Skip to main content

Metabolic Engineering of Lignan Biosynthesis Pathways for the Production of Transgenic Plant-Based Foods

  • Reference work entry
  • First Online:
Transgenesis and Secondary Metabolism

Abstract

Lignans are major phytochemicals biosynthesized in several plants including Sesamum, Linum, Forsythia, and Podophyllum genus, and a great variety of lignans have received wide attentions as leading compounds of novel drugs for tumor treatment and healthy diets to reduce of the risks of lifestyle-related diseases. Recent genome and transcriptome studies have characterized multiple novel lignan-biosynthetic enzymes, and thus have opened new avenues to transgenic metabolic engineering of various nonmodel dietary or medicinal plants. Forsythia and Linum are the most useful and prevalent natural and agricultural sources for the development of both transgenic foods and medicinal compounds. Over the past few years, transiently gene-transfected or transgenic Forsythia and Linum plants or cell cultures have been shown to be promising platforms for the sustainable and efficient production of beneficial lignans. In this chapter, we present the essential knowledge and recent advances regarding metabolic engineering of lignans based on their biosynthetic pathways and biological activities and the perspectives in lignan production via metabolic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CAD:

Cinnamylalcohol dehydrogenase

CCR:

Cinnamoyl-CoA reductase

DIR:

Dirigent protein

ER:

Estrogen receptor

MAPK:

Mitogen-activated protein kinase

MeJA:

Methyl jasmonate

MOMT:

Matairesinol O-methyltransferase

PAL:

Phenylalanine ammonialyase

PIP:

Pinoresinol-lariciresinol/isoflavone/phenylcoumaran benzylic ether reductase

PLR:

Pinoresinol-lariciresinol reductase

PTOX:

Podophyllotoxin

RNAi:

RNA interference

SA:

Salicylic acid

SDG:

Secoisolariciresinol diglucoside

SIRD:

Secoisolariciresinol dehydrogenase

References

  1. Umezawa T (2003) Diversity in lignan biosynthesis. Phytochem Rev 2:371–390

    Article  CAS  Google Scholar 

  2. Suzuki S, Umezawa T (2007) Biosynthesis of lignans and norlignans. J Wood Sci 53:273–284

    Article  CAS  Google Scholar 

  3. Macías FA, López A, Varela RM, Torres A, Molinillo JMG (2004) Bioactive lignans from a cultivar of Helianthus annuus. J Agric Food Chem 52:6443–6447

    Article  CAS  Google Scholar 

  4. Lee J, Choe E (2006) Extraction of lignan compounds from roasted sesame oil and their effects on the autoxidation of methyl linoleate. J Food Sci 71:C430–C436

    Article  CAS  Google Scholar 

  5. Guo H, Liu A-H, Ye M, Yang M, Guo D-A (2007) Characterization of phenolic compounds in the fruits of Forsythia suspense by high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 21:715–729

    Article  CAS  Google Scholar 

  6. Peñalvo JL, Adlercreutz H, Uehara M, Ristimaki A, Watanabe S (2008) Lignan content of selected foods from Japan. J Agric Food Chem 56:401–409

    Article  CAS  Google Scholar 

  7. Piao X-L, Jang M-H, Cui J, Piao X (2008) Lignans from the fruits of Forsythia suspensa. Bioorg Med Chem Lett 18:1980–1984

    Article  CAS  Google Scholar 

  8. Hata N, Hayashi Y, Okazawa A, Ono E, Satake H, Kobayashi A (2010) Comparison of sesamin contents and CYP81Q1 gene expressions in aboveground vegetative organs between two Japanese sesame (Sesamum indicum L.) varieties differing in seed sesamin contents. Plant Sci 178:510–516

    Article  CAS  Google Scholar 

  9. Hata N, Hayashi Y, Ono E, Satake H, Kobayashi A, Muranaka T, Okazawa A (2013) Differences in plant growth and leaf sesamin content of the lignan-rich sesame variety “Gomazou” under continuous light of different wavelengths. Plant Biotechnol 30:1–8

    Article  CAS  Google Scholar 

  10. Okazawa A, Hori K, Okumura R, Izumi Y, Hata N, Bamba T, Fukusaki E, Ono E, Satake H, Kobayashi A (2011) Simultaneous quantification of lignans in Arabidopsis thaliana by highly sensitive capillary liquid chromatography-electrospray ionization-ion trap mass spectrometry. Plant Biotechnol 28:287–293

    Article  CAS  Google Scholar 

  11. Schmidt TJ, Klaes M, Sendker J (2012) Lignans in seeds of Linum species. Phytochemistry 82:89–99

    Article  CAS  Google Scholar 

  12. Satake H, Ono E, Murata J (2013) Recent advances in metabolic engineering of lignan biosynthesis pathways for the production of transgenic plant-based foods and supplements. J Agric Food Chem 61:11721–11729

    Article  CAS  Google Scholar 

  13. Satake H, Koyama T, Bahabadi SE, Matsumoto E, Ono E, Murata J (2015) Essences inmetabolic engineering of lignan biosynthesis. Metabolites 5:270–290

    Article  CAS  Google Scholar 

  14. Kajla P, Sharma A, Sood DR (2015) Flaxseed-a potential functional food source. J Food Sci Technol 52:1857–1871

    Article  CAS  Google Scholar 

  15. Goyal A, Sharma V, Upadhyay N, Gill S, Sihag M (2014) Flax and flaxseed oil: an ancient medicine & modern functional food. J Food Sci Technol 51:1633–1653

    Article  CAS  Google Scholar 

  16. Chaurasia OP, Ballabh B, Tayade A, Kumar R, Kumar GP, Singh SB (2012) Podophyllum L.: an endangered and anticancerous medicinal plant–an overview. Indian J Tradit Knowl 11:234–241

    Google Scholar 

  17. Murata J, Matsumoto E, Morimoto K, Koyama T, Satake H (2015) Generation of triple-transgenic Forsythia cell cultures as a platform for the efficient, stable, and sustainable production of lignans. PLoS One 10:e0144519

    Article  CAS  Google Scholar 

  18. Ionkova I (2007) Biotechnological approaches for the production of lignans. Phcog Rev 1:57–68

    CAS  Google Scholar 

  19. Ionkova I, Antonova I, Momekov G, Fuss E (2010) Production of podophyllotoxin in Linum linearifolium in vitro cultures. Pharmacogn Mag 6:180–185

    Article  CAS  Google Scholar 

  20. Ionkova I (2011) Anticancer lignans – from discovery to biotechnology. Mini Rev Med Chem 11:843–856

    Article  CAS  Google Scholar 

  21. Lata H, Mizuno CS, Moraes RM (2009) The role of biotechnology in the production of the anticancer compound podophyllotoxin. Methods Mol Biol 547:387–402

    Article  CAS  Google Scholar 

  22. Malik S, Biba O, Grúz J, Arroo RRJ, Strnad M (2014) Biotechnological approaches for producing aryltetralin lignans from Linum species. Phytochem Rev 13:893–913

    Article  CAS  Google Scholar 

  23. Lau W, Sattely ES (2015) Six enzymes from mayapple that complete the biosynthetic pathway to the etoposide aglycone. Science 349:1224–1228

    Article  CAS  Google Scholar 

  24. Oliva A, Moraes RA, Watson B, Duke SO, Dayan FE (2002) Aryltertralin lignans inhibit plant growth by affecting formation of mitotic microtubular organizing centers. Pestic Biochem Phys 72:45–54

    Article  CAS  Google Scholar 

  25. Harmatha J, Dinan L (2003) Biological activities of lignans and stilbenoids associated with plant-insect chemical interaction. Phytochem Rev 2:321–330

    Article  CAS  Google Scholar 

  26. Schroeder FC, del Campo ML, Grant JB, Weibel DB, Smedley SR, Bolton KL, Meinwald J, Eisner T (2006) Pinoresinol: a lignol of plant origin serving for defense in a caterpillar. Proc Natl Acad Sci U S A 103:15497–15501

    Article  CAS  Google Scholar 

  27. Cutillo F, D’Abrosca B, DellaGreca M, Fiorentino A, Zarrelli A (2003) Lignans and neolignans from Brassica fruticulosa: effects on seed germination and plant growth. J Agric Food Chem 51:6165–6172

    Article  CAS  Google Scholar 

  28. Nishiwaki H, Kumamoto M, Shuto Y, Yamauchi S (2011) Stereoselective syntheses of allstereoisomers of lariciresinol and their plant growth inhibitory activities. J Agric Food Chem 59:13089–13095

    Article  CAS  Google Scholar 

  29. Carillo P, Cozzolino C, D’Abrosca B, Nacca F, DellaGreca M, Fiorentio A, Fuggi A (2011) Effects of the allelochemicals dihydrodiconiferylalcohol and lariciresinol on metabolism of Lactuca sativa. Open Bioact Compd J 3:18–24

    Article  CAS  Google Scholar 

  30. Heinonen S, Nurmi T, Liukkonen K, Poutanen K, Wähälä K, Deyama T, Nishibe S, Adlercreutz H (2001) In vitro metabolism of plant lignans: new precursors of mammalian lignans enterolactone and enterodiol. J Agric Food Chem 49:3178–3186

    Article  CAS  Google Scholar 

  31. Lampe JW, Atkinson C, Hullar MA (2006) Assessing exposure to lignans and their metabolites in humans. J AOAC Int 89:1174–1181

    CAS  Google Scholar 

  32. Liu Z, Saarinen NM, Thompson LU (2006) Sesamin is one of the major precursors of mammalian lignans in sesame seed (Sesamum indicum) as observed in vitro and in rats. J Nutr 136:906–912

    CAS  Google Scholar 

  33. Mueller SO, Simon S, Chae K, Metzler M, Korach KS (2004) Phytoestrogens and their human metabolites show distinct agonistic and antagonistic properties on estrogenreceptor alpha (ERα) and ERβ in human cells. Toxicol Sci 80:14–25

    Article  CAS  Google Scholar 

  34. Penttinen P, Jaehrling J, Damdimopoulos AE, Inzunza J, Lemmen JG, van der Saag P, Pettersson K, Gauglitz G, Mäkelä S, Pongratz I (2007) Diet-derived polyphenol metabolite enterolactone is a tissue-specific estrogen receptor activator. Endocrinology 148:4875–4886

    Article  CAS  Google Scholar 

  35. During A, Debouche C, Raas T, Larondelle Y (2012) Among plant lignans, pinoresinolhas the strongest antiinflammatory properties in human intestinal Caco-2 cells. J Nutr 142:1798–1805

    Article  CAS  Google Scholar 

  36. Adlercreutz H (2007) Lignans and human health. CRC Crit Rev Clin Lab Sci 44:483–525

    Article  CAS  Google Scholar 

  37. Bergman Jungeström M, Thompson LU, Dabrosin C (2007) Flaxseed and its lignansinhibit estradiol-induced growth, angiogenesis, and secretion of vascular endothelial growth factor in human breast cancer xenografts in vivo. Clin Cancer Res 13:1061–1067

    Article  Google Scholar 

  38. Power KA, Saarinen NM, Chen JM, Thompson LU (2006) Mammalian lignans enterolactone and enterodiol, alone and in combination with the isoflavone genistein, do not promote the growth of MCF-7 xenografts in ovariectomized athymic nude mice. Int J Cancer 118:1316–1320

    Article  CAS  Google Scholar 

  39. Mense SM, Hei TK, Ganju RK, Bhat HK (2008) Phytoestrogens and breast cancer prevention: possible mechanisms of action. Environ Health Perspect 116:426–433

    Article  CAS  Google Scholar 

  40. Saarinen NM, Wärri A, Dings RPM, Airio M, Smeds AI, Mäkelä S (2008) Dietary lariciresinol attenuates mammary tumor growth and reduces blood vessel density inhuman MCF-7 breast cancer xenografts and carcinogen-induced mammary tumors in rats. Int J Cancer 123:1196–1204

    Article  CAS  Google Scholar 

  41. Adolphe JL, Whiting SJ, Juurlink BHJ, Thorpe LU, Alcorn J (2010) Health effects with consumption of the flax lignan secoisolariciresinol diglucoside. Br J Nutr 103:929–938

    Article  CAS  Google Scholar 

  42. Barre DE, Mizier-Barre KA, Stelmach E, Hobson J, Griscti O, Rudiuk A, Muthuthevar D (2012) Flaxseed lignan complex administration in older human type 2diabetics manages central obesity and prothrombosis-an invitation to further investigation into poly pharmacy reduction. J Nutr Metab 585170

    Google Scholar 

  43. Hano C, Renouard S, Molinié R, Corbin C, Barakzoy E, Doussot J, Lamblin F, Lainé E (2013) Flaxseed (Linum usitatissimum L.) extract as well as(+)-secoisolariciresinol diglucoside and its mammalian derivatives are potentinhibitors of α-amylase activity. Bioorg Med Chem Lett 23:3007–3012

    Article  CAS  Google Scholar 

  44. Sirato-Yasumoto S, Katsuta M, Okuyama Y, Takahashi Y, Ide T (2001) Effect of sesame seeds rich in sesamin and sesamolin on fatty acid oxidation in rat liver. J Agric Food Chem 49:2647–2651

    Article  CAS  Google Scholar 

  45. Nakano D, Itoh C, Takaoka M, Kiso Y, Tanaka T, Matsumura Y (2002) Antihypertensive effect of sesamin. IV. Inhibition of vascular superoxide production by sesamin. Biol Pharm Bull 25:1247–1249

    Article  CAS  Google Scholar 

  46. Nakai M, Harada M, Nakahara K, Akimoto K, Shibata H, Miki W, Kiso Y (2003) Novel antioxidative metabolites in rat liver with ingested sesamin. J Agric Food Chem 51:1666–1670

    Article  CAS  Google Scholar 

  47. Akimoto K, Kitagawa Y, Akamatsu T, Hirose N, Sugano M, Shimizu S, Yamada H (1993) Protective effects of sesamin against liver damage caused by alcohol or carbon tetrachloride in rodents. Ann Nutr Metab 37:218–224

    Article  CAS  Google Scholar 

  48. Tada M, Ono Y, Nakai M, Harada M, Shibata H, Kiso Y, Ogata T (2013) Evaluation of antioxidative effects of sesamin on the in vivo hepatic reducing abilities by a radiofrequency ESR method. Anal Sci 29:89–94

    Article  CAS  Google Scholar 

  49. Liu C-M, Zheng G-H, Ming Q-L, Cheng C, Sun J-M (2013) Sesamin protects mouse liver against nickel-induced oxidative DNA damage and apoptosis by the PI3K/Akt pathway. J Agric Food Chem 61:1146–1154

    Article  CAS  Google Scholar 

  50. Saarinen NM, Wärri A, Airio M, Smeds A, Mäkelä S (2007) Role of dietary lignans inthe reduction of breast cancer risk. Mol Nutr Food Res 51:857–866

    Article  CAS  Google Scholar 

  51. Velentzis LS, Cantwell MM, Cardwell C, Keshtgar MR, Leathem AJ, Woodside JV (2009) Lignans and breast cancer risk in pre- and post-menopausal women: meta-analysesof observational studies. Br J Cancer 100:1492–1498

    Article  CAS  Google Scholar 

  52. Velentzis LS, Keshtgar MR, Woodside JV, Leathem AJ, Titcomb A, Perkins KA, Mazurowska M, Anderson V, Wardell K, Cantwell MM (2011) Significant changes in dietary intake and supplement use after breast cancer diagnosis in a UK multicentre study. Breast Cancer Res Treat 128:473–482

    Article  CAS  Google Scholar 

  53. Buck K, Zaineddin AK, Vrieling A, Linseisen J, Chang-Claude J (2010) Meta-analysesof lignans and enterolignans in relation to breast cancer risk. Am J Clin Nutr 92:141–153

    Article  CAS  Google Scholar 

  54. Buck K, Zaineddin AK, Vrieling A, Heinz J, Linseisen J, Flesch-Janys D, Chang-Claude J (2011) Estimated enterolignans, lignan-rich foods, and fibre in relationto survival after postmenopausal breast cancer. Br J Cancer 105:1151–1157

    Article  CAS  Google Scholar 

  55. Zaineddin AK, Buck K, Vrieling A, Heinz J, Flesch-Janys D, Linseisen J, Chang-Claude J (2012) The association between dietary lignans, phytoestrogen-rich foods, and fiber intake and postmenopausal breast cancer risk: a German case–control study. Nutr Cancer 64:652–665

    Article  CAS  Google Scholar 

  56. Buck K, Vrieling A, Zaineddin AK, Becker S, Hüsing A, Kaaks R, Linseisen J, Flesch-Janys D, Chang-Claude J (2011) Serum enterolactone and prognosis of postmenopausal breast cancer. J Clin Oncol 29:3730–3738

    Article  CAS  Google Scholar 

  57. Chen JM, Saggar JK, Corey P, Thompson LU (2009) Flaxseed and pure secoisolariciresinol diglucoside, but not flaxseed hull, reduce human breast tumor growth (MCF-7) in athymic mice. J Nutr 139:2061–2066

    Article  CAS  Google Scholar 

  58. Truan JS, Chen JM, Thompson LU (2012) Comparative effects of sesame seed lignan and flaxseed lignan in reducing the growth of human breast tumors (MCF-7) at high levels of circulating estrogen in athymic mice. Nutr Cancer 64:65–71

    Article  CAS  Google Scholar 

  59. Yousefzadi M, Sharifi M, Behmanesh M, Moyano E, Bonfill M, Cusido RM, Palazon J (2010) Podophyllotoxin: current approaches to its biotechnological production and future challenges. Eng Life Sci 10:281–292

    Article  CAS  Google Scholar 

  60. Davin LB, Lewis NG (2003) A historical perspective on lignan biosynthesis: monolignol, allylphenol and hydroxycinnamic acid coupling and downstream metabolism. Phytochem Rev 2:257–288

    Article  CAS  Google Scholar 

  61. Ono E, Nakai M, Fukui Y, Tomimori N, Fukuchi-Mizutani M, Saito M, Satake H, Tanaka T, Katsuta M, Umezawa T, Tanaka Y (2006) Formation of two methylenedioxy bridges by a Sesamum CYP81Q protein yielding a furofuran lignan, (+)-sesamin. Proc Natl Acad Sci U S A 103:10116–10121

    Article  CAS  Google Scholar 

  62. Noguchi A, Fukui Y, Iuchi-Okada A, Kakutani S, Satake H, Iwashita T, Nakao M, Umezawa T, Ono E (2008) Sequential glucosylation of a furofuran lignan, (+)-sesaminol, by Sesamum indicum UGT71A9 and UGT94D1. Plant J 54:415–427

    Article  CAS  Google Scholar 

  63. Marques JV, Kim K-W, Lee C, Costa MA, May GD, Crow JA, Davin LB, Lewis NG (2013) Next generation sequencing in predicting gene function in podophyllotoxin biosynthesis. J Biol Chem 288:466–479

    Article  CAS  Google Scholar 

  64. Marques JV, Dalisay DS, Yang H, Lee C, Davin LB, Lewis NG (2014) A multi-omics strategy resolves the elusive nature of alkaloids in Podophyllum species. Mol BioSyst 10:2838–2849

    Article  CAS  Google Scholar 

  65. Wang L, Yu S, Tong C, Zhao Y, Liu Y, Song C, Zhang Y, Zhang X, Wang Y, Hua W, Li D, Li D, Li F, Yu J, Xu C, Han X, Huang S, Tai S, Wang J, Xu X, Li Y, Liu S, Varshney RK, Wang J, Zhang X (2014) Genome sequencing of the high oil crop sesame provides insight into oil biosynthesis. Genome Biol 15:R39

    Article  Google Scholar 

  66. Wang L, Han X, Zhang Y, Li D, Wei X, Ding X, Zhang X (2014) Deep resequencing reveals allelic variation in Sesamum indicum. BMC Plant Biol 14:225

    Article  CAS  Google Scholar 

  67. Wu K, Yang M, Liu H, Tao Y, Mei J, Zhao Y (2014) Genetic analysis and molecular characterization of Chinese sesame (Sesamum indicum L.) cultivars using insertion-deletion (InDel) and simple sequence repeat (SSR) markers. BMC Genet 15:35

    Article  CAS  Google Scholar 

  68. Babu PR, Rao KV, Reddy VD (2013) Structural organization and classification of cytochrome P450 genes in flax (Linum usitatissimum L.). Gene 513:156–162

    Article  CAS  Google Scholar 

  69. Bhattacharyya D, Sinha R, Hazra S, Datta R, Chattopadhyay S (2013) De novotranscriptome analysis using 454 pyrosequencing of the Himalayan Mayapple, Podophyllum hexandrum. BMC Genomics 14:748

    Article  CAS  Google Scholar 

  70. Dinkova-Kostova AT, Gang DR, Davin LB, Bedgar DL, Chu A, Lewis NG (1996) (+)-pinoresinol/(+)-lariciresinol reductase from Forsythia intermedia. J Biol Chem 271:29473–29482

    Article  CAS  Google Scholar 

  71. Gang DR, Kasahara H, Xia Z-Q, Vander-Mijnsbrugge K, Bauw G, Boerjan W, Van Montagu M, Davin LB, Lewis NG (1999) Evolution of plant defense mechanisms. Relationships of phenylcoumaran benzylic ether reductases to pinoresinol-lariciresinol and isoflavone reductases. J Biol Chem 274:7516–7527

    Article  CAS  Google Scholar 

  72. Hemmati S, Schmidt TJ, Fuss E (2007) (+)-pinoresinol/(−)-lariciresinol reductase from Linum perenne Himmelszelt involved in the biosynthesis of justicidin B. FEBS Lett 581:603–610

    Article  CAS  Google Scholar 

  73. Bayindir Ü, Alfermann AW, Fuss E (2008) Hinokinin Biosynthesis in Linum corymbulosum Reichenb. Plant J 55:810–820

    Article  CAS  Google Scholar 

  74. Nakatsubo T, Mizutani M, Suzuki S, Hattori T, Umezawa T (2008) Characterization of Arabidopsis thaliana pinoresinol reductase, a new type of enzyme involved in lignan biosynthesis. J Biol Chem 283:15550–15557

    Article  CAS  Google Scholar 

  75. Wankhede DP, Biswas DK, Rajkumar S, Sinha AK (2013) Expressed sequence tags and molecular cloning and characterization of gene encoding pinoresinol/lariciresinolreductase from Podophyllum hexandrum. Protoplasma 250:1239–1249

    Article  CAS  Google Scholar 

  76. Ono E, Kim H-J, Murata J, Morimoto K, Okazawa A, Kobayashi A, Umezawa T, Satake H (2010) Molecular and functional characterization of novel furofuran-class lignan glucosyltransferases from Forsythia. Plant Biotechnol 27:317–324

    Article  CAS  Google Scholar 

  77. Kim H-J, Ono E, Morimoto K, Yamagaki T, Okazawa A, Kobayashi A, Satake H (2009) Metabolic engineering of lignan biosynthesis in Forsythia cell culture. Plant Cell Physiol 50:2200–2209

    Article  CAS  Google Scholar 

  78. Morimoto K, Satake H (2013) Seasonal alteration in amounts of lignans and their glucosides and gene expression of the relevant biosynthetic enzymes in the Forsythia suspense leaf. Biol Pharm Bull 36:1519–1523

    Article  CAS  Google Scholar 

  79. Okazawa A, Kusunose T, Ono E, Kim H-J, Satake H, Shimizu B, Mizutani M, Seki H, Muranaka T (2014) Glucosyltransferase activity of Arabidopsis UGT71C1 towards pinoresinol and lariciresinol. Plant Biotechnol 31:561–566. doi:10.5511/plantbiotechnology.14.0910a

    Article  CAS  Google Scholar 

  80. Xia Z-Q, Costa MA, Pélissier HC, Davin LB, Lewis NG (2001) Secoisolariciresinol dehydrogenase purification, cloning, and functional expression. J Biol Chem 276:12614–12623

    Article  CAS  Google Scholar 

  81. Ghose K, Selvaraj K, McCallum J, Kirby CW, Sweeney-Nixon M, Cloutier SJ, Deyholos M, Datla R, Fofana B (2014) Identification and functional characterization of a flax UDP-glycosyltransferase glucosylating secoisolariciresinol (SECO) into secoisolariciresinol monoglucoside (SMG) and diglucoside (SDG). BMC Plant Biol 14:82

    Article  CAS  Google Scholar 

  82. Umezawa T, Ragamustari SK, Nakatsubo T, Wada S, Li L, Yamamura M, Sakakibara N, Hattori T, Suzuki S, Chiang VL (2013) A lignan O-methyltransferase catalyzing the regioselective methylation of matairesinol in Carthamus tinctorius. Plant Biotechnol 30:97–109

    Article  CAS  Google Scholar 

  83. Ragamustari SK, Yamamura M, Ono E, Hattori T, Suzuki S, Suzuki H, Shibata D, Umezawa T (2014) Substrate-enantiomer selectivity of matairesinol O-methyltransferases. Plant Biotechnol 31:257–267

    Article  CAS  Google Scholar 

  84. Ragamustari SK, Nakatsubo T, Hattori T, Ono E, Kitamura Y, Suzuki S, Yamamura M, Umezawa T (2013) A novel O-methyltransferase involved in the first methylation step of yatein biosynthesis from matairesinol in Anthriscus sylvestris. Plant Biotechnol 30:375–384

    Article  CAS  Google Scholar 

  85. Wang Z, Hobson N, Galindo L, Zhu S, Shi D, McDill J, Yang L, Hawkins S, Neutelings G, Datla R, Lambert G, Galbraith DW, Grassa CJ, Geraldes A, Cronk QC, Cullis C, Dash PK, Kumar PA, Cloutier S, Sharpe AG, Wong GKS, Wang J, Deyholos MK (2012) The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. Plant J 72:461–473

    Article  CAS  Google Scholar 

  86. Barvkar VT, Pardeshi VC, Kale SM, Kadoo NY, Gupta VS (2012) Phylogenomic analysis of UDP glycosyltransferase1 multigene family in Linum usitatissimum identified genes with varied expression patterns. BMC Genomics 2012:13,175

    Google Scholar 

  87. Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod 69:1121–1124

    Article  CAS  Google Scholar 

  88. Schmitt J, Petersen M (2002) Pinoresinol and matairesinol accumulation in a Forsythia x intermedia cell suspension culture. Plant Cell Tissue Organ Cult 68:91–98

    Article  CAS  Google Scholar 

  89. Morimoto K, Ono E, Kim H-J, Okazawa A, Kobayashi A, Satake H (2011) The construction of transgenic Forsythia plants: comparative study of three Forsythia species. Plant Biotechnol 28:273–280

    Article  CAS  Google Scholar 

  90. Renouard S, Tribalatc M-A, Lamblin F, Mongelard G, Fliniaux O, Corbin C, Marosevic D, Pilard S, Demailly H, Gutierrez L, Hano C, Mesnard F, Lainé E (2014) RNAi-mediated pinoresinol lariciresinol reductase gene silencing in flax (Linum usitatissimum L.) seed coat: consequences on lignans and neolignans accumulation. J Plant Physiol 171:1372–1377

    Article  CAS  Google Scholar 

  91. Rosati C, Cadic A, Renou J-P, Duron M (1996) Regeneration and agrobacterium-mediated transformation of Forsythia x intermedia “Spring Glowly”. Plant Cell Rep 16:114–117

    CAS  Google Scholar 

  92. Rosati C, Simoneau P, Treutter D, Poupard P, Cadot Y, Cadic A, Duron M (2003) Engineering of flower color in forsythia by expression of two independently-transformed dihydroflavonol 4-reductase and anthocyanidin synthase genes of flavonoid pathway. Mol Breed 12:197–208

    Article  CAS  Google Scholar 

  93. Murase K, Sugai Y, Hayashi S, Suzuki Y, Tsuji K, Takayama S (2015) Generation of transgenic Linum perenne by Agrobacterium mediated transformation. Plant Biotechnol 32:349–352

    Article  CAS  Google Scholar 

  94. Morimoto K, Kim H-J, Ono E, Kobayashi A, Okazawa A, Satake H (2011) Effects of light on production of endogenous and exogenous lignans by Forsythia koreana wildtype and transgenic cells. Plant Biotechnol 28:331–337

    Article  CAS  Google Scholar 

  95. Yousefzadi M, Sharifi M, Behmanesh M, Ghasempour A, Moyano E, Palazon J (2012) The effect of light on gene expression and podophyllotoxin biosynthesis in Linum album cell culture. Plant Physiol Biochem 56:41–56

    Article  CAS  Google Scholar 

  96. Hata N, Hayashi Y, Okazawa A, Ono E, Satake H, Kobayashi A (2012) Effect of photoperiod on growth of the plants, and sesamin content and CYP81Q1 gene expression in the leaves of sesame (Sesamum indicum L.). Environ Exp Bot 75:212–219

    Article  CAS  Google Scholar 

  97. Kobayashi T, Niino T, Kobayashi M (2005) Simple cryopreservation protocol with an encapsulation technique for tobacco BY-2 suspension cell cultures. Plant Biotechnol 22:105–112. doi:10.5511/plantbiotechnology.22.105

    Article  CAS  Google Scholar 

  98. Ogawa Y, Sakurai N, Oikawa A, Kai K, Morishita Y, Mori K et al (2011) High-throughput cryopreservation of plant cell cultures for functional genomics. Plant Cell Physiol 53:943–952. doi:10.1093/pcp/pcs038, PMID: 22437846

    Article  CAS  Google Scholar 

  99. Sarasan V, Cripps R, Ramsay MM, Atherton C, Mcmichen M, Prendergast G (2006) Conservation in vitro of threatened plants – progress in the past decade. In Vitro Cell Dev Biol Plant 42:206–214. doi:10.1079/IVP2006769

    Article  Google Scholar 

  100. Chen Q, Lai H, Hurtado J, Stahnke J, Leuzinger K, Dent M (2013) Agroinfiltration as an effective and scalable strategy of gene delivery for production of pharmaceutical proteins. Adv Tech Biol Med 1:103

    Article  CAS  Google Scholar 

  101. Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333

    Article  CAS  Google Scholar 

  102. Berim A, Spring O, Conrad J, Maitrejean M, Boland W, Petersen M (2005) Enhancement of lignan biosynthesis in suspension cultures of Linum nodiflorum by coronalon, indanoyl-isoleucine and methyl jasmonate. Planta 222:769–776

    Article  CAS  Google Scholar 

  103. Van Fürden B, Humburg A, Fuss E (2005) Influence of methyl jasmonate on podophyllotoxin and 6-methoxypodophyllotoxin accumulation in Linum album cell suspension cultures. Plant Cell Rep 24:312–317

    Article  CAS  Google Scholar 

  104. Yousefzadi M, Sharifi M, Behmanesh M, Ghasempour A, Moyano E, Palazon J (2010) Salicylic acid improves podophyllotoxin production in cell cultures of Linum album by increasing the expression of genes related with its biosynthesis. Biotechnol Lett 32:1739–1743

    Article  CAS  Google Scholar 

  105. Bhattacharyya D, Sinha R, Ghanta S, Chakraborty A, Hazra S, Chattopadhyay S (2012) Proteins differentially expressed in elicited cell suspension culture of Podophyllum hexandrum with enhanced podophyllotoxin content. Proteome Sci 10:34

    Article  CAS  Google Scholar 

  106. Vardapetyan HR, Kirakosyan AB, Oganesyan AA, Penesyan AR, Alfermann WA (2003) Effect of various elicitors onlignan biosynthesis in callus cultures of Linum austriacum. Russ J Plant Physl 50:297–300

    Article  CAS  Google Scholar 

  107. Ionkova I (2009) Effect of methyl jasmonate on production of ariltetralin lignans in hairy root cultures of Linum tauricum. Pharmacogn Res 1:102–105

    CAS  Google Scholar 

  108. Schmitt J, Petersen M (2002) Influence of methyl jasmonate and coniferyl alcohol on pinoresinol and matairesinol accumulation in a Forsythia × intermedia suspension culture. Plant Cell Rep 20:885–890

    Article  CAS  Google Scholar 

  109. Muranaka T, Miyata M, Ito K, Tachibana S (1998) Production of podophyllotoxin in Juniperus chinensis callus cultures treated with oligosaccharides and a biogenetic precursor. Phytochemistry 49:491–496

    Article  CAS  Google Scholar 

  110. Bahabadi SE, Sharifi M, Safaie N, Murata J, Yamagaki T, Satake H (2011) Increased lignan biosynthesis in the suspension cultures of Linum album by fungal extracts. Plant Biotechnol Rep 5:367–373

    Article  Google Scholar 

  111. Bahabadi SE, Sharifi M, Chashmi NA, Murata J, Satake H (2014) Significant enhancement of lignans accumulation in hairy root cultures of Linum album using biotic elicitors. Acta Physiol Plant 36:3325–3331

    Article  CAS  Google Scholar 

  112. Bahabadi SE, Sharifi M, Murata J, Satake H (2014) The effect of chitosan and chitin oligomers on gene expression and lignan production in Linum album cell cultures. J Med Plant 13:46–53

    Google Scholar 

  113. Hano C, Addi M, Bensaddek L, Crônier D, Baltora-Rosset S, Doussot J, Maury S, Mesnard B, Chabbert B, Hawkins S, Lainé E, Lamblin F (2006) Differential accumulation of monolignol-drived compounds in elicited flax (Linum usitatissimum) cell suspension cultures. Planta 223:975–989

    Article  CAS  Google Scholar 

  114. Bahabadi SE, Sharifi M, Behmanesh M, Safaie N, Murata J, Araki R, Yamagaki T, Satake H (2012) Time-course changes in fungal elicitor-induced lignan synthesis and expression of the relevant genes in cell cultures of Linum album. J Plant Physiol 169:487–491

    Article  CAS  Google Scholar 

  115. Tahsili J, Sharifi M, Safaie N, Bahabadi SE, Behmanesh M (2014) Induction of lignans and phenolic compounds in cell culture of Linum album by culture filtrate of Fusarium graminearum. J Plant Interact 9:412–417

    Google Scholar 

  116. Chun C, Kozai T (2001) A closed transplant production system, a hybrid of scaled-up micropropagation system and plant factory. J Plant Biotechnol 3:59–66

    Google Scholar 

  117. Hirai T, Fukukawa G, Kakuta H, Fukuda N, Ezura H (2010) Production of recombinant miraculin using transgenic tomatoes in a closed cultivation system. J Agric Food Chem 58:6096–6101

    Article  CAS  Google Scholar 

  118. Kato K, Yoshida R, Kikuzaki A, Hirai T, Kuroda H, Hiwasa-Tanase K, Takane K, Ezura H, Mizoguchi T (2010) Molecular breeding of tomato lines for mass production of miraculin in a plant factory. J Agric Food Chem 58:9505–9510

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was, in part, supported by the Plant Factory Project of the Ministry of Economy, Technology, and Industry of Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Honoo Satake , Tomotsugu Koyama , Erika Matsumoto , Kinuyo Morimoto , Eiichiro Ono or Jun Murata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Satake, H., Koyama, T., Matsumoto, E., Morimoto, K., Ono, E., Murata, J. (2017). Metabolic Engineering of Lignan Biosynthesis Pathways for the Production of Transgenic Plant-Based Foods. In: Jha, S. (eds) Transgenesis and Secondary Metabolism. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-28669-3_11

Download citation

Publish with us

Policies and ethics