Skip to main content

Experimental Models of Brain Disease: MRI Studies

  • Reference work entry
  • First Online:
Modern Magnetic Resonance

Abstract

Studies involving dedicated high field MRI systems have mushroomed in recent years. In parallel, modelling of neurological disorders using animals have improved substantially, allowing in depth study of both disease aetiology and the effects of therapeutic agents on such models. In particular, the use of transgenic mouse models has called for high-throughput methods to allow in depth phenotyping of mouse lines, and track disease processes with time. This chapter is dedicated to the use of MRI in small animal models of brain disease, and will describe some of the practical issues surrounding the use of MRI, and review the role of MRI in investigating the pathophysiology of the most common neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrew ER. N.m.r. imaging of intact biological systems. Philos Trans R Soc Lond B Biol Sci. 1980;289(1037):471–81.

    Article  CAS  Google Scholar 

  2. Holmes HE, et al. Imaging the accumulation and suppression of tau pathology using multiparametric MRI. Neurobiol Aging. 2016;39:184–94.

    Article  CAS  Google Scholar 

  3. Wells JA, et al. In vivo imaging of tau pathology using multi-parametric quantitative MRI. Neuroimage. 2015;111:369–78.

    Article  CAS  Google Scholar 

  4. Cleary JO, et al. Structural correlates of active-staining following magnetic resonance microscopy in the mouse brain. Neuroimage. 2011;56(3):974–83.

    Article  Google Scholar 

  5. Ma D, et al. Automatic structural parcellation of mouse brain MRI using multi-atlas label fusion. PLoS One. 2014;9(1):e86576.

    Article  CAS  Google Scholar 

  6. Pan D, et al. Manganese-based MRI contrast agents: past, present and future. Tetrahedron. 2011;67(44):8431–44.

    Article  CAS  Google Scholar 

  7. Saar G, et al. Laminar specific detection of APP induced neurodegeneration and recovery using MEMRI in an olfactory based Alzheimer’s disease mouse model. Neuroimage. 2015;118:183–92.

    Article  CAS  Google Scholar 

  8. Thuen M, et al. Manganese-enhanced MRI of the rat visual pathway: acute neural toxicity, contrast enhancement, axon resolution, axonal transport, and clearance of Mn2+. J Magn Reson Imaging. 2008;28(4):855–65.

    Article  Google Scholar 

  9. Pan D, et al. Revisiting an old friend: manganese-based MRI contrast agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2011;3(2):162–73.

    Article  CAS  Google Scholar 

  10. Choquet P, et al. Carbon tube electrodes for electrocardiography-gated cardiac multimodality imaging in mice. J Am Assoc Lab Anim Sci. 2011;50(1):61–4.

    CAS  Google Scholar 

  11. Mirsattari SM, et al. EEG monitoring during functional MRI in animal models. Epilepsia. 2007;48:37–46.

    Article  Google Scholar 

  12. Burchell SR, et al. Isoflurane provides neuroprotection in neonatal hypoxic ischemic brain injury. J Investig Med. 2013;61(7):1078–83.

    Article  CAS  Google Scholar 

  13. Zheng S, Zuo Z. Isoflurane preconditioning induces neuroprotection against ischemia via activation of P38 mitogen-activated protein kinases. Mol Pharmacol. 2004;65(5):1172–80.

    Article  CAS  Google Scholar 

  14. Datla PK, Zbarsky V, Dexter TD. Effects of anaesthetics on the loss of nigrostriatal dopaminergic neurons by 6-hydroxydopamine in rats. J Neural Transm. 2005;113(5):583–91.

    Article  CAS  Google Scholar 

  15. Ferris CF, et al. Functional magnetic resonance imaging in conscious animals: a new tool in behavioural neuroscience research. J Neuroendocrinol. 2006;18(5):307–18.

    Article  CAS  Google Scholar 

  16. Brevard ME, et al. Changes in MRI signal intensity during hypercapnic challenge under conscious and anesthetized conditions. Magn Reson Imaging. 2003;21(9):995–1001.

    Article  CAS  Google Scholar 

  17. Weber R, et al. A fully noninvasive and robust experimental protocol for longitudinal fMRI studies in the rat. Neuroimage. 2006;29(4):1303–10.

    Article  Google Scholar 

  18. Adamczak JM, et al. High field BOLD response to forepaw stimulation in the mouse. Neuroimage. 2010;51(2):704–12.

    Article  Google Scholar 

  19. Petrinovic MM, et al. A novel anesthesia regime enables neurofunctional studies and imaging genetics across mouse strains. Sci Rep. 2016;6:24523.

    Article  CAS  Google Scholar 

  20. Huang Y, Mucke L. Alzheimer mechanisms and therapeutic strategies. Cell. 2012;148(6):1204–22.

    Article  CAS  Google Scholar 

  21. Li L, et al. Magnetic resonance T2 relaxation time at 7 Tesla associated with amyloid β pathology and age in a double-transgenic mouse model of Alzheimer’s disease. Neurosci Lett. 2016;610:92–7.

    Article  CAS  Google Scholar 

  22. Santin MD, et al. In vivo detection of amyloid plaques by gadolinium-stained MRI can be used to demonstrate the efficacy of an anti-amyloid immunotherapy. Front Aging Neurosci. 2016;8:55.

    Article  CAS  Google Scholar 

  23. Ansciaux E, et al. In vitro and in vivo characterization of several functionalized ultrasmall particles of iron oxide, vectorized against amyloid plaques and potentially able to cross the blood–brain barrier: toward earlier diagnosis of Alzheimer’s disease by molecular imaging. Contrast Media Mol Imaging. 2015;10(3):211–24.

    Article  CAS  Google Scholar 

  24. Shu X, et al. Voxel-based diffusion tensor imaging of an APP/PS1 mouse model of Alzheimer’s disease. Mol Neurobiol. 2013;48(1):78–83.

    Article  CAS  Google Scholar 

  25. Sun S-W, et al. In vivo diffusion tensor imaging of amyloid-β-induced white matter damage in mice. J Alzheimers Dis. 2014;38(1):93–101.

    Article  CAS  Google Scholar 

  26. Müller H-P, et al. Diffusion tensor magnetic resonance imaging of the brain in APP transgenic mice: a cohort study. PLoS One. 2013;8(6):e67630.

    Article  CAS  Google Scholar 

  27. Li H, et al. Vascular and parenchymal amyloid pathology in an Alzheimer disease knock-in mouse model: interplay with cerebral blood flow. Mol Neurodegener. 2014;9(1):1–15.

    Article  CAS  Google Scholar 

  28. Shah D, et al. Resting state fMRI reveals diminished functional connectivity in a mouse model of amyloidosis. PLoS One. 2013;8(12):e84241.

    Article  CAS  Google Scholar 

  29. Shah D, et al. Early pathologic amyloid induces hypersynchrony of BOLD resting-state networks in transgenic mice and provides an early therapeutic window before amyloid plaque deposition. Alzheimers Dement. 2016;12(9):964–76.

    Article  Google Scholar 

  30. Giannakopoulos P, et al. Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer’s disease. Neurology. 2003;60(9):1495–500.

    Article  CAS  Google Scholar 

  31. Yang D, et al. Volumetric MRI and MRS provide sensitive measures of Alzheimer’s disease neuropathology in inducible Tau transgenic mice (rTg4510). Neuroimage. 2011;54(4):2652–8.

    Article  CAS  Google Scholar 

  32. Sahara N, et al. Age-related decline in white matter integrity in a mouse model of tauopathy: an in vivo diffusion tensor magnetic resonance imaging study. Neurobiol Aging. 2014;35(6):1364–74.

    Article  Google Scholar 

  33. Colgan N, et al. Application of neurite orientation dispersion and density imaging (NODDI) to a tau pathology model of Alzheimer’s disease. Neuroimage. 2016;125:739–44.

    Article  CAS  Google Scholar 

  34. Wells JA, et al. Increased cerebral vascular reactivity in the tau expressing rTg4510 mouse: evidence against the role of tau pathology to impair vascular health in Alzheimer’s disease. J Cereb Blood Flow Metab. 2015;35(3):359–62.

    Article  CAS  Google Scholar 

  35. Dexter DT, Jenner P. Parkinson disease: from pathology to molecular disease mechanisms. Free Radic Biol Med. 2013;62:132–44.

    Article  CAS  Google Scholar 

  36. Khairnar A, et al. Late-stage α-synuclein accumulation in TNWT-61 mouse model of Parkinson’s disease detected by diffusion kurtosis imaging. J Neurochem. 2016;136(6):1259–69.

    Article  CAS  Google Scholar 

  37. Cong L, et al. Multimodal MRI evaluation of the MitoPark mouse model of Parkinson’s disease. PLoS One. 2016;11(3):e0151884.

    Article  CAS  Google Scholar 

  38. Soria G, et al. In vivo magnetic resonance imaging characterization of bilateral structural changes in experimental Parkinson’s disease: a T2 relaxometry study combined with longitudinal diffusion tensor imaging and manganese-enhanced magnetic resonance imaging in the 6-hydroxydopamine rat model. Eur J Neurosci. 2011;33(8):1551–60.

    Article  Google Scholar 

  39. Campa NV, et al. Diffusion tensor imaging in a rat model of Parkinson’s disease after lesioning of the nigrostriatal tract. NMR Biomed. 2009;22(7):697–706.

    Article  Google Scholar 

  40. Virel A, et al. Magnetic resonance imaging (MRI) to study striatal iron accumulation in a rat model of Parkinson’s disease. PLoS One. 2014;9(11):e112941.

    Article  CAS  Google Scholar 

  41. Virel A, et al. Magnetic resonance imaging as a tool to image neuroinflammation in a rat model of Parkinson’s disease – phagocyte influx to the brain is promoted by bilberry-enriched diet. Eur J Neurosci. 2015;42(10):2761–71.

    Article  Google Scholar 

  42. Chen C-CV, Shih Y-YI, Chang C. Dopaminergic imaging of nonmotor manifestations in a rat model of Parkinson’s disease by fMRI. Neurobiol Dis. 2013;49:99–106.

    Article  CAS  Google Scholar 

  43. Harrison IF, et al. Neurorestoration induced by the HDAC inhibitor sodium valproate in the lactacystin model of Parkinson’s is associated with histone acetylation and up-regulation of neurotrophic factors. Br J Pharmacol. 2015;172(16):4200–15.

    Article  CAS  Google Scholar 

  44. Vernon AC, et al. Evolution of extra-nigral damage predicts behavioural deficits in a rat proteasome inhibitor model of Parkinson’s disease. PLoS One. 2011;6(2):e17269.

    Article  CAS  Google Scholar 

  45. Vernon AC, Johansson SM, Modo MM. Non-invasive evaluation of nigrostriatal neuropathology in a proteasome inhibitor rodent model of Parkinson’s disease. BMC Neurosci. 2010;11(1):1–18.

    Article  CAS  Google Scholar 

  46. Pienaar IS, et al. An animal model mimicking pedunculopontine nucleus cholinergic degeneration in Parkinson’s disease. Brain Struct Funct. 2015;220(1):479–500.

    Article  CAS  Google Scholar 

  47. Duyao M, et al. Trinucleotide repeat length instability and age of onset in Huntington’s disease. Nat Genet. 1993;4(4):387–92.

    Article  CAS  Google Scholar 

  48. Walker FO. Huntington’s disease. Lancet. 2007;369(9557):218–28.

    Article  CAS  Google Scholar 

  49. Heng MY, Detloff PJ, Albin RL. Rodent genetic models of Huntington disease. Neurobiol Dis. 2008;32(1):1–9.

    Article  CAS  Google Scholar 

  50. Heikkinen T, et al. Characterization of neurophysiological and behavioral changes, MRI brain volumetry and 1H MRS in zQ175 knock-in mouse model of Huntington’s disease. PLoS One. 2012;7(12):e50717.

    Article  CAS  Google Scholar 

  51. Ferris CF, et al. Studies on the Q175 knock-in model of Huntington’s disease using functional imaging in awake mice: evidence of olfactory dysfunction. Front Neurol. 2014;5:94.

    Article  Google Scholar 

  52. Ferrante RJ. Mouse models of Huntington’s disease and methodological considerations for therapeutic trials. Biochim Biophys Acta. 2009;1792(6):506–20.

    Article  CAS  Google Scholar 

  53. Rattray I, et al. Correlations of behavioral deficits with brain pathology assessed through longitudinal MRI and histopathology in the R6/1 mouse model of Huntington’s disease. PLoS One. 2013;8(12):e84726.

    Article  CAS  Google Scholar 

  54. Rattray I, et al. Correlations of behavioral deficits with brain pathology assessed through longitudinal MRI and histopathology in the R6/2 mouse model of HD. PLoS One. 2013;8(4):e60012.

    Article  CAS  Google Scholar 

  55. Sawiak SJ, et al. Use of magnetic resonance imaging for anatomical phenotyping of the R6/2 mouse model of Huntington’s disease. Neurobiol Dis. 2009;33(1):12–9.

    Article  CAS  Google Scholar 

  56. Sawiak SJ, et al. Voxel-based morphometry in the R6/2 transgenic mouse reveals differences between genotypes not seen with manual 2D morphometry. Neurobiol Dis. 2009;33(1):20–7.

    Article  CAS  Google Scholar 

  57. Zhang J, et al. Longitudinal characterization of brain atrophy of a Huntington’s disease mouse model by automated morphological analyses of magnetic resonance images. Neuroimage. 2010;49(3):2340–51.

    Article  Google Scholar 

  58. Jenkins BG, et al. Effects of CAG repeat length, HTT protein length and protein context on cerebral metabolism measured using magnetic resonance spectroscopy in transgenic mouse models of Huntington’s disease. J Neurochem. 2005;95(2):553–62.

    Article  CAS  Google Scholar 

  59. Duan W, et al. Sertraline slows disease progression and increases neurogenesis in N171-82Q mouse model of Huntington’s disease. Neurobiol Dis. 2008;30(3):312–22.

    Article  CAS  Google Scholar 

  60. Peng Q, et al. The antidepressant sertraline improves the phenotype, promotes neurogenesis and increases BDNF levels in the R6/2 Huntington’s disease mouse model. Exp Neurol. 2008;210(1):154–63.

    Article  CAS  Google Scholar 

  61. Aggarwal M, et al. Spatiotemporal mapping of brain atrophy in mouse models of Huntington’s disease using longitudinal in vivo magnetic resonance imaging. Neuroimage. 2012;60(4):2086–95.

    Article  Google Scholar 

  62. Cheng Y, et al. Structural MRI detects progressive regional brain atrophy and neuroprotective effects in N171-82Q Huntington’s disease mouse model. Neuroimage. 2011;56(3):1027–34.

    Article  CAS  Google Scholar 

  63. Lerch JP, et al. Cortical thickness measured from MRI in the YAC128 mouse model of Huntington’s disease. Neuroimage. 2008;41(2):243–51.

    Article  Google Scholar 

  64. Steventon JJ, et al. In vivo MRI evidence that neuropathology is attenuated by cognitive enrichment in the Yac128 Huntington’s disease mouse model. J Huntingtons Dis. 2015;4(2):149–60.

    Article  Google Scholar 

  65. Robertson J, et al. Pathways to motor neuron degeneration in transgenic mouse models. Biochimie. 2002;84(11):1151–60.

    Article  CAS  Google Scholar 

  66. Gurney ME, et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science. 1994;264(5166):1772–5.

    Article  CAS  Google Scholar 

  67. Underwood CK, et al. Non-invasive diffusion tensor imaging detects white matter degeneration in the spinal cord of a mouse model of amyotrophic lateral sclerosis. Neuroimage. 2011;55(2):455–61.

    Article  Google Scholar 

  68. Niessen HG, et al. In vivo quantification of spinal and bulbar motor neuron degeneration in the G93A-SOD1 transgenic mouse model of ALS by T2 relaxation time and apparent diffusion coefficient. Exp Neurol. 2006;201(2):293–300.

    Article  CAS  Google Scholar 

  69. Evans MC, et al. T2-weighted MRI detects presymptomatic pathology in the SOD1 mouse model of ALS. J Cereb Blood Flow Metab. 2014;34(5):785–93.

    Article  CAS  Google Scholar 

  70. Bucher S, et al. Vacuolization correlates with spin–spin relaxation time in motor brainstem nuclei and behavioural tests in the transgenic G93A-SOD1 mouse model of ALS. Eur J Neurosci. 2007;26(7):1895–901.

    Article  Google Scholar 

  71. Marcuzzo S, et al. Hind limb muscle atrophy precedes cerebral neuronal degeneration in G93A-SOD1 mouse model of amyotrophic lateral sclerosis: a longitudinal MRI study. Exp Neurol. 2011;231(1):30–7.

    Article  Google Scholar 

  72. Evans MC, et al. CNS-targeted glucocorticoid reduces pathology in mouse model of amyotrophic lateral sclerosis. Acta Neuropathol Commun. 2014;2(1):1–13.

    Article  Google Scholar 

  73. Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol. 2015;15(9):545–58.

    Article  CAS  Google Scholar 

  74. Ransohoff RM. Animal models of multiple sclerosis: the good, the bad and the bottom line. Nat Neurosci. 2012;15(8):1074–7.

    Article  CAS  Google Scholar 

  75. Budde MD, et al. Axonal injury detected by in vivo DTI correlates with neurological disability in a mouse model of Multiple Sclerosis. NMR Biomed. 2008;21(6):589–97.

    Article  Google Scholar 

  76. Nessler S, et al. Early MRI changes in a mouse model of multiple sclerosis are predictive of severe inflammatory tissue damage. Brain. 2007;130(8):2186–98.

    Article  Google Scholar 

  77. Hunger M, et al. Visualization of acute focal lesions in rats with experimental autoimmune encephalomyelitis by magnetic nanoparticles, comparing different MRI sequences including phase imaging. J Magn Reson Imaging. 2014;39(5):1126–35.

    Article  Google Scholar 

  78. Nathoo N, et al. Susceptibility-weighted imaging in the experimental autoimmune encephalomyelitis model of multiple sclerosis indicates elevated deoxyhemoglobin, iron deposition and demyelination. Mult Scler J. 2013;19(6):721–31.

    Article  Google Scholar 

  79. MacKenzie-Graham A, et al. Cortical atrophy in experimental autoimmune encephalomyelitis: in vivo imaging. Neuroimage. 2012;60(1):95–104.

    Article  Google Scholar 

  80. Tambalo S, et al. Functional magnetic resonance imaging of rats with experimental autoimmune encephalomyelitis reveals brain cortex remodeling. J Neurosci. 2015;35(27):10088–100.

    Article  CAS  Google Scholar 

  81. Kumar A, Aakriti, Gupta V. A review on animal models of stroke: An update. Brain Res Bull. 2016;122:35–44.

    Article  Google Scholar 

  82. Herson PS, Traystman RJ. Animal models of stroke: translational potential at present and in 2050. Future Neurol. 2014;9(5):541–51.

    Article  CAS  Google Scholar 

  83. Li F, et al. A new method to improve in-bore middle cerebral artery occlusion in rats: demonstration with diffusion- and perfusion-weighted imaging. Stroke. 1998;29(8):1715–20.

    Article  CAS  Google Scholar 

  84. Bråtane BT, et al. Ischemic lesion volume determination on diffusion weighted images vs. apparent diffusion coefficient maps. Brain Res. 2009;1279:182–8.

    Article  CAS  Google Scholar 

  85. Zhang S, et al. The temporal evolution of diffusional kurtosis imaging in an experimental middle cerebral artery occlusion (MCAO) model. Magn Reson Imaging. 2016;34(7):889–95.

    Article  Google Scholar 

  86. Baskerville TA, et al. The influence of gender on ‘tissue at risk’ in acute stroke: a diffusion-weighted magnetic resonance imaging study in a rat model of focal cerebral ischaemia. J Cereb Blood Flow Metab. 2016;36(2):381–6.

    Article  Google Scholar 

  87. Barber PA, et al. Early T1- and T2-weighted MRI signatures of transient and permanent middle cerebral artery occlusion in a murine stroke model studied at 9.4T. Neurosci Lett. 2005;388(1):54–9.

    Article  CAS  Google Scholar 

  88. Woo C-W, et al. Correlation between lactate and neuronal cell damage in the rat brain after focal ischemia: an in vivo 1H magnetic resonance spectroscopic (1H-MRS) study. Acta Radiol. 2010;51(3):344–50.

    Article  Google Scholar 

  89. Yan GEN, et al. Early metabolic changes following ischemia onset in rats: an in vivo diffusion-weighted imaging and (1)H-magnetic resonance spectroscopy study at 7.0T. Mol Med Rep. 2015;11(6):4109–14.

    Article  CAS  Google Scholar 

  90. Xiong Y, Mahmood A, Chopp M. Animal models of traumatic brain injury. Nat Rev Neurosci. 2013;14(2):128–42.

    Article  CAS  Google Scholar 

  91. Mac Donald CL, et al. Detection of traumatic axonal injury with diffusion tensor imaging in a mouse model of traumatic brain injury. Exp Neurol. 2007;205(1):116–31.

    Article  CAS  Google Scholar 

  92. Mac Donald CL, et al. Diffusion tensor imaging reliably detects experimental traumatic axonal injury and indicates approximate time of injury. J Neurosci. 2007;27(44):11869–76.

    Article  CAS  Google Scholar 

  93. Onyszchuk G, et al. Post-acute pathological changes in the thalamus and internal capsule in aged mice following controlled cortical impact injury: a magnetic resonance imaging, iron histochemical, and glial immunohistochemical study. Neurosci Lett. 2009;452(2):204–8.

    Article  CAS  Google Scholar 

  94. Tsenter J, et al. Dynamic changes in the recovery after traumatic brain injury in mice: effect of injury severity on T2-weighted MRI abnormalities, and motor and cognitive functions. J Neurotrauma. 2008;25(4):324–33.

    Article  Google Scholar 

  95. Foley LM, et al. MRI assessment of cerebral blood flow after experimental traumatic brain injury combined with hemorrhagic shock in mice. J Cereb Blood Flow Metab. 2013;33(1):129–36.

    Article  Google Scholar 

  96. Boulet T, Kelso ML, Othman SF. Microscopic magnetic resonance elastography of traumatic brain injury model. J Neurosci Methods. 2011;201(2):296–306.

    Article  Google Scholar 

  97. Boulet T, Kelso ML, Othman SF. Long-term in vivo imaging of viscoelastic properties of the mouse brain after controlled cortical impact. J Neurotrauma. 2013;30(17):1512–20.

    Article  Google Scholar 

  98. Rubovitch V, et al. A mouse model of blast-induced mild traumatic brain injury. Exp Neurol. 2011;232(2):280–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian F. Harrison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Harrison, I.F., Wells, J.A., Lythgoe, M.F. (2018). Experimental Models of Brain Disease: MRI Studies. In: Webb, G. (eds) Modern Magnetic Resonance. Springer, Cham. https://doi.org/10.1007/978-3-319-28388-3_98

Download citation

Publish with us

Policies and ethics