Skip to main content

Secondary Products from Plant Cell Cultures: Early Experiences with Agrobacterium rhizogenes-Transformed Hairy Roots

  • Reference work entry
  • First Online:
Transgenesis and Secondary Metabolism

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

The enormous range of secondary metabolites produced within the plant kingdom includes many of scientific and commercial interest. There are frequently problems associated both with the study of secondary product biosynthesis in planta, and the reliability of agricultural systems for the production of commercially valuable products. In recent decades there has thus been an interest in developing in vitro cell culture systems that produce high levels of selected secondary metabolites. While callus and cell suspension cultures have been widely developed, their secondary metabolite productive capacities can be rather low and unpredictable. A major step forward came with the development of organ cultures, particularly the so-called hairy roots produced by transformation of plants with the bacterium Agrobacterium rhizogenes. The group at the Institute of Food Research, Norwich, was one of the first to exploit the technology, and this article describes their experiences with hairy roots and illustrates the range of approaches that can be taken to maximize their potential. In particular, because hairy root formation already involves a genetic transfer, they are especially good systems in which to study the effects of transgenesis. While some of the techniques described have now been extensively exploited, others have still not reached their full potential, and hopefully this article might serve to throw some light on possible future developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADC:

Arginine decarboxylase

HCHL:

p-hydroxycinnamoyl-CoA hydratase/lyase

ODC:

Ornithine decarboxylase

T-DNA:

Transferred DNA

References

  1. Hahlbrock K, Grisebach H (1979) Enzymic controls in the biosynthesis of lignin and flavonoids. Annu Rev Plant Physiol Plant Mol Biol 30:105–130

    Article  CAS  Google Scholar 

  2. Koes RE, Quattrocchio F, Mol JNM (1994) The flavonoid biosynthetic pathway in plants: function and evolution. Bioessays 16:123–132

    Article  CAS  Google Scholar 

  3. Parr AJ (1992) Quantitation of pathway intermediates in tropane alkaloid biosynthesis: an approach to understanding how the pathway may be regulated. Phytochem (Life Sci Adv) 11:155–158

    Google Scholar 

  4. Gachon CMM, Langlois-Meurinne M, Saindrenan P (2005) Plant secondary metabolism glycosyltransferases: the emerging functional analysis. Trends Plant Sci 10:542–549

    Article  CAS  Google Scholar 

  5. Qi X, Bakht S, Leggett M, Maxwell C, Melton R, Osbourn A (2004) A gene cluster for secondary metabolism in oat: implications for the evolution of metabolic diversity in plants. Proc Natl Acad Sci U S A 101:8233–8238

    Article  CAS  Google Scholar 

  6. Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204

    Article  CAS  Google Scholar 

  7. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  Google Scholar 

  8. Hall RD, Yeoman MM (1987) Intercellular and intercultural heterogeneity in secondary metabolite accumulation in cultures of Catharanthus roseus following cell line selection. J Exp Bot 38:1391–1398

    Article  CAS  Google Scholar 

  9. Bourgaud F, Gravot A, Milesi S, Gontier E (2001) Production of plant secondary metabolites: a historical perspective. Plant Sci 161:839–851

    Article  CAS  Google Scholar 

  10. Larkin PJ, Scowcroft WR (1981) Somaclonal variation – a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214

    Article  CAS  Google Scholar 

  11. Aird ELH, Hamill JD, Rhodes MJC (1988) Cytogenetic analysis of hairy root cultures from a number of plant species transformed by Agrobacterium rhizogenes. Plant Cell Tiss Org 15:47–57

    Article  Google Scholar 

  12. Yeoman MM, Yeoman CL (1996) Manipulating secondary metabolism in cultured plant cells. New Phytol 134:553–569

    Article  CAS  Google Scholar 

  13. Zhao J, Zhu W-H, Hu Q (2001) Selection of fungal elicitors to increase indole alkaloid accumulation in Catharanthus roseus suspension cell culture. Enzyme Microb Technol 28:666–672

    Article  CAS  Google Scholar 

  14. Hamill JD, Parr AJ, Robins RJ, Rhodes MJC (1986) Secondary product formation by cultures of Beta vulgaris and Nicotiana rustica transformed with Agrobacterium rhizogenes. Plant Cell Rep 5:111–114

    Article  CAS  Google Scholar 

  15. Hamill JD, Parr AJ, Rhodes MJC, Robins RJ, Walton NJ (1987) New routes to plant secondary products. Nat Biotechnol 5:800–804

    Article  CAS  Google Scholar 

  16. Flores HE, Hoy MW, Pickard JJ (1987) Secondary metabolites from root cultures. Trends Biotechnol 5:64–69

    Article  CAS  Google Scholar 

  17. Britton MT, Escobar MA, Dandekar AM (2008) The oncogenes of Agrobacterium tumefaciens and Agrobacterium rhizogenes. In: Tzfira T, Citovsky V (eds) Agrobacterium: from biology to biotechnology. Springer, New York, pp 523–563

    Chapter  Google Scholar 

  18. Parr AJ, Hamill JD (1987) Relationship between Agrobacterium rhizogenes transformed hairy roots and intact, uninfected Nicotiana plants. Phytochemistry 26:3241–3245

    Article  CAS  Google Scholar 

  19. Abhyankara G, Reddy VD, Giri CC, Rao KV, Lakshmi VVS, Prabhakar S, Vairamani M, Thippeswamy BS, Bhattacharya PS (2005) Amplified fragment length polymorphism and metabolomic profiles of hairy roots of Psoralea corylifolia L. Phytochemistry 66:2441–2457

    Article  Google Scholar 

  20. Bulgakov VP (2008) Functions of rol genes in plant secondary metabolism. Biotechnol Adv 26:318–324

    Article  CAS  Google Scholar 

  21. Runo S, Macharia S, Alakonya A, Machuka J, Sinha N, Scholes J (2012) Striga parasitizes transgenic hairy roots of Zea mays and provides a tool for studying plant-plant interactions. Plant Methods 8:20

    Article  CAS  Google Scholar 

  22. Robins RJ, Parr AJ, Payne J, Walton NJ, Rhodes MJC (1990) Factors regulating tropane-alkaloid production in a transformed root culture of a Datura candida × D. aurea hybrid. Planta 181:414–422

    Article  CAS  Google Scholar 

  23. Robins RJ, Chesters NCJE, O’Hagan D, Parr AJ, Walton NJ, Woolley JG (1995) The biosynthesis of hyoscyamine: the process by which littorine rearranges to hyoscyamine. J Chem Soc Perkin Trans 1:481–485

    Article  Google Scholar 

  24. Wu SJ, Liu YS, Wu JY (2008) The signaling role of extracellular ATP and its dependence on Ca2+ flux in elicitation of Salvia miltiorrhiza hairy root cultures. Plant Cell Physiol 49:617–624

    Article  CAS  Google Scholar 

  25. Rhodes MJC, Hilton M, Parr AJ, Hamill JD, Robins RJ (1986) Nicotine production by “hairy root” cultures of Nicotiana rustica: fermentation and product recovery. Biotechnol Lett 8:415–420

    Article  CAS  Google Scholar 

  26. Wilson PDG (1997) The pilot-scale cultivation of transformed roots. In: Doran PM (ed) Hairy roots: culture and applications. CRC Press, Amsterdam, pp 179–190

    Google Scholar 

  27. Ruffoni B, Pistelli L, Bertoli A, Pistelli L (2010) Plant cell cultures: bioreactors for industrial production. Adv Exp Med Biol 698:203–221

    Article  CAS  Google Scholar 

  28. Hamill JD, Rhodes MJC (1988) A spontaneous, light independent and prolific plant regeneration response from hairy roots of Nicotiana hesperis transformed by Agrobacterium rhizogenes. J Plant Physiol 133:506–509

    Article  CAS  Google Scholar 

  29. Parr AJ, Payne J, Eagles J, Chapman BT, Robins RJ, Rhodes MJC (1990) Variation in tropane alkaloid accumulation within the Solanaceae and strategies for its exploitation. Phytochemistry 29:2545–2550

    Article  CAS  Google Scholar 

  30. Furze JM, Rhodes MJC, Parr AJ, Robins RJ, Whitehead IM, Threlfall DR (1991) Abiotic factors elicit sesquiterpenoid phytoalexin production but not alkaloid production in transformed root cultures of Datura stramonium. Plant Cell Rep 10:111–114

    Article  CAS  Google Scholar 

  31. Mitra A, Mayer MJ, Mellon FA, Michael AJ, Narbad A, Parr AJ, Waldron KW, Walton NJ (2002) 4-Hydroxycinnamoyl-CoA hydratase/lyase, an enzyme of phenylpropanoid cleavage from Pseudomonas, causes formation of C(6)-C(1) acid and alcohol glucose conjugates when expressed in hairy roots of Datura stramonium L. Planta 215:79–89

    Article  CAS  Google Scholar 

  32. Parr AJ (1992) Alternative metabolic fates of hygrine in transformed root cultures of Nicandra physaloides. Plant Cell Rep 11:270–273

    CAS  Google Scholar 

  33. Ur Rahman L, Kouno H, Hashiguchi Y, Yamamoto H, Narbad A, Parr A, Walton N, Ikenaga T, Kitamura Y (2009) HCHL expression in hairy roots of Beta vulgaris yields a high accumulation of p-hydroxybenzoic acid (pHBA) glucose ester, and linkage of pHBA into cell walls. Bioresour Technol 100:4836–4842

    Article  Google Scholar 

  34. Parr AJ, Peerless ACJ, Hamill JD, Walton NJ, Robins RJ, Rhodes MJC (1988) Alkaloid production by transformed root cultures of Catharanthus roseus. Plant Cell Rep 7:309–312

    Article  CAS  Google Scholar 

  35. Furze JM, Hamill JD, Parr AJ, Robins RJ (1987) Variations in morphology and nicotine alkaloid accumulation in protoplast-derived hairy root cultures of Nicotiana rustica. J Plant Physiol 131:237–246

    Article  CAS  Google Scholar 

  36. Sandermann H Jr (1992) Plant metabolism of xenobiotics. Trends Biochem Sci 17:82–84

    Article  CAS  Google Scholar 

  37. Brazier-Hicks M, Offen WA, Gershater MC, Revett TJ, Lim E-K, Bowles DJ, Davies GJ, Edwards R (2007) Characterization and engineering of the bifunctional N- and O-glucosyltransferase involved in xenobiotic metabolism in plants. Proc Natl Acad Sci U S A 104:20238–20243

    Article  CAS  Google Scholar 

  38. Boswell HD, Watson AB, Walton NJ, Robins DJ (1993) Formation of N-ethyl-S-nornicotine by transformed root cultures of Nicotiana rustica. Phytochemistry 34:153–155

    Article  CAS  Google Scholar 

  39. Boswell HD, Dräger B, Eagles J, McClintock C, Parr A, Portsteffen A, Robins DJ, Robins RJ, Walton NJ, Wong C (1999) Metabolism of N-alkyldiamines and N-alkylnortropinones by transformed root cultures of Nicotiana and Brugmansia. Phytochemistry 52:855–869

    Article  CAS  Google Scholar 

  40. Tempe J, Casse-Delbart F (1989) Plant gene vectors and genetic transformation: Agrobacterium Ri plasmids. In: Schell J, Vasil IK (eds) Cell culture and somatic cell genetics of plants, vol 6. Academic, New York, pp 25–49

    Google Scholar 

  41. Hamill JD, Robins RJ, Parr AJ, Evans DM, Furze JM, Rhodes MJC (1990) Over-expressing a yeast ornithine decarboxylase gene in transgenic roots of Nicotiana rustica can lead to enhanced nicotine accumulation. Plant Mol Biol 15:27–38

    Article  CAS  Google Scholar 

  42. Kay R, Chan A, Daly M, McPherson J (1987) Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science 236:1299–1302

    Article  CAS  Google Scholar 

  43. Martin-Tanguy J (2001) Metabolism and function of polyamines in plants: recent development (new approaches). Plant Growth Regul 34:135–148

    Article  CAS  Google Scholar 

  44. DeBoer KD, Dalton HL, Edward FJ, Hamill JD (2011) RNAi-mediated down-regulation of ornithine decarboxylase (ODC) leads to reduced nicotine and increased anatabine levels in transgenic Nicotiana tabacum L. Phytochemistry 72:344–355

    Article  CAS  Google Scholar 

  45. Singh P, Khan S, Pandey SS, Singh M, Banerjee S, Kitamura Y, Ur Rahman L (2015) Vanillin production in metabolically engineered Beta vulgaris hairy roots through heterologous expression of Pseudomonas fluorescens HCHL gene. Ind Crop Prod 74:839–848

    Article  CAS  Google Scholar 

  46. Jin H, Martin C (1999) Multifunctionality and diversity within the plant MYB-gene family. Plant Mol Biol 41:577–585

    Article  CAS  Google Scholar 

  47. Verdier J, Zhao J, Torres-Jerez I, Ge S, Liu C, He X, Mysore KS, Dixon RA, Udvardi MK (2012) MtPAR MYB transcription factor acts as an on switch for proanthocyanidin biosynthesis in Medicago truncatula. Proc Natl Acad Sci U S A 109:1766–1771

    Article  CAS  Google Scholar 

  48. Gilchrist E, Haughn G (2010) Reverse genetics techniques: engineering loss and gain of gene function in plants. Brief Funct Genomics 9:103–110

    Article  CAS  Google Scholar 

  49. Graham TL, Graham MY, Subramanian S, Yu O (2007) RNAi silencing of genes for elicitation or biosynthesis of 5-deoxyisoflavonoids suppresses race-specific resistance and hypersensitive cell death in Phytophthora sojae infected tissues. Plant Physiol 144:728–740

    Article  CAS  Google Scholar 

  50. Asano T, Kobayashi K, Kashihara E, Sudo H, Sasaki R, Iijima Y, Aoki K, Shibata D, Saito K, Yamazaki M (2013) Suppression of camptothecin biosynthetic genes results in metabolic modification of secondary products in hairy roots of Ophiorrhiza pumila. Phytochemistry 91:128–139

    Article  CAS  Google Scholar 

  51. Hu Z-B, Du M (2006) Hairy root and its application in plant genetic engineering. J Integr Plant Biol 48:121–127

    Article  CAS  Google Scholar 

  52. Furner IJ, Huffman GA, Amasino RM, Garfinkel DJ, Gordon MP, Nester EW (1986) An Agrobacterium transformation in the evolution of the genus Nicotiana. Nature 319:422–427

    Article  CAS  Google Scholar 

  53. Niggeweg R, Michael AJ, Martin C (2004) Engineering plants with increased levels of the antioxidant chlorogenic acid. Nat Biotechnol 22:746–754

    Article  CAS  Google Scholar 

  54. Petersen M, Hans J, Matern U (2010) Biosynthesis of phenylpropanoids and related compounds. Annu Plant Rev 40:182–257

    CAS  Google Scholar 

  55. Whetten R, Sederoff R (1995) Lignin biosynthesis. Plant Cell 7:1001–1013

    Article  CAS  Google Scholar 

  56. Yoshida-Shimokawa T, Yoshida S, Kakegawa K, Ishii T (2001) Enzymic feruloylation of arabinoxylan-trisaccharide by feruloyl-CoA: arabinoxylan-trisaccharide O-hydroxycinnamoyl transferase from Oryza sativa. Planta 212:470–474

    Article  CAS  Google Scholar 

  57. Waldron KW, Ng A, Parker ML, Parr AJ (1997) Ferulic acid dehydrodimers in the cell walls of Beta vulgaris and their possible role in texture. J Sci Food Agric 74:221–228

    Article  CAS  Google Scholar 

  58. Häkkinen ST, Moyano E, Cusidó RM, Palazón J, Piñol MT, Oksman-Caldentey K-M (2005) Enhanced secretion of tropane alkaloids in Nicotiana tabacum hairy roots expressing heterologous hyoscyamine-6b-hydroxylase. J Exp Bot 56:2611–2618

    Article  Google Scholar 

  59. Sumner LW, Mendes P, Dixon RA (2003) Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 62:817–836

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian J. Parr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Parr, A.J. (2017). Secondary Products from Plant Cell Cultures: Early Experiences with Agrobacterium rhizogenes-Transformed Hairy Roots. In: Jha, S. (eds) Transgenesis and Secondary Metabolism. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-28669-3_20

Download citation

Publish with us

Policies and ethics