibacterial Xanthones from the Leaves of Garcinia nigrolineata. J Nat Prod 66:1531–1535

    Article  CAS  Google Scholar 

  76. Pinto MMM, Sousa ME, Nascimento MSJ (2005) Xanthone derivatives: new insights in biological activities. Curr Med Chem 12:2517–2538

    Article  CAS  Google Scholar 

  77. Schaufelberger D, Hostettmann K (1988) Chemistry and Pharmacology of Gentiana lutea. Planta Med 54:219–221

    Article  CAS  Google Scholar 

  78. Moureau F, Wouters J, Vercauteren DP, Colin S, Edrvard G, Durant F, Ducrey F, Koenig J, Jarreau FX (1994) A reversible monoamine oxidase inhibitor, toloxatone: spectrophotometric and molecular orbital studies of the interaction with flavin adenine dinucleotide (FAD). Eur J Med Chem 29:269–277

    Article  CAS  Google Scholar 

  79. Wang JN, Hou CY, Liu YL (1994) Swertia francheside, an HIV-reverse transcriptase inhibitor and the first flavone-xanthone dimer, from Swertia franchetiana. J Nat Prod 57:211–217

    Article  CAS  Google Scholar 

  80. Groweiss A, Cardellina JH, Boyd MR (2000) HIV-Inhibitory Prenylated Xanthones and Flavones from Maclura tinctoria. J Nat Prod 63:1537–1539

    Article  CAS  Google Scholar 

  81. Hostettmann K, Hostettmann M (1989) Xanthones. In: Dey PM, Harbone JB (eds) Methods in plant biochemistry, vol 1 – plant phenolics. Academic Press, London, San Diego, New York, Berkeley, Boston, Sydney, Tokyo, Toronto, pp 493–508

    Google Scholar 

  82. Schimmer O, Mauthner H (1996) Polymethoxylated xanthones from the herb of Centaurium erythraea with strong antimutagenic properties in Salmonella typhimurium. Planta Med 62:561–564

    Article  CAS  Google Scholar 

  83. Zafar R, Aeri V, Datta A (1992) Application of plant tissue and cell culture for production of secondary metabolites. Fitoterapia 63:33–43

    CAS  Google Scholar 

  84. Janković T, Krstić D, Šavikin-Fodulović K, Menković N, Grubišić D (1997) Comparative investigation of secoiridoid compounds of Centaurium erythraea grown in nature and cultured in vitro. Pharm Pharmacol Lett 7:30–32

    Google Scholar 

  85. Piatczak E, Wielanek M, Wysokinska H (2005) Liquid culture system for shoot multiplication and secoiridoid production in micropropagated plants of Centaurium erythraea Rafn. Plant Sci 168:431–437

    Article  CAS  Google Scholar 

  86. Mulabagal V, Tsay HS (2004) Plant cell cultures – an alternative and efficient source for the production of biologically important secondary metabolites. Int J Appl Sci Eng 2:29–48

    Google Scholar 

  87. Janković T, Krstić D, Šavikin-Fodulović K, Menković N, Grubišić D (2002) Xanthones and secoiridoids from hairy root cultures of Centaurium erythraea and C. pulchellum. Planta Med 68:944–946

    Article  Google Scholar 

  88. Werner T, Motyka V, Strnad M, Schmülling T (2001) Regulation of plant growth by cytokinin. Proc Natl Acad Sci U S A 98:10487–10492

    Article  CAS  Google Scholar 

  89. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–479

    Article  CAS  Google Scholar 

  90. Podolski-Renić A, Andelković T, Banković J, Tanić N, Ruždijić S, Pešić M (2011) The role of paclitaxel in the development and treatment of multidrug resistant cancer cell lines. Biomed Pharmacother 65:345–353

    Article  Google Scholar 

  91. Trifunović M, Motyka V, Cingel A, Subotić A, Jevremović S, Petrić M, Holík J, Malbeck J, Dobrev PI, Dragićević IČ (2015) Changes in cytokinin content and altered cytokinin homeostasis in AtCKX1 and AtCKX2-overexpressing centaury (Centaurium erythraea Rafn.) plants grown in vitro. Plant Cell Tiss Org Cult 120:767–777

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education, Science, and Technological Development of the Republic of Serbia (grant No. ON173015, ON172053, and III41031).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Milana Trifunović-Momčilov , Dijana Krstić-Milošević , Snežana Trifunović , Ana Podolski-Renić , Milica Pešić or Angelina Subotić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Trifunović-Momčilov, M., Krstić-Milošević, D., Trifunović, S., Podolski-Renić, A., Pešić, M., Subotić, A. (2017). Secondary Metabolite Profile of Transgenic Centaury (Centaurium erythraea Rafn.) Plants, Potential Producers of Anticancer Compounds. In: Jha, S. (eds) Transgenesis and Secondary Metabolism. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-28669-3_5

Download citation

Publish with us

Policies and ethics