Skip to main content

Secondary Metabolism and the Rationale for Systems Manipulation

  • Reference work entry
  • First Online:
Transgenesis and Secondary Metabolism

Abstract

Plant-derived secondary metabolites provide mankind with a number of economic products that range from pharmaceutical drugs, fragrances, insecticides to flavours and dyes. The incomprehensible amount of chemically and functionally diverse products of secondary metabolism are synthesized through a complex network of enzymatically catalyzed metabolic pathways. The pool of enzymes employed in this biocatalytic landscape includes an assortment of substrate-, stereo-, and regio-specific types. The enzyme-driven reactivity and regio- and stereo-chemistry during the multistep conversion of substrates into diverse products offers lucrative manipulative points of exploitation in metabolic engineering. Parallel to the rich pool and flexibility of enzymes are the numerous genes and other regulatory mechanisms of metabolism that equally offer limitless opportunities for further manipulation to produce novel compounds. These characteristic features of secondary metabolism forms the rationale for its exploitation in producing fine products for human benefit. However, for effective strategies in metabolic engineering, the basic understanding of pathways, gene regulations, and enzymes involved as well as factors affecting the metabolism is required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CHS:

Chalcone synthase

DMAPP:

Dimethylallyl pyrophosphate

DOXP:

1-deoxy-D-xylulose-5-phosphate

EPSP:

Enolpyruvylshikimate-3-phosphate

ETI:

Effector-triggered immunity

FDA:

Food and Drug Administration

FPP:

Farnesyl diphosphate

GAP:

Glyceraldehyde 3-phosphate

GGPP:

Geranylgeranyl diphosphate

GPP:

Geranyl diphosphate

HMG-CoA:

3-hydroxy- 3-methylglutaryl-CoA

IPP:

Isopentenyl pyrophosphate

MAMPS:

Microbe-associated molecular patterns

MAP:

Mitogen-activated protein

MEP:

Methyl-D-erythritol-4-phosphate

MVA:

Mevalonate

MVAPP:

Mevalonate 5-diphosphate

NLR:

NOD-like receptor

PAL:

phenylalanine ammonia lyase

PAMP:

Pathogen-associated molecular patterns

PEP:

Phosphoenolpyruvate

PKS:

Polyketide synthases

PRR:

Pattern recognition receptors

PTI:

Pattern-triggered immunity

RLK:

Receptor-like kinases

RLP:

Receptor-like proteins

TCA:

Tricarboxylic acid

TF:

Transcription factors

UV:

Ultra violet

References

  1. Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  Google Scholar 

  2. Nishimura MT, Dangl JL (2014) Paired plant immune receptors. Science 344:267

    Article  CAS  Google Scholar 

  3. Williams SJ, Sohn KH, Wan L, Bernoux M, Sarris PF, Segonzac C et al (2014) Structural basis for assembly and function of a heterodimeric plant immune receptor. Science 344:299–303

    Article  CAS  Google Scholar 

  4. Macho AP, Zipfel C (2014) Plant PRRs and the activation of innate immune signaling. Mol Cell 54:263–272

    Article  CAS  Google Scholar 

  5. Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant–pathogen interactions. Nat Rev Genet 11:539–548

    Article  CAS  Google Scholar 

  6. Wu S, Shan L, He P (2014) Microbial signature-triggered plant defense responses and early signaling mechanisms. Plant Sci 228:118–126

    Article  CAS  Google Scholar 

  7. Schwessinger B, Ronald PC (2012) Plant innate immunity: perception of conserved microbial signatures. Plant Biol 63:451–482

    Article  CAS  Google Scholar 

  8. Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    Article  CAS  Google Scholar 

  9. Ma Y, Zhao Y, Walker RK, Berkowitz GA (2013) Molecular steps in the immune signaling pathway evoked by plant elicitor peptides (Peps): CPKs, NO and ROS are downstream from the early Ca2+ signal. Plant Physiol 163:1459–1471

    Article  CAS  Google Scholar 

  10. Meng X, Zhang S (2013) MAPK cascades in plant disease resistance signaling. Annu Rev Phytopathol 51:245–266

    Article  CAS  Google Scholar 

  11. Buscaill P, Rivas S (2014) Transcriptional control of plant defence responses. Curr Opin Plant Biol 20:35–46

    Article  CAS  Google Scholar 

  12. Ncube B, Van Staden J (2015) Tilting plant metabolism for improved metabolite biosynthesis and enhanced human benefit. Molecules 20:12698–12731

    Article  CAS  Google Scholar 

  13. Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–19

    Article  CAS  Google Scholar 

  14. Benderoth M, Textor S, Windsor AJ, Mitchell-Olds T, Gershenzon J, Kroymann J (2006) Positive selection driving diversification in plant secondary metabolism. Proc Natl Acad Sci U S A 103:9118–9123

    Article  CAS  Google Scholar 

  15. Mol J, Grotewold E, Koes R (1998) How genes paint flowers and seeds. Trends Plant Sci 3:212–217

    Article  Google Scholar 

  16. van der Fits L, Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289:295–297

    Article  Google Scholar 

  17. Aharoni A, Galili G (2011) Metabolic engineering of the plant primary–secondary metabolism interface. Curr Opin Biotechnol 22:239–244

    Article  CAS  Google Scholar 

  18. Malitsky S, Blum E, Less H, Venger I, Elbaz M, Morin S et al (2008) The transcript and metabolite networks affected by the two clades of Arabidopsis glucosinolate biosynthesis regulators. Plant Physiol 184:2021–2049

    Article  Google Scholar 

  19. Li B, Gaudinier A, Tang M, Taylor-Teeples M, Nham NT, Ghaffari C et al (2014) Promoter-based integration in plant defense regulation. Plant Physiol 166:1803–1820

    Article  Google Scholar 

  20. Grubb CD, Abel S (2006) Glucosinolate metabolism and its control. Trends Plant Sci 11:89–100

    Article  CAS  Google Scholar 

  21. Soltis NE, Kliebenstein DJ (2015) Natural variation of plant metabolism: genetic mechanisms, interpretive caveats, evolutionary and mechanistic insights. Plant Physiol doi:10.1104/pp.15.01108

    Google Scholar 

  22. Pichersky E, Gang DR (2000) Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. Trends Plant Sci 5:439–445

    Article  CAS  Google Scholar 

  23. Verpoorte R (2000) Metabolic engineering of plant secondary metabolism. In: Verpoorte R, Alfermann AW (eds) Metabolic engineering of plant secondary metabolism. Kluwer, London

    Chapter  Google Scholar 

  24. Herrmann KM, Weaver LM (1999) The shikimate pathway. Annu Rev Plant Biol 50:473–503

    Article  CAS  Google Scholar 

  25. Jensen RA (1986) The shikimate/arogenate pathway: link between carbohydrate metabolism and secondary metabolism. Physiol Plant 66:164–168

    Article  CAS  Google Scholar 

  26. Bentley R, Haslam E (1990) The shikimate pathway-a metabolic tree with many branche. Crit Rev Biochem Mol Biol 25:307–384

    Article  CAS  Google Scholar 

  27. Luckner M (2013) Secondary metabolism in microorganisms, plants and animals. Springer Science and Business Media, Berlin

    Google Scholar 

  28. Hawkes T, Lewis T, Coggins J, Mousdale D, Lowe D, Thorneley R (1990) Chorismate synthase. Pre-steady-state kinetics of phosphate release from 5-enolpyruvylshikimate 3-phosphate. Biochem J 265:899–902

    Article  CAS  Google Scholar 

  29. White PJ, Millar G, Coggins JR (1998) The overexpression, purification and complete amino acid sequence of chorismate synthase from Escherichia coli K12 and its comparison with the enzyme from Neurospora crassa. Biochem J 251:313–322

    Article  Google Scholar 

  30. Herrmann KM (1995) The shikimate pathway: early steps in the biosynthesis of aromatic compounds. Plant Cell 7:907–919

    Article  CAS  Google Scholar 

  31. Haslam E (1993) Shikimic acid: metabolism and metabolites. Wiley, Chichester

    Google Scholar 

  32. Görlach J, Schmid J, Amrhein N (1994) Abundance of transcripts specific for genes encoding enzymes of the prechorismate pathway in different organs of tomato (Lycopersicon esculentum L.) plants. Planta 193:216–223

    Article  Google Scholar 

  33. Jones J, Henstrand J, Handa A, Herrmann K, Weller S (1995) Impaired wound induction of DAHP synthase and altered stem development in transgenic potato plants expressing a DAHP synthase antisense construct. Plant Physiol 108:1413–1421

    Article  CAS  Google Scholar 

  34. Chappell J (1995) The biochemistry and molecular biology of isoprenoid metabolism. Plant Physiol 107:1–6

    Article  CAS  Google Scholar 

  35. Hunter WN (2007) The non-mevalonate pathway of isoprenoid precursor biosynthesis. J Biol Chem 282:21573–21577

    Article  CAS  Google Scholar 

  36. Sacchettini JC, Poulter CD (1997) Creating isoprenoid diversity. Science 277:1788–1789

    Article  CAS  Google Scholar 

  37. Ibrahim RK, Anzellotti D (2003) The enzymatic basis of flavonoid biodiversity. Recent Adv Phytochem 37:1–36

    Article  CAS  Google Scholar 

  38. Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343:425–430

    Article  CAS  Google Scholar 

  39. Hemmerlin A, Harwood JL, Bach TJ (2012) A raison d’être for two distinct pathways in the early steps of plant isoprenoid biosynthesis? Prog Lipid Res 51:95–148

    Article  CAS  Google Scholar 

  40. Eisenreich W, Bacher A, Arigoni D, Rohdich F (2004) Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell Mol Life Sci 61:1401–1426

    Article  CAS  Google Scholar 

  41. Rohmer M (1999) The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 16:565–574

    Article  CAS  Google Scholar 

  42. Gruchattka E, Hädicke O, Klamt S, Schütz V, Kayser O (2013) In silico profiling of Escherichia coli and Saccharomyces cerevisiae as terpenoid factories. Microb Cell Fact 12:1–18

    Article  Google Scholar 

  43. Bouvier F, Rahier A, Camara B (2005) Biogenesis, molecular regulation and function of plant isoprenoids. Prog Lipid Res 44:357–429

    Article  CAS  Google Scholar 

  44. Kuzuyama T, Seto H (2003) Diversity of the biosynthesis of the isoprene units. Nat Prod Rep 20:171–183

    Article  CAS  Google Scholar 

  45. Kellogg BA, Poulter CD (1997) Chain elongation in the isoprenoid biosynthetic pathway. Curr Opin Chem Biol 1:570–578

    Article  CAS  Google Scholar 

  46. Mihaliak CA, Karp F, Croteau R (1993) 10 Cytochrome P-450 Terpene Hydroxylases. Methods Plant Biochem 9:261

    CAS  Google Scholar 

  47. McGarvey DJ, Croteau R (1995) Terpenoid metabolism. Plant Cell 7:1015–1026

    Article  CAS  Google Scholar 

  48. Liao P, Hemmerlin A, Bach TJ, Chye M-L (2016) The potential of the mevalonate pathway for enhanced isoprenoid production. Biotechnol Adv. doi:10.1016/j.biotechadv.2016.03.005

    Google Scholar 

  49. Austin MB, Noel JP (2003) The chalcone synthase superfamily of type III polyketide synthases. Nat Prod Rep 20:79–110

    Article  CAS  Google Scholar 

  50. Abe I, Morita H (2010) Structure and function of the chalcone synthase superfamily of plant type III polyketide synthases. Nat Prod Rep 27:809–838

    Article  CAS  Google Scholar 

  51. Borejsza-Wysocki W, Hrazdina G (1996) Aromatic polyketide synthases (purification, characterization, and antibody development to benzalacetone synthase from raspberry fruits). Plant Physiol 110:791–799

    Article  CAS  Google Scholar 

  52. Sasaki Y, Konishi T, Nagano Y et al (1995) Compartmentalization of two forms of acetyl-CoA carboxylase and plant tolerance towards herbicides. In: Kader JC, Mazliak P (eds) Plant lipid metabolism. Kluwer, Dordrecht

    Google Scholar 

  53. Ferrer J-L, Austin M, Stewart C, Noel J (2008) Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol Biochem 46:356–370

    Article  CAS  Google Scholar 

  54. Lussier F-X, Colatriano D, Wiltshire Z, Page JE, Martin VJ (2012) Engineering microbes for plant polyketide biosynthesis. Comput Struct Biotechnol J 3:1–11

    Article  Google Scholar 

  55. López‐Meyer M, Nessler CL (1997) Tryptophan decarboxylase is encoded by two autonomously regulated genes in Camptotheca acuminata which are differentially expressed during development and stress. Plant J 11:1167–1175

    Article  Google Scholar 

  56. Cauli O, Morelli M (2005) Caffeine and the dopaminergic system. Behav Pharmacol 16:63–77

    Article  CAS  Google Scholar 

  57. Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    Article  CAS  Google Scholar 

  58. Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504

    Article  CAS  Google Scholar 

  59. Bartram S, Jux A, Gleixner G, Boland W (2006) Dynamic pathway allocation in early terpenoid biosynthesis of stress-induced lima bean leaves. Phytochemistry 67:1661–1672

    Article  CAS  Google Scholar 

  60. Gurib-Fakim A (2006) Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol Aspects Med 27:1–93

    Article  CAS  Google Scholar 

  61. Chotani G, Dodge T, Hsu A, Kumar M, LaDuca R, Trimbur D et al (2000) The commercial production of chemicals using pathway engineering. Biochim Biophys Acta (BBA) 1543:434–455

    Article  CAS  Google Scholar 

  62. Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). Biochem Mol Biol Plant 24:1250–1319

    Google Scholar 

  63. Burda S, Oleszek W (2001) Antioxidant and antiradical activities of flavonoids. J Agric Food Chem 49:2774–2779

    Article  CAS  Google Scholar 

  64. Fredholm BB, Bättig K, Holmén J, Nehlig A, Zvartau EE (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51:83–133

    CAS  Google Scholar 

  65. Houghton PJ, Ren Y, Howes M-J (2006) Acetylcholinesterase inhibitors from plants and fungi. Nat Prod Rep 23:181–199

    Article  CAS  Google Scholar 

  66. Facchini PJ (1999) Plant secondary metabolism: out of the evolutionary abyss. Trends Plant Sci 4:382–384

    Article  CAS  Google Scholar 

  67. Facchini PJ, De Luca V (1995) Phloem-specific expression of tyrosine/dopa decarboxylase genes and the biosynthesis of isoquinoline alkaloids in Opium poppy. Plant Cell 7:1811–1821

    Article  CAS  Google Scholar 

  68. Unver N (2007) New skeletons and new concepts in Amaryllidaceae alkaloids. Phytochem Rev 6:125–135

    Article  CAS  Google Scholar 

  69. Pandey S, Kekre N, Naderi J, McNulty J (2005) Induction of apoptotic cell death specifically in rat and human cancer cells by pancratistatin. Artif Cells Blood Substit Immobil Biotechnol 33:279–295

    Article  CAS  Google Scholar 

  70. McLachlan A, Kekre N, McNulty J, Pandey S (2005) Pancratistatin: a natural anti-cancer compound that targets mitochondria specifically in cancer cells to induce apoptosis. Apoptosis 10:619–630

    Article  CAS  Google Scholar 

  71. McNulty J, Thorat A, Vurgun N, Nair JJ, Makaji E, Crankshaw DJ et al (2010) Human cytochrome P450 liability studies of trans-dihydronarciclasine: a readily available, potent, and selective cancer cell growth inhibitor. J Nat Prod 74:106–108

    Article  Google Scholar 

  72. Kato M, Kanehara T, Shimizu H, Suzuki T, Gillies FM, Crozier A et al (1996) Caffeine biosynthesis in young leaves of Camellia sinensis: in vitro studies on N‐methyltransferase activity involved in the conversion of xanthosine to caffeine. Physiol Plant 98:629–636

    Article  CAS  Google Scholar 

  73. Porkka-Heiskanen T, Strecker RE, Thakkar M, Bjørkum AA, Greene RW, McCarley RW (1997) Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science 276:1265–1268

    Article  CAS  Google Scholar 

  74. Crozier A, Jaganath IB, Clifford MN (2006) Phenols, polyphenols and tannins: an overview. In: Crozier A, Clifford MN, Ashihara H (eds) Plant secondary metabolites-occurrence, structure and role in the diet. Blackwell, Oxford

    Chapter  Google Scholar 

  75. Espín JC, García-Conesa MT, Tomás-Barberán FA (2007) Nutraceuticals: facts and fiction. Phytochemistry 68:2986–3008

    Article  Google Scholar 

  76. Waterman PG, Mole S (1994) Analysis of phenolic plant metabolites. Blackwell Scientific, London

    Google Scholar 

  77. Williams CA, Harborne JB, Geiger H, Hoult JRS (1999) The flavonoids of Tanacetum parthenium and T. vulgare and their anti-inflammatory properties. Phytochemistry 51:417–423

    Article  CAS  Google Scholar 

  78. Wallace G, Fry SC (1994) Phenolic components of the plant cell wall. Int Rev Cytol 151:229–268

    Article  CAS  Google Scholar 

  79. Schofield P, Mbugua D, Pell A (2001) Analysis of condensed tannins: a review. Anim Feed Sci Technol 91:21–40

    Article  CAS  Google Scholar 

  80. Zulak KG, Bohlmann J (2010) Terpenoid biosynthesis and specialized vascular cells of conifer defense. J Integr Plant Biol 52:86–97

    Article  CAS  Google Scholar 

  81. Celenza JL, Quiel JA, Smolen GA, Merrikh H, Silvestro AR, Normanly J et al (2005) The Arabidopsis ATR1 Myb transcription factor controls indolic glucosinolate homeostasis. Plant Physiol 137:253–262

    Article  CAS  Google Scholar 

  82. Pierpoint W (1994) Salicylic acid and its derivatives in plants: medicines, metabolites and messenger molecules. Adv Bot Res 53:412

    Google Scholar 

  83. Grotewold E (2008) Transcription factors for predictive plant metabolic engineering: are we there yet? Curr Opin Biotechnol 19:138–144

    Article  CAS  Google Scholar 

  84. Dixon RA (2005) Engineering of plant natural product pathways. Curr Opin Plant Biol 8:329–336

    Article  CAS  Google Scholar 

  85. Mol J, Jenkins G, Schäfer E, Weiss D, Walbot V (1996) Signal perception, transduction, and gene expression involved in anthocyanin biosynthesis. Crit Rev Plant Sci 15:525–557

    Article  CAS  Google Scholar 

  86. Grotewold E, Sainz MB, Tagliani L, Hernandez JM, Bowen B, Chandler VL (2000) Identification of the residues in the Myb domain of maize C1 that specify the interaction with the bHLH cofactor R. Proc Natl Acad Sci U S A 97:13579–13584

    Article  CAS  Google Scholar 

  87. Henkes S, Sonnewald U, Badur R, Flachmann R, Stitt M (2001) A small decrease of plastid transketolase activity in antisense tobacco transformants has dramatic effects on photosynthesis and phenylpropanoid metabolism. Plant Cell 13:535–551

    Article  CAS  Google Scholar 

  88. Tamagnone L, Merida A, Parr A, Mackay S, Culianez-Macia FA, Roberts K et al (1998) The AmMYB308 and AmMYB330 transcription factors from Antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco. Plant Cell 10:135–154

    Article  CAS  Google Scholar 

  89. Shufflebottom D, Edwards K, Schuch W, Bevan M (1993) Transcription of two members of a gene family encoding phenylalanine ammonia‐lyase leads to remarkably different cell specificities and induction patterns. Plant J 3:835–845

    Article  CAS  Google Scholar 

  90. Weisshaar B, Jenkins GI (1998) Phenylpropanoid biosynthesis and its regulation. Curr Opin Plant Biol 1:251–257

    Article  CAS  Google Scholar 

  91. Gantet P, Memelink J (2002) Transcription factors: tools to engineer the production of pharmacologically active plant metabolites. Trends Pharmacol Sci 23:563–569

    Article  CAS  Google Scholar 

  92. Schmid J, Amrhein N (1995) Molecular organization of the shikimate pathway in higher plants. Phytochemistry 39:737–749

    Article  CAS  Google Scholar 

  93. Poulsen C, Verpoorte R (1991) Roles of chorismate mutase, isochorismate synthase and anthranilate synthase in plants. Phytochemistry 30:377–386

    Article  CAS  Google Scholar 

  94. Ziegler J, Facchini PJ (2008) Alkaloid biosynthesis: metabolism and trafficking. Annu Rev Plant Biol 59:735–769

    Article  CAS  Google Scholar 

  95. De Luca V, St Pierre B (2000) The cell and developmental biology of alkaloid biosynthesis. Trends Plant Sci 5:168–173

    Article  Google Scholar 

  96. Bailey JE, Sburlati A, Hatzimanikatis V, Lee K, Renner WA, Tsai PS (1996) Inverse metabolic engineering: a strategy for directed genetic engineering of useful phenotypes. Biotechnol Bioeng 52:109–121

    Article  CAS  Google Scholar 

  97. Bailey JE (1991) Toward a science of metabolic engineering. Science 252:1668–1675

    Article  CAS  Google Scholar 

  98. Sauer U (2006) Metabolic networks in motion: 13C‐based flux analysis. Mol Syst Biol 2:1–10

    Article  CAS  Google Scholar 

  99. Ncube B, Finnie J, Van Staden J (2012) Quality from the field: The impact of environmental factors as quality determinants in medicinal plants. S Afr J Bot 82:11–20

    Article  Google Scholar 

  100. Ncube B, Finnie JF, Van Staden J (2014) Carbon–nitrogen ratio and in vitro assimilate partitioning patterns in Cyrtanthus guthrieae L. Plant Physiol Biochem 74:246–254

    Article  CAS  Google Scholar 

  101. Sato F, Hashimoto T, Hachiya A, Tamura K-i, Choi K-B, Morishige T et al (2001) Metabolic engineering of plant alkaloid biosynthesis. Proc Natl Acad Sci U S A 98:367–372

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The National Research Foundation of South Africa is gratefully acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bhekumthetho Ncube , Ashwell R. Ndhlala or Johannes Van Staden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Ncube, B., Ndhlala, A.R., Van Staden, J. (2017). Secondary Metabolism and the Rationale for Systems Manipulation. In: Jha, S. (eds) Transgenesis and Secondary Metabolism. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-28669-3_23

Download citation

Publish with us

Policies and ethics