Skip to main content

Phytochemicals of Nematode-Resistant Transgenic Plants

  • Reference work entry
  • First Online:
Book cover Transgenesis and Secondary Metabolism

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

In plant-nematode relations both plants and nematodes release biochemical compounds from the expressions of genes, which had been technically referred to as plant genes and gene products, respectively. Plant genes and gene products can have either a downregulation or an upregulation relationship, which might or might not result in successful plant-nematode partnerships. The uses of molecular technologies had enhanced the application of these biochemical compounds in transgenic plants for the management of nematodes. The chapter overviewed plant genes and gene products, along with their practical application in nematode management using nematode-resistant transgenic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Escobar C, Fenoll C (2015) Plant nematode interactions: a view on compatible interrelationships, vol 73, Advances in botanical research. Elsevier, New York. doi:10.3389/fpls.2016.00124

    Google Scholar 

  2. Mashela PW, Dube ZP, Pofu KM (2015) Managing the phytotoxicity and inconsistent nematode suppression in soil amended with phytonematicides. In: Meghvansi MK, Varma A (eds) Organic amendments and soil suppressiveness in slant disease management, 1st edn. Soil biology 46. Springer, Heidelberg, Switzerland, pp 147–173. doi: 10.1007/978-3-319-23075-7

    Google Scholar 

  3. Chitwood DJ (2003) Research on plant-parasitic nematode biology conducted by the United States Department of Agricultural Research Services. Pest Manag Sci 59:748–753. doi:10.1002/ps.684

    Article  CAS  Google Scholar 

  4. Abad P, Gouz J, Aury JM, Castagnone-Sereno P, Danchin EG et al (2008) Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat Biotechnol 26:909–915. doi:10.1038/nbt.1482

    Article  CAS  Google Scholar 

  5. Elling AA (2013) Major emerging problems with minor Meloidogyne species. Phytopathology 103:1092–1102. doi:10.1094/PHYTO-01-13-0019-RVW

    Article  Google Scholar 

  6. Wyss U (1997) Root parasitic nematodes: an overview. In: Fenoll C, Grundler FMW, Ohl SA (eds) Cellular and molecular aspects of plant-nematode interactions, vol 10 of the series developments in plant pathology. Springer, pp 5–22

    Google Scholar 

  7. Gheysen G, Fenoll C (2002) Gene expression in nematode feeding sites. Annu Rev Phytopathol 40:191–219. doi:10.1146/annurev.phyto.40.121201.093719

    Article  CAS  Google Scholar 

  8. Stirling GR (2014) Biological control of plant-parasitic nematodes, 2nd edn. Biological Crop Protection Pty Ltd, Brisbane

    Google Scholar 

  9. Dropkin VH (1969) Cellular responses of plants to nematode infections. Ann Rev Phytopathol 7:101–122. doi:10.1146/annurev.py.07.090169.000533

    Article  CAS  Google Scholar 

  10. Mashela PW, Duncan LW, McSorley R (1992) Salinity reduces resistance to Tylenchulus semipenetrans in citrus rootstocks. Nematropica. Springer, Heidelberg, Switzerland, 22:7–12

    Google Scholar 

  11. Pofu KM, Mashela PW, Mafeo TP (2013) Interaction of greenhouse whitefly (Trialeurodes vaporariorum) and root-knot nematode (Meloidogyne javanica) on nematode-resistance in wild watermelon. Acta Hort (ISHS) 1(1007):431–438, doi:10.17660/ActaHortic.2013.1007.49

    Article  Google Scholar 

  12. Eddaoudi M, Ammati M, Rammah H (1997) Identification of resistance breaking populations of Meloidogyne on tomato in Morocco and their effect on new sources of resistance. Fundam Appl Nematol 20:285–289

    Google Scholar 

  13. Ornat C, Verdejo-Lucas S, Sorribas FJ (2001) A population of Meloidogyne javanica from Spain virulent to the Mi resistance gene in tomato. Plant Dis Rep 85:271–276. doi:10.1007/s10658-008-9413-z

    Article  Google Scholar 

  14. Mashela PW, Nthangeni ME (2002) Osmolyte allocation in response to Tylenchulus semipenetrans infection, root pruning and stem girdling. J Nematol 34:273–277

    CAS  Google Scholar 

  15. Pofu KM, Mashela PW, Shimelis H (2012) Intergeneric grafting in watermelon for managing Meloidogyne species: a review. Sci Res Essay 7:107–113. doi:10.5897/SREX11.023

    Google Scholar 

  16. Williamson VM (1999) Plant nematode resistance genes. Curr Opin Plant Biol 2:327–331. doi:10.1016/S1369-5266(99)80057-0

    Article  CAS  Google Scholar 

  17. Nussbaum R, McInnes RR, Willard H (2016) Thompson & Thompson genetics in medicine, 8th edn. Elsevier, Philadelphia

    Google Scholar 

  18. Mashela PW (2007) Undefeatable enemies: answering questions with questions. Inaugural Lecture, University of Limpopo Press, Sovenga

    Google Scholar 

  19. Wyss U, Zunke U (1986) Observations on the behavior of second stage juveniles of Heterodera schachtii inside host roots. Rev Nématol 9:153–165

    Google Scholar 

  20. Wyss U, Grundler FMW (1992) Heterodera schachtii and Arabidopsis thaliana, a model hos-parasite interaction. Nematologica 38:488–493. doi:10.1163/187529292X00450

    Article  Google Scholar 

  21. Smant G, Stokkermans JP, Yan Y, De Boer JM, Baum TJ et al (1998) Endogenous cellulases in animals: isolation of β-1,4-endoglucanase genes from two species of plant-parasitic cyst nematodes. Proc Natl Acad Sci U S A 95:4906–4911

    Article  CAS  Google Scholar 

  22. Reece JB (2015) Campbell biology, 10th edn. Benjamin Cummings, Redwood City

    Google Scholar 

  23. Li X, Chapple C (2010) Understanding lignification: challenges beyond monolignol biosynthesis. Plant Physiol 154:449–452. doi:10.1104/pp.110.162842

    Article  CAS  Google Scholar 

  24. Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289. doi:10.1146/annurev-arplant-042809-112315

    Article  CAS  Google Scholar 

  25. Harholt J, Suttangkakul A, Scheller H (2010) Biosynthesis of pectin. Plant Physiol 153:384–395. doi:10.1104/pp.110.156588

    Article  CAS  Google Scholar 

  26. Kaplan DT, Keen NT, Thomason IJ (1980) Studies on the mode of action of glyceollin in soybean incompatibility to root-knot nematode, Meloidogyne incognita. Physiol Plant Pathol 16:319–325. doi:10.1590/S0102-33061987000100002

    Article  CAS  Google Scholar 

  27. Balhadére P, Evans AAF (1995) Histo-pathogenesis of susceptible and resistant responses of wheat, barley and wild grasses to Meloidogyne naasi. Fundam Appl Nematol 18:531–538

    Google Scholar 

  28. McIntyre JL (1980) Defenses triggered by previous invaders: nematodes and insects. In: Horsfall JG, Cowling EB (eds) Plant disease, vol V, 1st edn. Academic, New York, pp 333–342

    Google Scholar 

  29. Wang X, Meyers D, Yan Y, Baum T, Smant G et al (1999) In planta localization of a β-1,4-endoglucanase secreted by Heterodera glycines. Mol Plant Microbe Interact 12:64–67. doi:10.1094/MPMI

    Article  CAS  Google Scholar 

  30. Dutta TK, Banakar P, Rao U (2015) The status of RNAi-based transgenic research in plant nematology. Front Microbiol 5:1–7. doi:10.3389/fmicb.2014.00760

    Article  Google Scholar 

  31. Bird AF, Loveys BR (1980) The involvement of cytokinins in a host-parasite relationship between the tomato (Lycopersicon esculentum) and a nematode Meloidogyne javanica. Parasitol 80:497–505. doi:10.1017/S0031182000000962

    Article  CAS  Google Scholar 

  32. Doerner P, Jørgensen JE, You R, Steppuhn J, Lamb C (1996) Control of root growth and development by cyclin expression. Nature 380:520–523

    Article  CAS  Google Scholar 

  33. Domingo C, Roberts K, Stacey NJ, Connerton I, Ruiz-Teran F, McCann MC (1998) A pectase lyase from Zinnia elegans is auxin inducible. Plant J 13:17–28

    Article  CAS  Google Scholar 

  34. Duncan LH, Robertson WM, Kusel RJ, Phillips MS (1996) A putative nematode auxin binding protein from the potato cyst nematode Globodera pallida. Nematropica 26:259

    Google Scholar 

  35. Berg RH, Fester T, Taylor CG (2008) Development of the root-knot nematode feeding cell. In: Berg RH, Taylor CG (eds) Plant cell monographs. Springer, Berlin/Heidelberg, pp 115–152

    Google Scholar 

  36. Ehsanpou AA, Jones MGK (1996) Glucoronidase expression in transgenic tobacco roots with a Parasponia promotor on infection with Meloidogyne javanica. J Nematol 28:407–413

    Google Scholar 

  37. Elsasser S, Chi Y, Yang P, Campbell JL (1999) Phosphorylation controls timing of Cdc6p destruction: a biochemical analysis. Mol Biol Cell 10:3263–3277. doi:10.1371/journal.pgen.1003099

    Article  CAS  Google Scholar 

  38. Hussey RS, Grundler FMW (1998) Nematode parasitism of plants. In: Perry RN (ed) The physiology and biochemistry of free-living and plant-parasitic nematodes. CBI Publication, Wallingford, pp 213–243

    Google Scholar 

  39. Huyangura P, Mathesius U, Jones MGK, Rolfe BG (1999) Auxins induction is a trigger for root gall formation caused by root-knot nematodes in white clover and is associated with the activation of the flavonoid pathway. Aust J Plant Physiol 26:221–231

    Article  Google Scholar 

  40. Jasmer DP (1993) Trichinella spiralis infected skeletal muscles cells arrest in G2/M and cease muscle gene expression. J Cell Biol 121:785–793

    Article  CAS  Google Scholar 

  41. Chen Q, Rehman S, Smant G, Jones JT (2005) Functional analysis of pathogenicity proteins of the potato cyst nematode Globodera rostochiensis using RNAi. Mol Plant Microbe Interact 18:621–625. doi:10.1094/MPMI

    Article  CAS  Google Scholar 

  42. Bohlmann H, Sobczak M (2014) The plant cell wall in the feeding sites of cyst nematodes. Front Plant Sci 5:1–10. doi:10.3389/fpls.2014.00089

    Article  Google Scholar 

  43. Qin L, Kudla U, Roze EHA, Goverse A, Popeijus H et al (2004) Plant degradation: a nematode expansion acting on plants. Nature 427:30–30. doi:10.1093/jxb/erm209

    Article  CAS  Google Scholar 

  44. Westwood JH, Yu X, Foy CL, Cramer CL (1998) Expression of defense-related 3-hydroxy-3-methylglutaryl CoA reductase gene in response to parasitisation of Orobanche spp. Mol Plant Biol 2:327–331. doi:10.1094/MPMI

    Google Scholar 

  45. Niehaus K, Kapp D, Pühler A (1993) Plant defense and delayed infection of alfalfa pseudonodules induced by an exopolysaccharide (EPS I)-deficient Rhizobium meliloti mutant. Planta 190:415–425

    Article  CAS  Google Scholar 

  46. Siddique S, Matera C, Radokovic ZS, Shamin HM, Gutbrod P et al (2014) Parasitic worms stimulate host NADPH oxidases to produce reactive oxygen species that limit plant cell death and promote infection. Sci Signal 7(320):33. doi:10.1126/scisignal.2004777

    Article  Google Scholar 

  47. Urwin PE, Lilley CJ, Atkinson HJ (2002) Ingestion of double-stranded RNA by preparasitic juvenile cyst nematodes leads to RNA interference. Mol Plant Microbe Interact 15(8):747–752. doi:10.1094/MPMI

    Article  CAS  Google Scholar 

  48. Sukno SA, McCuiston J, Wong M, Wang X, Thon MR et al (2007) Quantitative detection of double-stranded RNA-mediated gene silencing of parasitism genes in Heterodera glycines. J Nematol 39(2):145–152

    CAS  Google Scholar 

  49. Siddique S, Radakovic ZS, De La Torre CM, Chronis D, Novák O et al (2015) A parasitic nematode releases cytokinin that controls cell division and orchestrates feeding site formation in host plants. Proc Natl Acad Sci U S A 112:12669–12674. doi:10.1073/pnas.1503657112

    Article  CAS  Google Scholar 

  50. Vanstaden J, Dimalla GG (1977) Comparison of endogenous cytokinins in roots and xylem exudate of nematode resistant and susceptible tomato cultivars. J Exp Bot 107:1351–1356

    Google Scholar 

  51. Dimalla GG, Vanstaden J (1977) Cytokinins in root-knot nematode, Meloidogyne incognita. Plant Sci Lett 10:25–29

    Article  CAS  Google Scholar 

  52. Shanks CM, Rice JH, Zubo Y, Schaller GE, Kieber JJ (2016) The role of cytokinin during infection of Arabidopsis thaliana by the cyst nematode Heterodera schachtii. Mol Plant Microbe Interact 29:57–68. doi:10.1094/MPMI-07-15-0156-R

    Article  CAS  Google Scholar 

  53. Lohar DP, Schaff JE, Laskey JG, Kieber JJ, Bilyeu KD et al (2004) Cytokinins play opposite roles in lateral root formation and nematode and rhizobial symbioses. Plant J 38(2):203–214. doi:10.1111/j.1365-313X.2004.02038.x

    Article  CAS  Google Scholar 

  54. Quentin M, Abad P, Favery B (2013) Plant parasitic nematode effectors target host defense and nuclear functions to establish feeding cells. Front Plant Sci 4:53. doi:10.3389/fpls.2013.00053

    Article  Google Scholar 

  55. De Waele D, Elsen A (2007) Challenges in tropical plant nematology. Annu Rev Phytopathol 45:457–485. doi:10.1146/annurev.phyto.45.062806.094438

    Article  Google Scholar 

  56. Roberts PA (1993) The future of nematology: integration of new and improved management strategies. J Nematol 25:383–394

    CAS  Google Scholar 

  57. Robertson L, Diez-Rojo MA (2008) New host races of Meloidogyne arenaria, Meloidogyne incognita, and Meloidogyne javanica from horticultural regions of Spain. Plant Dis 93:180–184. doi:10.1094/pdis-93-2-0180

    Article  Google Scholar 

  58. Curtis RHC (2008) Plantnematode interactions: environmental signals detected by the nematode’s chemosensory organs control changes in the surface cuticle and behaviour. Parasite 15:310–316. doi:10.1051/parasite/2008153310

    Article  CAS  Google Scholar 

  59. Wyss U, Grundler F, Münch A (1992) The parasitic behaviour of second-stage juveniles of Meloidogyne incognita in roots of Arabiodopsis thaliana. Nematropica 38:98–111

    Google Scholar 

  60. Williamson VH, Hussey RS (1996) Nematode pathogenesis and resistance in plants. Plant Cell 8:1735–1745. doi:10.1105/tpc.8.10.1735

    Article  CAS  Google Scholar 

  61. Hussey RS, Mims CW (1991) Ultrastructure of feeding tubes formed in giant-cells induced in plants by the root-knot nematode Meloidogyne incognita. Protoplasma 162:99–107

    Article  Google Scholar 

  62. Van der Eycken W, de Almeida EJ, Inzé D, Van Montagu M, Gheysen G (1996) A molecular study of root-knot nematode-induced feeding sites. Plant J 9:45–54

    Article  Google Scholar 

  63. Huang G, Gao B, Maier T, Allen R, Davis EL, Baum TJ (2003) A profile of putative parasitism genes expressed in the oesophageal gland cells of the root-knot nematode Meloidogyne incognita. Mol Plant Microbe Interact 16:376–381

    Article  CAS  Google Scholar 

  64. Jaubert S, Laffaire JB, Abad P, Rosso MN (2002) A polygalacturonase of animal origin isolated from the root-knot nematode Meloidogyne incognita. FEBS Lett 522:109–112. doi:10.1016/S0014-5793(02)02906-X

    Article  CAS  Google Scholar 

  65. Goellner M, Wang X, Davis EL (2001) Endo-β-1,4-glucanase expression in compatible plant-nematode interactions. Plant Cell 13:2241–2255. doi:10.1105/tpc.010219

    CAS  Google Scholar 

  66. Ellis J, Jones D (1998) Structure and function of proteins controlling strain-specific pathogen resistance in plants. Curr Opin Plant Biol 1:288–293

    Article  CAS  Google Scholar 

  67. Hewezi T, Baum TJ (2015) Gene silencing in nematode feeding sites. In: Escobar C, Fenoll C (eds) Plant nematode interactions: a view on compatible interrelationships, vol 73, 1st edn, Advances in botanical research. Elsevier, New York, pp 221–239

    Chapter  Google Scholar 

  68. Mentelin S, Thorpe P, Jones JT (2015) Suppression of plant defenses by plant-parasitic nematodes. In: Escobar C, Fenoll C (eds) Plant nematode interactions: a view on compatible interrelationships, vol 73, 1st edn, Advances in botanical research. Elsevier, New York, pp 325–337

    Chapter  Google Scholar 

  69. Gardener M, Verma A, Mitchum MG (2015) Emerging roles of cyst nematode effectors in exploiting plant cellular processes. In: Escobar C, Fenoll C (eds) Plant nematode interactions: a view on compatible interrelationships, vol 73, 1st edn, Advances in botanical research. Elsevier, New York, pp 259–291

    Chapter  Google Scholar 

  70. Williamson VM (1998) Root-knot nematode resistance genes in tomato and their potential for future use. Annu Rev Phytopathol 36:277–293. doi:10.1146/annurev.phyto.36.1.277

    Article  CAS  Google Scholar 

  71. Lagudah E, Moullet O, Appels R (1997) Map-based cloning of a gene sequence encoding a nucleotide binding domain and a leucine-rich region at the Cre3 nematode resistance locus of wheat. Genome 40:659–665

    Article  CAS  Google Scholar 

  72. Seah S, Sivasithamparam K, Karakousis A, Lagudah E (1998) Cloning and characterisation of a family of disease resistance gene analogs from wheat and barley. Theor Appl Genet 97:937–945

    Article  CAS  Google Scholar 

  73. Jung C, Cai D, Kleine M (1998) Engineering nematode resistance in crop species. Trends Plant Sci 3:266–271

    Article  Google Scholar 

  74. Puthoff DP, Ehrenfried ML, Vinyard BT, Tucker ML (2007) GeneChip profiling of transcriptional responses to soybean cyst nematode, Heterodera glycines, colonization of soybean roots. J Exp Bot 58:3407–3418. doi:10.1128/jmbe.v14i1.588

    Article  CAS  Google Scholar 

  75. Veremis JC, Roberts PA (1996) Identification of resistance to Meloidogyne javanica in the Lycopersicon peruvianum complex. Theor Appl Genet 93:894–901

    Article  CAS  Google Scholar 

  76. Yaghoobi J, Kaloshian I, Wen Y, Williamson VM (1995) Mapping a new nematode resistance locus in Lycopersicon peruvianum. Theor Appl Genet 91:457–464. doi:10.1007/BF00222973

    Article  CAS  Google Scholar 

  77. Vercauteren I, De Almeida EJ, De Groodt R, Gheysen G (2002) An Arabidopsis thaliana pectin acetylesterase gene is upregulated in nematode feeding sites induced by root-knot and cyst nematodes. Mol Plant Microbe Interact 15:404–407. doi:10.1094/MPMI.2002.15.4.404

    Article  CAS  Google Scholar 

  78. Fan DF, Maclachlan GA (1967) Massive synthesis of ribonucleic acid and cellulase in the pea epicotyl in response to indoleacetic acid, with and without concurrent cell division. Plant Physiol 42:1114–1122

    Article  CAS  Google Scholar 

  79. Favery B, Lecomte P, Gil N, Bechtold N, Bouchez D et al (1998) RPE, a plant gene involved in early development steps of nematode feeding cells. EMBO J 17:6799–6811. doi:10.1093/emboj/17.23.6799/pdf

    Article  CAS  Google Scholar 

  80. Fenoll C, Aristizábal FA, Sanz-Alférez S, de Campo FF (1997) Regulation of gene expression in feeding sites. In: Fenoll C, Grundler FMW, Ohl SA (eds) Cellular and molecular aspects of plant-nematode interactions, 1st edn. Kluwer, Dordrecht, pp 133–149

    Chapter  Google Scholar 

  81. Gheysen G (1998) Chemical signals in the plant-nematode interaction: a complex system? 1st edn. In: Romeo JT, Downum KR, Verpoorte R (eds) Phytochemical signals and plant-microbe interactions. Springer US, pp 95–117. doi:10.10007/978-1-4615-5329-8_6

    Google Scholar 

  82. Wieczorek K, Gilecki B, Gerdes L, Heinen P, Szakasits D, Durachko DM et al (2006) Expansins are involved in the formation of nematode-induced syncytia in roots of Arabidopsis thaliana. Plant J 48:98–112. doi:10.1111/j.1365-313X.2006.02856.x

    Article  CAS  Google Scholar 

  83. Wieczorek K, Hofmann J, Blochl A, Szakasits D, Bohlmann H, Grundler FM (2008) Arabidopsis endo-1,4-β-glucanases are involved in the formation of root syncytia induced by Heterodera schachtii. Plant J 53:336–351. doi:10.1111/j.1365-313X.2006.02856.x

    Article  CAS  Google Scholar 

  84. Gheysen G, Van der Eycken W, Barthels N, Karimi M, Van Montagu M (1996) The exploitation of nematode-responsive plant genes in novel nematode control methods. Pestic Sci 47:95–101

    Article  CAS  Google Scholar 

  85. Jones AM, Im KH, Savka MA, Wu MJ, DeWitt NG et al (1998) Auxin-dependent cell expansion mediated by overexpressed auxin-binding protein 1. Science 282:1114–1117. doi:10.1126/science.282.5391.1114

    Article  CAS  Google Scholar 

  86. Jones MGK, Dropkin VH (1976) Scanning electron microscopy of nematode-induced giant transfer cells. Cytobios 15:149–161

    CAS  Google Scholar 

  87. Seinhorst JW (1965) The relationship between nematode density and damage to plants. Nematologica 11:137–154. doi:10.1163/187529265X00582

    Article  Google Scholar 

  88. Trudgill DL (1992) Resistance to and tolerance of plant-parasitic nematodes in plants. Annu Rev Phytopathol 29:167–192

    Article  Google Scholar 

  89. Hammond-Kosack KE, Jones DG (1996) Resistance gene-dependent plant defense responses. Plant Cell 8:1773–1791

    Article  CAS  Google Scholar 

  90. McDowell JM, Woffenden BJ (2003) Plant disease resistance genes: recent insights and potential applications. Trends Biotechnol 21:178–183. doi:10.1016/S0167-7799(03)00053-2

    Article  CAS  Google Scholar 

  91. Jung C (1998) A singular gene doubles up pest resistance. Nat Biotechnol 16:1315–1316. doi:10.1016/S1369-5266(99)80057-0

    Article  CAS  Google Scholar 

  92. Dutta TK, Papolu PK, Banakar P, Choudhary D, Sirohi A, Rao U (2015) Tomato transgenic plants expressing hairpin construct of a nematode protease gene conferred enhanced resistance to root-knot nematodes. Front Microbiol 6:1–13. doi:10.3389/fmicb.2015.00260

    Google Scholar 

  93. Tripathi L, Babirye A, Roderick H, Tripathi JN, Changa C et al (2015) Field resistance of transgenic plantain to nematodes has potential for future African food security. Sci Rep 5:1–10. doi:10.1038/srep08127

    Google Scholar 

  94. Burrows PR, De Waele D (1997) Engineering resistance against plant-parasitic nematodes using anti-nematode genes. In: Fenoll C, Grundler FMW, Ohl SA (eds) Cellular and molecular aspects of plant-nematode interactions, 1st edn. Kluwer, Dordrecht, pp 217–236

    Chapter  Google Scholar 

  95. Siddique S, Radakovic ZS, De La Torre CM, Chronis D, Novák O et al (2014) Parasitic worms stimulate host NADPH oxidases to produce reactive oxygen species that limit plant cell death and promote infection. Sci Signal 7:ra33

    Google Scholar 

  96. Williamson VM, Lambert KN, Kaloshian I (1994) Molecular biology of nematode resistance in tomato. In: Lamberti F, De Giorgi C, Bird DMK (eds) Advances in molecular plant nematology, 1st edn. Plenum, New York, pp 211–219

    Chapter  Google Scholar 

  97. Koch A, Kogel KH (2014) New wind in the sails: improving the agronomic value of crop plants through RNAi-mediated gene silencing. Plant Biotechnol J 12:821–831. doi:10.1111/pbi.12226

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for financial support from the Land Bank Chair of Agriculture – University of Limpopo and the Agricultural Research Council-Universities Collaboration Centre.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Phatu W. Mashela , Ashwell R. Ndhlala , Kgabo M. Pofu or Zakheleni P. Dube .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Mashela, P.W., Ndhlala, A.R., Pofu, K.M., Dube, Z.P. (2017). Phytochemicals of Nematode-Resistant Transgenic Plants. In: Jha, S. (eds) Transgenesis and Secondary Metabolism. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-28669-3_26

Download citation

Publish with us

Policies and ethics