Skip to main content

Functional Analysis and the Role of Members of SGT Gene Family of Withania somnifera

  • Reference work entry
  • First Online:
Transgenesis and Secondary Metabolism

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Sterol glycosyltransferases (SGTs) catalyze the attachment of a carbohydrate moiety to an aglycone sterol accepter molecule at different positions. SGTs are key enzymes for the biosynthesis of many precious natural plant products. SGTs of Withania somnifera (WsSGTs) help in the glycosylation of withanolides, a pharmaceutically important C-28 phytochemical product and phytosterols, such as sitosterol and stigmasterol. SGTs of W. somnifera glycosylate the sterol backbone at C-3, C-17, and C-27 positions. Modified phytosterols and withanolides play an important role in maintaining metabolic plasticity during adaptive response. The expression of SGTs changed during different biotic and abiotic stresses indicating their role in maintaining the cellular disturbances. Overexpression of WsSGTL1, a gene member of SGT gene family and silencing of SGT members through RNAi and artificial miRNA technology, in homologous (W. somnifera) and heterologous (Nicotiana tabacum and Arabidopsis thaliana) expression systems defines their role in growth and development of plants. The functional analysis of these genes has also been studied under abiotic (cold, heat, and salt) and biotic (SA, JA, Alternaria alternata, and Spodoptera litura) stress-providing tolerance to the plants. The chapter is concerned with the importance and application of SGTs in metabolic pathway engineering leading to biosynthesis of important bioactive compounds in W. somnifera.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armah CN, Mackie AR, Roy C, Price K, Osbourn AE, Bowyer P, Ladha S (1999) The membrane-permeabilizing effect of avenacin A-1 involves the reorganization of bilayer cholesterol. Biophys J 76:281–290

    Article  CAS  Google Scholar 

  2. Bajguz A (2007) Metabolism of brassinosteroids in plants. Plant Physiol Biochem 45:95–107

    Article  CAS  Google Scholar 

  3. Brandley BK, Schnaar RL (1986) Cell-surface carbohydrates in cell recognition and response. J Leukoc Biol 40:97–111

    CAS  Google Scholar 

  4. Carland F, Fujioka S, Nelson T (2010) The sterol methyltransferases SMT1, SMT2, and SMT3 influence Arabidopsis development through nonbrassinosteroid products. Plant Physiol 153:741–756

    Article  CAS  Google Scholar 

  5. Chang A, Singh S, Helmich KE, Goff RD, Bingman CA, Thorson JS, Phillips GN Jr (2011) Complete set of glycosyltransferase structures in the calicheamicin biosynthetic pathway reveals the origin of regiospecificity. Proc Natl Acad Sci U S A 108:17649–17654

    Article  CAS  Google Scholar 

  6. Chaturvedi P, Misra P, Tuli R (2011) Sterol glycosyltransferases – the enzymes that modify sterols. Appl Biochem Biotechnol 165:47–68

    Article  CAS  Google Scholar 

  7. Chaturvedi P, Mishra M, Akhtar N, Gupta P, Mishra P, Tuli R (2012) Sterol glycosyltransferases-identification of members of gene family and their role in stress in Withania somnifera. Mol Biol Rep 39:9755–9764

    Article  CAS  Google Scholar 

  8. Chong J, Baltz R, Schmitt C, Beffa R, Fritig B, Saindrenan P (2002) Downregulation of a pathogen-responsive tobacco UDP-Glc:phenylpropanoid glucosyltransferase reduces scopoletin glucoside accumulation, enhances oxidative stress, and weakens virus resistance. Plant Cell 14:1093–1107

    Article  CAS  Google Scholar 

  9. Clouse SD (1996) Molecular genetic studies confirm the role of brassinosteroids in plant growth and development. Plant J 10:1–8

    Article  CAS  Google Scholar 

  10. Clutton-Brock J (1975) Letter: Design of anaesthesia apparatus. Lancet 1:1376

    Article  CAS  Google Scholar 

  11. Coutinho PM, Deleury E, Davies GJ, Henrissat B (2003) An evolving hierarchical family classification for glycosyltransferases. J Mol Biol 328:307–317

    Article  CAS  Google Scholar 

  12. DeBolt S, Scheible WR, Schrick K, Auer M, Beisson F, Bischoff V, Bouvier-Nave P, Carroll A, Hematy K, Li Y, Milne J, Nair M, Schaller H, Zemla M, Somerville C (2009) Mutations in UDP-glucose:sterol glucosyltransferase in Arabidopsis cause transparent testa phenotype and suberization defect in seeds. Plant Physiol 151:78–87

    Article  CAS  Google Scholar 

  13. Didier A, Roselyne C, Jean-Marie L, Claudine P, Jean-Michel G, Roland P, Jean-Paul D, Daniel E (2003) Resistance to late blight and soft rot in six potato progenies and glycoalkaloid contents in the tubers. Am J Potato Res 80:125–134

    Article  Google Scholar 

  14. Dilokpimol A, Geshi N (2014) Arabidopsis thaliana glucuronosyltransferase in family GT14. Plant Signal Behav 9:e28891

    Article  Google Scholar 

  15. Egelund J, Petersen BL, Motawia MS, Damager I, Faik A, Olsen CE, Ishii T, Clausen H, Ulvskov P, Geshi N (2006) Arabidopsis thaliana RGXT1 and RGXT2 encode Golgi-localized (1,3)-alpha-d-xylosyltransferases involved in the synthesis of pectic rhamnogalacturonan-II. Plant Cell 18:2593–2607

    Article  CAS  Google Scholar 

  16. Frommer WB, Ninnemann O (1995) Heterologous expression of genes in bacterial, fungal, animal, and plant cells. Annu Rev Plant Biol 46:419–444

    Article  CAS  Google Scholar 

  17. Gloster TM (2014) Advances in understanding glycosyltransferases from a structural perspective. Curr Opin Struct Biol 28:131–141

    Article  CAS  Google Scholar 

  18. Gupta P, Goel R, Pathak S, Srivastava A, Singh SP, Sangwan RS, Asif MH, Trivedi PK (2013) De novo assembly, functional annotation and comparative analysis of Withania somnifera leaf and root transcriptomes to identify putative genes involved in the withanolides biosynthesis. PLoS One 8:e62714

    Article  CAS  Google Scholar 

  19. Hashimoto K, Madej T, Bryant SH, Panchenko AR (2010) Functional states of homooligomers: insights from the evolution of glycosyltransferases. J Mol Biol 399:196–206

    Article  CAS  Google Scholar 

  20. Hou B, Lim EK, Higgins GS, Bowles DJ (2004) N-glucosylation of cytokinins by glycosyltransferases of Arabidopsis thaliana. J Biol Chem 279:47822–47832

    Article  CAS  Google Scholar 

  21. Hu Y, Chen L, Ha S, Gross B, Falcone B, Walker D, Mokhtarzadeh M, Walker S (2003) Crystal structure of the MurG:UDP-GlcNAc complex reveals common structural principles of a superfamily of glycosyltransferases. Proc Natl Acad Sci U S A 100:845–849

    Article  CAS  Google Scholar 

  22. Islam S, Griffiths CA, Blomstedt CK, Le TN, Gaff DF, Hamill JD, Neale AD (2013) Increased biomass, seed yield and stress tolerance is conferred in Arabidopsis by a novel enzyme from the resurrection grass Sporobolus stapfianus that glycosylates the strigolactone analogue GR24. PLoS One 8:e80035

    Article  CAS  Google Scholar 

  23. Jackson RG, Lim EK, Li Y, Kowalczyk M, Sandberg G, Hoggett J, Ashford DA, Bowles DJ (2001) Identification and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferase. J Biol Chem 276:4350–4356

    Article  CAS  Google Scholar 

  24. Jadhav SJ, Sharma RP, Salunkhe DK (1981) Naturally occurring toxic alkaloids in foods. Crit Rev Toxicol 9:21–104

    Article  CAS  Google Scholar 

  25. Kohara A, Nakajima C, Hashimoto K, Ikenaga T, Tanaka H, Shoyama Y, Yoshida S, Muranaka T (2005) A novel glucosyltransferase involved in steroid saponin biosynthesis in Solanum aculeatissimum. Plant Mol Biol 57:225–239

    Article  CAS  Google Scholar 

  26. Lairson LL, Henrissat B, Davies GJ, Withers SG (2008) Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 77:521–555

    Article  CAS  Google Scholar 

  27. Lim EK, Doucet CJ, Li Y, Elias L, Worrall D, Spencer SP, Ross J, Bowles DJ (2002) The activity of Arabidopsis glycosyltransferases toward salicylic acid, 4-hydroxybenzoic acid, and other benzoates. J Biol Chem 277:586–592

    Article  CAS  Google Scholar 

  28. Liu J, Mushegian A (2003) Three monophyletic superfamilies account for the majority of the known glycosyltransferases. Protein Sci 12:1418–1431

    Article  CAS  Google Scholar 

  29. Madina BR, Sharma LK, Chaturvedi P, Sangwan RS, Tuli R (2007a) Purification and physico-kinetic characterization of 3beta-hydroxy specific sterol glucosyltransferase from Withania somnifera (L) and its stress response. Biochim Biophys Acta 1774:392–402

    Article  CAS  Google Scholar 

  30. Madina BR, Sharma LK, Chaturvedi P, Sangwan RS, Tuli R (2007b) Purification and characterization of a novel glucosyltransferase specific to 27beta-hydroxy steroidal lactones from Withania somnifera and its role in stress responses. Biochim Biophys Acta 1774:1199–1207

    Article  CAS  Google Scholar 

  31. Mishra MK, Singh G, Tiwari S, Singh R, Kumari N, Misra P (2015) Characterization of Arabidopsis sterol glycosyltransferase TTG15/UGT80B1 role during freeze and heat stress. Plant Signal Behav 10:e1075682

    Article  Google Scholar 

  32. Mishra MK, Chaturvedi P, Singh R, Singh G, Sharma LK, Pandey V, Kumari N, Misra P (2013) Overexpression of WsSGTL1 gene of Withania somnifera enhances salt tolerance, heat tolerance and cold acclimation ability in transgenic Arabidopsis plants. PLoS One 8:e63064

    Article  CAS  Google Scholar 

  33. Moehs CP, Allen PV, Friedman M, Belknap WR (1997) Cloning and expression of solanidine UDP-glucose glucosyltransferase from potato. Plant J 11:227–236

    Article  CAS  Google Scholar 

  34. Nieman DC (1998) Influence of carbohydrate on the immune response to intensive, prolonged exercise. Exerc Immunol Rev 4:64–76

    CAS  Google Scholar 

  35. Offen W, Martinez-Fleites C, Yang M, Kiat-Lim E, Davis BG, Tarling CA, Ford CM, Bowles DJ, Davies GJ (2006) Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification. EMBO J 25:1396–1405

    Article  CAS  Google Scholar 

  36. Osbourn AE (1996) Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell 8:1821–1831

    Article  CAS  Google Scholar 

  37. Osmani SA, Bak S, Imberty A, Olsen CE, Moller BL (2008) Catalytic key amino acids and UDP-sugar donor specificity of a plant glucuronosyltransferase, UGT94B1: molecular modeling substantiated by site-specific mutagenesis and biochemical analyses. Plant Physiol 148:1295–1308

    Article  CAS  Google Scholar 

  38. Pandey V, Misra P, Chaturvedi P, Mishra MK, Trivedi PK, Tuli R (2010) Agrobacterium tumefaciens-mediated transformation of Withania somnifera (L.) Dunal: an important medicinal plant. Plant Cell Rep 29:133–141

    Article  CAS  Google Scholar 

  39. Pandey V, Srivastava R, Akhtar N, Mishra J, Mishra P, Verma P (2015) Expression of Withania somnifera steroidal glucosyltransferase gene enhances withanolide content in hairy roots. Plant Mol Bio Rep 34:1–9

    Google Scholar 

  40. Pandey V, Niranjan A, Atri N, Chandrashekhar K, Mishra MK, Trivedi PK, Misra P (2014) WsSGTL1 gene from Withania somnifera, modulates glycosylation profile, antioxidant system and confers biotic and salt stress tolerance in transgenic tobacco. Planta 239:1217–1231

    Article  CAS  Google Scholar 

  41. Pandey V, Dhar YV, Gupta P, Bag SK, Atri N, Asif MH, Trivedi PK, Misra P (2015) Comparative interactions of withanolides and sterols with two members of sterol glycosyltransferases from Withania somnifera. BMC Bioinformatics 16:120

    Article  Google Scholar 

  42. Paquette SM, Jensen K, Bak S (2009) A web-based resource for the Arabidopsis P450, cytochromes b5, NADPH-cytochrome P450 reductases, and family 1 glycosyltransferases. Phytochemistry 70:1940–1947

    Article  CAS  Google Scholar 

  43. Poppenberger B, Berthiller F, Lucyshyn D, Sieberer T, Schuhmacher R, Krska R, Kuchler K, Glossl J, Luschnig C, Adam G (2003) Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. J Biol Chem 278:47905–47914

    Article  CAS  Google Scholar 

  44. Poppenberger B, Berthiller F, Lucyshyn D, Sieberer T, Schuhmacher R, Krska R, Kuchler K, Glossl J, Luschnig C, Adam G (2005) The UGT73C5 of Arabidopsis thaliana glucosylates brassinosteroids. Proc Natl Acad Sci U S A 102:15253–15258

    Article  CAS  Google Scholar 

  45. Potocka A, Zimowski J (2008) Metabolism of conjugated sterols in eggplant. Part 1. UDP-glucose: sterol glucosyltransferase. Acta Biochim Pol 55:127–134

    CAS  Google Scholar 

  46. Ritsema T, Smeekens SC (2003) Engineering fructan metabolism in plants. J Plant Physiol 160:811–820

    Article  CAS  Google Scholar 

  47. Saema S, Rahman LU, Niranjan A, Ahmad IZ, Misra P (2015) RNAi-mediated gene silencing of WsSGTL1 in W. somnifera affects growth and glycosylation pattern. Plant Signal Behav 10:e1078064

    Article  Google Scholar 

  48. Saema S, Rahman LU, Singh R, Niranjan A, Ahmad IZ, Misra P (2016) Ectopic overexpression of WsSGTL1, a sterol glucosyltransferase gene in Withania somnifera, promotes growth, enhances glycowithanolide and provides tolerance to abiotic and biotic stresses. Plant Cell Rep 35:195–211

    Article  CAS  Google Scholar 

  49. Schumacher K, Chory J (2000) Brassinosteroid signal transduction: still casting the actors. Curr Opin Plant Biol 3:79–84

    Article  CAS  Google Scholar 

  50. Sharma LK, Madina BR, Chaturvedi P, Sangwan RS, Tuli R (2007) Molecular cloning and characterization of one member of 3beta-hydroxy sterol glucosyltransferase gene family in Withania somnifera. Arch Biochem Biophys 460:48–55

    Article  CAS  Google Scholar 

  51. Singh G, Tiwari M, Singh SP, Singh S, Trivedi PK, Misra P (2016) Silencing of sterol glycosyltransferases modulates the withanolide biosynthesis and leads to compromised basal immunity of Withania somnifera. Sci Rep 6:25562

    Article  CAS  Google Scholar 

  52. Steponkus PL, Uemura M, Joseph RA, Gilmour SJ, Thomashow MF (1998) Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. Proc Natl Acad Sci U S A 95:14570–14575

    Article  CAS  Google Scholar 

  53. Thorsoe KS, Bak S, Olsen CE, Imberty A, Breton C, Lindberg Moller B (2005) Determination of catalytic key amino acids and UDP sugar donor specificity of the cyanohydrin glycosyltransferase UGT85B1 from Sorghum bicolor. Molecular modeling substantiated by site-specific mutagenesis and biochemical analyses. Plant Physiol 139:664–673

    Article  Google Scholar 

  54. Trouvelot S, Heloir MC, Poinssot B, Gauthier A, Paris F, Guillier C, Combier M, Trda L, Daire X, Adrian M (2014) Carbohydrates in plant immunity and plant protection: roles and potential application as foliar sprays. Front Plant Sci 5:592

    Article  Google Scholar 

  55. Ullmann P, Bouvier-Nave P, Benveniste P (1987) Regulation by phospholipids and kinetic studies of plant membrane-bound UDP-glucose sterol beta-d-glucosyl transferase. Plant Physiol 85:51–55

    Article  CAS  Google Scholar 

  56. Ullmann P, Ury A, Rimmele D, Benveniste P, Bouvier-Nave P (1993) UDP-glucose sterol beta-d-glucosyltransferase, a plasma membrane-bound enzyme of plants: enzymatic properties and lipid dependence. Biochimie 75:713–723

    Article  CAS  Google Scholar 

  57. Wang X (2009) Structure, mechanism and engineering of plant natural product glycosyltransferases. FEBS Lett 583:3303–3309

    Article  CAS  Google Scholar 

  58. Warnecke D, Erdmann R, Fahl A, Hube B, Muller F, Zank T, Zahringer U, Heinz E (1999) Cloning and functional expression of UGT genes encoding sterol glucosyltransferases from Saccharomyces cerevisiae, Candida albicans, Pichia pastoris, and Dictyostelium discoideum. J Biol Chem 274:13048–13059

    Article  CAS  Google Scholar 

  59. Warnecke DC, Heinz E (1994) Purification of a membrane-bound UDP-glucose:sterol [beta]-d-glucosyltransferase based on its solubility in diethyl Ether. Plant Physiol 105:1067–1073

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratibha Misra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Misra, P., Singh, G., Mishra, M.K., Pandey, V., Saema, S. (2017). Functional Analysis and the Role of Members of SGT Gene Family of Withania somnifera . In: Jha, S. (eds) Transgenesis and Secondary Metabolism. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-28669-3_16

Download citation

Publish with us

Policies and ethics